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Abstract— High performance output tracking can be
achieved by precompensator or feedforward controllers based
on the inverse of the closed-loop system or the plant model.
However, it has been shown that these inverse controllers can
affect adversely the tracking performance in the presence of
model uncertainty. In this paper, a model-free approach based
on only one set of acquired data from a simple closed-loop
experiment is used to tune the controller parameters. The
approach is based on the decorrelation of the tracking error
and the desired output and is not asymptotically sensitive to
noise and disturbances. By a frequency-domain analysis of
the criterion, it is shown that the weighted two-norm of the
difference between the controller and the inverse of the plant
model (or the closed-loop transfer function) can be minimized.
The method is successfully applied to a high precision position
control system.

I. INTRODUCTION

Two-degree of freedom controllers are largely used when
disturbance rejection and reference signal tracking are both
considered as closed loop performance criteria. In many
cases, the feedback controller is first designed to ensure
the robust stability and satisfy the disturbance rejection
specification. Then, in the second step, a precompensator
(Fig. 1) or a feedforward controller (Fig. 2) is designed
to improve the tracking performance. If the plant model is
perfectly known, this problem can be converted to a standard
model matching problem and can be solved analytically or
using the convex optimization algorithms. However, a perfect
model of the plant is never available and a nominal model
with some uncertainty bounds should be considered for the
design [1].

Another approach, when a mathematical model of the
plant is not available, is to tune directly the controller param-
eters using the data acquired from some simple experiments.
Using the measured data, the controller parameters are tuned
to minimize a control criterion which is normally the two-
norm of a performance error. Iterative Feedback Tuning
(IFT) is a model-free approach for tuning the parameters
of two-degree of freedom controllers based on some specific
closed-loop experiments to compute an unbiased estimate of
the gradient of the control criterion [2]. Separate tuning of
the feedforward and the feedback controllers is proposed to
improve the tracking performance using the IFT approach
in [3]. Iterative Learning Control (ILC) is also used for
feedforward control of systems with periodic reference or
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disturbance signal. A characteristic feature of data-driven
approaches is the sensitivity of the controller parameters (in
IFT) or the control input (in ILC) to stochastic disturbances.
Moreover, these methods require many experiments on the
system. The main interest of a new controller tuning method
called Virtual Reference Feedback Tuning (VRFT) is that
only one set of data is required to tune a controller for the
model reference problem [4]. However, the drawback is that
an approximation of the control criterion is minimized.

Recently, a new data-driven iterative method based on
the correlation approach has been proposed and successfully
applied to a magnetic suspension system [5] as well as
a benchmark problem [6]. An overview of this approach
together with the theoretical results can be found in [7]. The
main idea is instead of minimizing the performance error,
to make it uncorrelated with the reference signal. It can be
shown in this case that the noise has asymptotically no effect
on the controller parameter estimates.

In this paper, the correlation approach will be used to
tune the parameters of the precompensator or feedforward
controller such that the tracking error becomes uncorrelated
with the desired output. In contrast to the feedback con-
troller tuning, only one set of data from a simple closed-
loop experiment is used to tune the parameters of the
precompensator or feedforward controller. Moreover, with
an appropriate parameterization, not only the stability of
the tuned controller is guaranteed but also the minimization
of the control criterion becomes a classical least squares
problem. The optimal parameters are derived for the pre-
compensator and feedforward controller. Frequency-domain
analysis of the criterion shows that the proposed approach
gives asymptotically an optimal model-free solution to the
model matching problem in two norm.

The paper is organized as follows. Notation and prelimi-
naries about the correlation approach are given in Section
II. Precompensator tuning scheme together with the one
shot tuning algorithm and frequency-domain analysis are
presented in Section III. Section IV studies the tuning of
the feedforward controllers. Simulation results and experi-
mental results for high precision position control of a linear
synchronous motor are presented in Section V. Finally, the
concluding remarks are given in Section VI.

II. PRELIMINARIES

Let the output y(t) of a SISO linear time-invariant plant
model P(q−1) be described by:

y(t) = P(q−1)u(t)+ v(t) (1)
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Fig. 1. Closed-loop system with precompensator

where u(t) is the plant input, v(t) a zero-mean weakly sta-
tionary random process and q−1 the backward-shift operator.
Assume that the controller C(q−1) stabilizes the plant model
P(q−1) in closed-loop with unit feedback. It is supposed
that the plant model P(q−1) and the controller C(q−1) are
unknown and the objective is to improve the closed-loop
tracking error e(t) = yd(t)− y(t) using only one set of data
acquired in closed-loop operation. In practice, two different
control approaches are used to reduce the tracking error:

• Precompensator: Filtering the desired output by a pre-
compensator before applying it as a reference signal to
the closed-loop system (modifying the reference signal),

• Feedforward: Adding the filtered desired output to the
controller output (modifying the plant input).

Fig. 1 shows the block diagram of a two-degree of freedom
controller with a precompensator. Principally, when yd is
a priori known, the precompensator F should be a stable
(not necessarily causal) approximation of the inverse of
the closed loop transfer function T = CP(1 + CP)−1. For
the feedforward scheme (Fig. 2), however, the feedforward
controller F should be a stable approximation of the inverse
of the plant model P.

A. Controller Parameterization

Let F be parameterized as

F(ρ ,q−1) = β T (q−1)ρ (2)

where ρT = [ρ0,ρ1, . . . ,ρnρ ] is the vector of controller param-
eters and β (q−1) the vector of linear discrete-time transfer
operators

β T (q−1) = [β0(q
−1),β1(q

−1), . . . ,βnρ (q−1)]. (3)

In the sequel, for simplicity, we suppose that β T (q−1) =
[qδ ,qδ−1, . . . ,qδ−nρ ] which leads to the following FIR model
for F :

F(ρ ,q−1) = ρ0qδ + ρ1qδ−1 + · · ·+ ρnρ qδ−nρ (4)

where δ is a positive scalar. In fact, the desired output is
applied δ sampling periods in advance to the real system to
improve the tracking error [8]. For the sake of simplicity, q−1

will be omitted when appropriate in the rest of the paper.

B. Correlation Approach

It is evident that if the exact inverse of the closed-loop
system (for the precompensator case) or the exact inverse of
the plant model (for the feedforward case) exists the tracking
error e(t) will contain only the contribution of the noise.
Hence, it is reasonable to adjust the controller F in such
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Fig. 2. Closed-loop system with feedforward

a way that the tracking error e(t) be uncorrelated with the
desired output. For many systems, the exact inverse does not
exist because the system is non minimum phase or of infinite
order. As a result, e(t) is always correlated with the desired
output. However, it can be considered that a good controller
F minimizes the correlation between the tracking error e(t)
and the desired output yd(t). In order to formulate this idea
as an optimization problem, let the correlation function f (ρ)
be defined as:

f (ρ) = E{[yd(t)− y(t)]ζ (t)} = E{e(t)ζ (t)} (5)

where E{·} denotes the mathematical expectation and

ζ T (t) = [yd(t + n), . . . ,yd(t),yd(t −1), . . . ,yd(t −n)] (6)

with l = 2n+1 the dimension of ζ (t) which should be larger
than the order of the closed-loop system. In fact ζ (t) is a
vector of instrumental variables correlated with yd(t) and
uncorrelated with v(t). Now, a new control criterion based
on the correlation approach is defined:

J(ρ) = || f (ρ)||22 = f T (ρ) f (ρ) (7)

and the optimal controller parameters are:

ρ∗ = argmin
ρ

J(ρ). (8)

Since the control criterion involves the mathematical ex-
pectation, an exact solution when only one set of finite
number data is available, is not attainable. However, with an
ergodicity assumption on the input signals, a good estimate
of the correlation function can be given by:

f̂ (ρ) =
1
N

N

∑
t=1

e(t)ζ (t) (9)

where N is the number of data and should be large enough
with respect to l. The estimate of the correlation function
leads to the following criterion

JN(ρ) = || f̂ (ρ)||22 = f̂ T (ρ) f̂ (ρ). (10)

The criterion JN(ρ) goes to J(ρ) when N tends to infinity.
An optimal minimizer of JN(ρ) can be derived using the least
squares algorithm. This solution together with an asymptotic
frequency domain analysis is presented in the next sections.

III. PRECOMPENSATOR TUNING

In this section, we propose a tuning scheme to find the
parameters of the precompensator F based on the correlation
approach.
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Fig. 3. Precompensator tuning scheme

A. Tuning scheme

The tracking error can be computed as (see Fig. 1):

e(t) = yd(t)− y(t) = yd(t)−F(ρ)Tyd(t)−Sv(t) (11)

where T =CP(1+CP)−1 and S = (1+CP)−1 are the closed-
loop sensitivity functions. Computing e(t) for different val-
ues of ρ requires many experiments on the system that can
be avoided by a new tuning scheme in which the place of
closed-loop system and precompensator is interchanged so
that F acts as a post-compensator (see Fig. 3). It should be
mentioned that this can be done only for SISO LTI systems.
In this scheme um and ym are the measured input and output
of the plant from a closed-loop experiment with desired
output yd as the reference signal. An estimate of the tracking
error now can be computed only with one set of data as
follows

εp(t) = yd(t)− ŷ(t) = yd(t)−F(ρ)ym(t) (12)

= yd(t)−F(ρ)Tyd(t)−F(ρ)Sv(t) (13)

It is clear that in the absence of noise (v(t) ≡ 0) e(t) and
εp(t) are equal. However, even in the presence of noise we
have

f (ρ) = E{e(t)ζ (t)} = E{εp(t)ζ (t)} (14)

if the disturbance signal v(t) is independent of yd(t).

B. Algorithm

The estimate of the tracking error εp(t) can be presented
in the linear regression form:

εp(t) = yd(t)−F(ρ)ym(t) = yd(t)−φT (t)ρ (15)

where

φT (t) = [ym(t + δ ),ym(t + δ −1), . . . ,ym(t −nρ + δ )]. (16)

This leads to the following expression for the correlation
function estimate

f̂ (ρ) =
1
N

N

∑
t=1

ζ (t)[yd(t)−φT (t)ρ ] = Z −Qρ (17)

where

Z =
1
N

N

∑
t=1

ζ (t)yd(t) , Q =
1
N

N

∑
t=1

ζ (t)φT (t) (18)

Finally, if QT Q is nonsingular (i.e. yd is sufficiently rich),
straightforward calculation gives:

ρ̂ = (QT Q)−1QT Z (19)

where ρ̂ is the optimal minimizer of the correlation criterion
in (10).

C. Frequency-domain analysis

The correlation criterion in (7) can be reformulated as

J(ρ) = f T (ρ) f (ρ) =
n

∑
τ=−n

R2
eyd

(τ) (20)

where Reyd (τ) is the cross-correlation function between the
desired output yd(t) and the tracking error e(t) defined by:

Reyd (τ) = E{e(t)yd(t − τ)} = E{εp(t)yd(t − τ)}(21)

= E {[yd(t)−F(ρ)Tyd(t)]yd(t − τ)} (22)

The correlation criterion can be represented in the frequency
domain by applying the Parseval’s theorem when n tends to
infinity:

lim
n→∞

J(ρ) =
1

2π

∫ π

−π
|Φeyd (ω)|2dω

=
1

2π

∫ π

−π
|1−F(ρ ,e− jω)T (e− jω)|2Φ2

yd
(ω)dω (23)

where Φeyd (ω) is the cross-spectral density between e(t)
and yd(t) and Φyd (ω) is the spectral density of yd . This
expression shows that:

• The criterion is not asymptotically affected by noise.
• In the ideal case where there exists ρ∗ such that F(ρ∗)=

T−1 (i.e. T is minimum phase and F is properly
parameterized) ρ∗ is the minimum of the correlation
criterion in (7).

• If yd(t) is white noise the correlation criterion becomes

J(ρ) = ||T [T−1 −F(ρ)]||22

so the difference between F and T−1 weighted by the
closed-loop transfer function is minimized in the two-
norm sense using the correlation approach.

Remark: The model following problem in two-norm also
can be treated with this model-free approach. Consider
that we aim to compute the precompensator F such that
||M−F(ρ)T ||2 be minimized. To proceed, we define εM(t)=
Myd(t)− φT (t)ym(t) and we compute ρ such that εM(t) is
not correlated with yd(t) which is chosen to be a white noise
signal independent of v(t).

D. Control input weighting

When a precompensator is added to the feedback con-
troller to improve the tracking performance, it is possible
that the control input becomes too large for certain desired
outputs. Therefore, it is reasonable to take into account
the control input in the design of the precompensator. The
measured control input um that corresponds to the control
input when the feedback controller alone is used can be
represented by um(t) = CS [yd(t)− v(t)] (see Fig. 3). In the
presence of the precompensator, an estimate of the control
input can be obtained by u f (t) = F(ρ)um(t) = ϕT (t)ρ where

ϕT (t) = [um(t + δ ),um(t + δ −1), . . . ,um(t −nρ + δ )] (24)

It is clear that in the absence of noise, u f (t) is equal to u(t)
and in the presence of noise we have:

g(ρ) = E{u f (t)ζ (t)} = E{u(t)ζ (t)}. (25)
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Fig. 4. Feedforward tuning scheme

Now in order to consider the spectrum of the control input
in the control design, let the following correlation criterion
be defined:

J(ρ) = f T (ρ) f (ρ)+ λ gT (ρ)g(ρ)

=
n

∑
τ=−n

R2
eyd

(τ)+ λ R2
u f yd

(τ) (26)

where Ru f yd (τ) is the cross-spectral density function between
the control input estimate and the desired output, and λ a
positive scalar weighting factor. This new criterion can be
interpreted in the frequency-domain as:

lim
n→∞

J(ρ) =
1

2π

∫ π

−π

[
|Φeyd (ω)|2 + λ |Φu f yd (ω)|2

]
dω

=
1

2π

∫ π

−π

[
|1−F(ρ ,e− jω)T (e− jω)|2

+ λ |F(ρ ,e− jω)C(e− jω)S(e− jω)|2
]

Φ2
yd

(ω)dω . (27)

Therefore, using the criterion in (26) and an appropriate
choice of λ the magnitude of the frequency response of the
control input can be reduced in the frequency range where
the spectrum of the desired output is large.

For a finite number of data, an approximation of the
criterion can be obtained by

JN(ρ) = f̂ T (ρ) f̂ (ρ)+ λ ĝT(ρ)ĝ(ρ) (28)

where

ĝ(ρ) =
1
N

N

∑
t=1

ζ (t)ϕT (t)ρ = Quρ (29)

and

Qu =
1
N

N

∑
t=1

ζ (t)ϕT (t). (30)

The global minimum of this criterion is given by:

ρ̂ = (QT Q+ λ QT
u Qu)

−1QT Z. (31)

IV. FEEDFORWARD TUNING

The tuning of the feedforward controller to reduce the
tracking error is very similar to that of the precompensator.
The main idea is that F(ρ) should make the tracking error
e(t) uncorrelated with the desired output yd(t). The tracking
error in the feedforward scheme is (see Fig. 2)

e(t) = Syd(t)−F(ρ)PSyd(t)−Sv(t). (32)

Since this signal is not available for every value of ρ , we
propose a tuning scheme based on only one closed-loop

experiment. This scheme is depicted in Fig. 4 and is based
on a closed-loop experiment where the desired output yd

is added to the control input and the closed-loop reference
signal is fixed to zero. The plant input um and the plant
output ym are measured. The measured output filtered by
F(ρ) is denoted by ûm because, in the absence of noise, if
F(ρ)≈ P−1 it will be an estimate of um. Then, the estimate
of the tracking error ε f (t) = um(t)− ûm(t) can be computed
by

ε f (t) = Syd(t)−CSv(t)−F(ρ)PSyd(t)−F(ρ)Sv(t). (33)

It is clear from the above equations that e(t) is equal to
ε f (t) in the absence of disturbance v(t). Moreover, if the
disturbance v(t) is independent of yd(t) we have:

f (ρ) = E{e(t)ζ (t)} = E{ε f (t)ζ (t)}. (34)

This leads to the following expression in regression form for
the correlation function estimate

f̂ (ρ) =
1
N

N

∑
t=1

ζ (t)[um(t)−φT (t)ρ ] = Zf −Qρ (35)

where φT (t) and Q are the same as those defined respectively
in (16) and (18) for the precompensator tuning and

Zf =
1
N

N

∑
t=1

ζ (t)um(t). (36)

Therefore the parameters of the optimal controller are

ρ̂ = (QT Q)−1QT Zf (37)

A similar frequency-domain analysis using the Parseval’s
relation gives the following expression for the correlation
criterion

lim
n→∞

J(ρ) =
1

2π

∫ π

−π
|Φeyd (ω)|2dω =

1
2π

∫ π

−π
|S(e− jω)|2|1−F(ρ ,e− jω)P(e− jω)|2Φ2

yd
(ω)dω .

(38)

This expression shows that the disturbance signal v(t) has
asymptotically no effect on the parameters of the feedforward
controller. On the other hand, using a white noise signal for
yd(t) a weighted two-norm of the difference between F and
P−1 is minimized using the correlation approach.

V. SIMULATION AND EXPERIMENTAL RESULTS

A. Simulation Results

The correlation approach for precompensator tuning is
applied to a closed-loop system presented by the following
transfer function.

T (q−1) =
0.1333q−1 + 0.0677q−2

1−1.5q−1 + 0.7q−2 . (39)

The desired output is the response of a discrete-time second-
order system given by

M(q−1) =
0.0941q−1 + 0.0708q−2

1−1.262q−1 + 0.4274q−2 (40)
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Fig. 5. Correlation criterion versus δ

to a square-wave signal (between -1 and 1) of three periods
(number of data is N = 600). The desired output yd(t) is
applied to the closed-loop system without precompensator
to obtain the simulated measured output as:

ym(t) = T (q−1)yd(t)+ S(q−1)v(t) (41)

where S(q−1) = 1 − T (q−1) and v(t) is a uniformly dis-
tributed zero-mean white noise with a variance of 0.0225.
A non-causal controller F(q−1) = 5.8253q − 8.8756 +
4.0516q−1 is obtained using the algorithm in Eqs. (17)-(19)
with φT (t) = [y(t +1),y(t),y(t−1)] and n = 10. It should be
noted that one sampling time preview (δ = 1) corresponds to
the minimum of the correlation criterion when the number
of controller parameters is fixed to three (see Fig. 5). Fig.
6 shows one period of the desired output yd(t), simulated
measured output ym(t) and the noise-free simulated output
of the closed-loop system with precompensator. It can be
observed that good tracking performance can be obtained
only with one set of data (the noise-free closed-loop output
is almost superimposed on the desired output).

B. Experimental Results

1) System Description: The proposed precompensator
tuning method is applied to a linear, permanent magnet, syn-
chronous motor (LPMSM). LPMSM’s are very stiff and have
no mechanical transmission components, they, therefore, do
not suffer from backlash and thus allow very high positioning
accuracy to be achieved.

The motor used in the experiment is controlled by a stan-
dard two-degree-of-freedom position controller, as presented
earlier, operating at a sampling frequency of 6KHz. The
motor position is measured by an analog position encoder
with a period of 2µm, which is interpolated to obtain a
resolution of 0.24nm.

Experiments are carried out for both the cases of tuning a
precompensator for a desired output and that of the reference
model problem.
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Fig. 6. measured output without precompensator (dashed), desired output
(dash-dot) and noise-free simulated closed-loop output with precompensator
(solid)
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Fig. 7. Desired Output Motion

2) Tuning for a desired output: The standard movement of
the motor is a so-called “S-curve”, chosen to be less severe
than a step motion (see Fig.7). The S-curve is defined in
terms of the desired displacement, the maximum velocity, the
maximum acceleration and the jerk time. It is in terms of this
S-curve that the desired accuracy of the motor is described.
The tracking specifications are that for an S-curve with
25mm displacement, a velocity of 0.5m/s and an acceleration
of 3m/s2, after 200ms the tracking error should be less
than 200nm with a maximum overshoot of less than 1µm.
Additionally, during the transitory regime the motor position
must follow the reference signal with less than a 25µm
tracking error. These specifications cannot be achieved using
a model-based approach because of large model uncertainties
in high frequencies so a model-free approach is employed. In
order to tune a precompensator for a desired output one set
of data, ym, was acquired from the system by applying the S-
curve to the closed-loop system without precompensator. The
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TABLE I

THE SYSTEM TRACKING PERFORMANCE

System ‖e(t)‖∞ ‖e(t)‖2

Without Precompensator 0.6057 mm 20.14 mm
With Precompensator 0.0014 mm 0.023 mm
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Fig. 8. Comparison of the overshoot region (Dashed : Without the
precompensator, Solid : With the precompensator, Dash-dot : S-curve)

controller, C, was tuned previously in order to achieve robust
stability. Using the proposed algorithm a precompensator
(nρ = 3,δ = 0,n = 24) was calculated and tested on the
system. This precompensator meets almost all of the tracking
specifications with an overshoot slightly larger than 1µm
(see Fig. 8). As measures of performance the infinity norm,
‖e(t)‖∞ and the 2-norm, ‖e(t)‖2 were taken. Table I shows
the results obtained without and with the precompensator. It
is clearly seen that the proposed technique greatly improves
the system’s tracking performance in terms of two-norm of
the tracking error.

3) Tuning for a desired reference model: As remarked in
Section III the proposed method can also be used to tune
a precompensator for the model following problem. In this
way, using an appropriate reference model, the performance
in terms of overshoot can be improved. A reference model,
M, was taken as a second order system with a natural
frequency of 120Hz and a damping factor of 0.9. The yd used
this time was a pseudo random binary signal. The proposed
algorithm computes the parameters of the precompensator
such that the transfer function of the closed-loop system
approaches that of the reference model. Fig. 9 compares
the overshoot region for the closed-loop response with and
without the precompensator. This precompensator does not
perform as well as the previous one specially tuned for an
S-curve signal in terms of the two-norm of the tracking error,
however, it gives a smaller overshoot.

VI. CONCLUSIONS

A model-free approach to precompensator and feedfor-
ward tuning based on the correlation approach has been
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Fig. 9. Comparison of the overshoot region (Dashed : Without the
precompensator, Solid : With the precompensator, Dash-dot : S-curve)

proposed. It was shown that using only one set of data and
some specific tuning schemes the controller parameters can
be tuned for desired output tracking or the model following
problem. The approach is based on a correlation criterion
which is not asymptotically sensitive to noise and can be
minimized using the least squares algorithm. The frequency-
domain analysis of the criterion showed that the resulting
controller is a weighted approximation of the inverse of the
closed-loop system (for precompensator) or the plant model
(for feedforward) in the two-norm sense. The effectiveness
of the method has been illustrated via simulation and exper-
imental results.
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