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Abstract— We study a class of partial differential equations
on a one dimensional spatial domain with control and obser-
vation at the boundary. For this class of systems we describe
how to obtain an impedance energy-preserving system, as well
as scattering energy-preserving system. For the first type of
systems we consider (static and dynamic) feedback stabilization
by means of boundary control. For the scattering energy-
preserving systems we give conditions for which the system
is either asymptotically or exponentially stable.

I. INTRODUCTION

In this paper we study the following partial differential
equation (PDE) on the spatial interval [a,b]

ẋ(t) = J x(t), x(0) = x0 (1a)

u(t) = Bx(t), (1b)

y(t) = C x(t), (1c)

here

J x =
N

∑
i=0

P(i)
dix
dzi (z) z ∈ [a,b] , (2)

with the domain of J being HN((a,b);Rn), i.e., the Sobolev
space of N times differentiable functions on the interval
(a,b). P(i), i = 0, . . . ,N, is a n×n real matrix satisfying

P(i) = P(i)T (−1)i+1
, and kerP(N) = {0} . (3)

For the PDE (1) we describe how to obtain
impedance energy-preserving systems (systems that satisfy
1
2

d
dt ‖x(t)‖2 = u(t)T y(t)), as well as scattering energy-

preserving ( 1
2

d
dt ‖x(t)‖2 = ‖u(t)‖2 −‖y(t)‖2). Next we study

feedback (static and dynamic) stabilization for impedance
energy-preserving systems. Finally, we study (asymptotic
and exponential) stability of scattering energy-preserving.

Here we use the notation [X
Y ] for X×Y and F|D denotes the

restriction of an operator F to the subspace D. ρ(F) denotes
the resolvent set of F and ∂ N

z indicates the N-times partial
derivative with respect to the variable z. I is the identity
operator.

II. SOME BACKGROUND

Most of the results described in this section can be found
in [1]. First we need to introduce some notation. The nN×nN
matrix Q is defined as
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Q =

⎛
⎜⎝

P(1) P(2) P(3) ··· P(N−1) P(N)
−P(2) −P(3) −P(4) ··· P(N) 0

...
. . .

. . .
. . .

...
(−1)N−1P(N) 0 ··· ··· 0

⎞
⎟⎠ .

Using this Q, the matrix Rext is defined as

Rext =
1√
2

(
Q −Q
I I

)
. (4)

Since P(N) is invertible, we have that Rext is invertible as
well. It is easy to see that it satisfies

RT
extΣRext =

(
Q 0
0 −Q

)
, where Σ =

(
0 I
I 0

)
. (5)

Definition 2.1: The boundary port variables associated
with the differential operator J and the function x ∈
HN((a,b);Rn) are the vectors e∂ , f∂ ∈ R

nN , defined by

(
f∂
e∂

)
= Rext

⎛
⎜⎜⎜⎜⎜⎝

x(b)

...
∂ N−1

z x(b)

x(a)

...
∂ N−1

z x(a)

⎞
⎟⎟⎟⎟⎟⎠ , (6)

where Rext is defined by (4).
In [1], the authors prove the following theorem.
Theorem 2.2: Let

W = S
[

I +V, I −V
]
, (7)

with S invertible and V V T ≤ I, be a full rank matrix of
size nN × 2nN (satisfying W ΣW T ≥ 0), and define B :
HN((a,b),Rn) → R

nN as

Bx(t) := W

(
f∂ (t)
e∂ (t)

)
. (8)

Then the system (1a)-(1b) is a boundary control system.
AW := J|kerB is the generator of a contraction semigroup
and

D(AW ) = {x ∈ L2((a,b),Rn) |
[

f∂
e∂

]
∈ kerW}.

Furthermore, if we define the output via the mapping C :
HN((a,b),Rn) → R

nN as

y(t) = C x(t) := S2
(

I −V T −I −V T
)(

f∂ (t)
e∂ (t)

)
(9)

with S2 invertible, then for u ∈ C2((0,∞);RnN), x(0) ∈
D(J ), and Bx(0) = u(0) the following balance equation
is satisfied:

1
2

d
dt
‖x(t)‖2 =

(
uT (t) yT (t)

)
PW

(
u(t)
y(t)

)
, (10)
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where PW is given by

1
4

(
S−T (P̃2

1 − P̃1VV T P̃1)S−1 −2S−T P̃1V P̃2S−1
2

−2S−T
2 P̃2V T P̃1S−1 S−T

2 (−P̃2
2 + P̃2V TV P̃2)S

−1
2

)
, (11)

and P̃1 = (I +VV T )−1, P̃2 = (I +V TV )−1.
For more information see [1] and [2].

III. IMPEDANCE ENERGY-PRESERVING SYSTEMS

Here we use the term ‘impedance energy-preserving sys-
tem’ in the sense of [3]. In that paper the author shows that
an impedance energy-preserving system satisfies the relation

1
2

d
dt

‖x(t)‖2 = u(t)T y(t) (12)

for u ∈ C2((0,∞);RnN), x(0) ∈ D(J ) and, Bx(0) = u(0).
In [1] the authors show that for an impedance energy-
preserving system we have V TV = VV T = I, A∗

W = −AW

and D(AW ) = D(A∗
W ). In [2] it is shown that, in this case,

the inputs can be described by

u =
1
4

S−T
2 [−I −V T

, I −V T ]
[

f∂
e∂

]
= Wimp

[
f∂
e∂

]
(13)

and the outputs by

y = S2
[

I −V T , −I −V T
][

f∂
e∂

]
= Cimp

[
f∂
e∂

]
. (14)

Here, the state space is X = L2((a,b);Rn) and the input
and output spaces are U = Y = R

n. Furthermore, we know
that AW = J|D(AW ) is the generator of a contraction semi-
group (see Theorem 2.2) with D(AW ) = kerB.

IV. STATIC FEEDBACK OF AN IMPEDANCE

ENERGY-PRESERVING SYSTEM

In this section we apply feedback (see Figure 1), i.e.,

u = r−α y, (15)

where r,u,y ∈ R
nN and α > 0 is a positive definite matrix.

We have that the plant is described by equations (1a)–(1c),
where Bx(t) is given by (13), C x(t) is given by (14) and the
differential operator J when restricted to D(J )∩ker(B)
generates a C0-semigroup.

Using the feedback control (15) we can see that the closed-
loop system is now described by

ẋ(t) = J x(t)

(Wimp +α Cimp)
[

f∂ (t)
e∂ (t)

]
= (B +α C )x(t) = r(t)

C x(t) = y(t).

(16)

yr u
ẋ = J x(t)

Bx(t) = u(t)
C x(t) = y(t)

α

Fig. 1. General control system.

Lemma 4.1: The system described by (16) (with VV T = I)
is a boundary control system. Furthermore, the operator
As = J|D(As) generates a contraction semigroup on X =
L2((a,b);Rn), where

D(As) =
{

x ∈ D(J ) |
[

f∂
e∂

]
∈ kerW̃

}
and (17)

W̃ = (Wimp +α Cimp) (18)

is a full rank nN ×2nN matrix.
Proof: First observe that (18) follows from (16). From

Theorem 2.2 we can see that if W̃ satisfies W̃ΣW̃ T ≥ 0 (Σ
given by (5)), then we will be done. Since V is unitary we can
use Lemma A-1 to show that W̃ satisfies W̃ΣW̃ T = α +αT >

0 (since α > 0).
Remark 4.2: Using Lemma A.1 of [1] we can see that (18)

can be factorized as

W̃ = S̃
[

I +Ṽ , I −Ṽ
]
. (19a)

Furthermore, from step 1 and 2 of the proof of Theorem 4.3
of [1] we can show that

〈Asx,x〉 < 0, ∀x ∈ D(As), 〈A∗
s x,x〉 < 0, ∀x ∈ D(A∗

s ). (19b)
Remark 4.3: Following the same procedure used to

prove (10)–(11), see [1, p.19], we can show that if r(t) = 0,
x(0) ∈ D(J ), and (B +αC )x(0) = 0, then

1
2

d
dt

‖x(t)‖2 = −y(t)T α y(t). (20)

Next we study stability of the closed-loop system.
Theorem 4.4: Assume that (λ − As)

−1 : X → X is a
compact operator for λ > 0. Then the system described
by (16) (with VV T = I and r = 0), is asymptotically stable.

Remark 4.5: It can be said that most of the examples
encountered in the literature satisfy the assumption in the
theorem above, see, e.g., [5, p. 269].

Proof: [Proof of Theorem 4.4] By Lemma 4.1 we know
that As generates a contraction semigroup. Thus, for any
x(0) ∈ X , the solution x(t) = T (t)x(0) (classical or weak)
is bounded in X . Since (λ −As)

−1 is a compact operator
for λ > 0, it follows that the trajectory of the solution x(t),
i.e. the set γ(x(0)) = {x(t) ∈ X , t ≥ 0} is precompact in X ,
see Theorem 3.65 of [5]. It then follows that the w-limit set1

w(x(0)) of the trajectory is nonempty, compact, and we have
x(t) → w(x(0)) as t → ∞, see Theorem 3.61 of [5].

Next we show that w(x(0)) contains only the point zero.
First we prove this for x(0) ∈ D(As). In this case we have
that x(t) = T (t)x(0)∈D(As) for all t ≥ 0, see Theorem 2.1.10
of [4]. Define the energy function

E(t) =
1
2
‖x(t)‖2

. (21)

Since x(0)∈D(As) we have that x(t) is differentiable, see [4,
§2.1]. Thus the derivative of E(t) is given by (20) with r(t) =
0, that is Ė(t) = 1

2
d
dt ‖x(t)‖2 = −y(t)T α y(t). Since α is a

positive definite matrix we have that Ė(t) < 0, which shows
that E(t) is a Lyapunov function, see Definition 3.62 of [5].
Observe that Ė(t) = 0 implies y(t) = 0. Now consider the

1The w-limit set of x is given by w(x) = {y ∈ F |y =
limn→∞ T (tn)x with tn → ∞ as n → ∞}, where F is a closed subset
of X .
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set {x ∈ X | Ė(t) = 0} or equivalently O = {x ∈ X |y(t) = 0}
and let E be its largest invariant subset. Since γ(x(0)) is
precompact, it follows from LaSalle’s principle that x(t)→ E
as t → ∞, see Theorem 3.64 of [5]. We show that E = {0}.
Since x(0) and x(t) belong to D(As), we have that E ⊂
D(As), see [5, p.270]. Let x̃ ∈ E and let z(t) = T (t)x̃ be
the corresponding solution. Since E is invariant we have that
z(t)∈E for t ≥ 0. Recall that all x∈O satisfy y(t) = 0. It then
follows that z(t) is the solution of ż(t) = J z(t) satisfying
r(t) = y(t) = 0. Since this is a PDE with all boundary
variables set to zero, we must have that the only solution is
z(t) = 0 for t ≥ 0. Hence x̃ = 0; and thus, E = {0}. Altogether
means that x(t) → 0 as t → ∞ for any x(0) ∈ D(As).

The same statement holds for x(0) ∈ X , see [5, p.270].

A. First order differential operator (case N = 1)

In this section we study the differential operator

J x = P0 x(z)+P1
dx
dz

(z). (22)

This case includes the well-known beam and wave equations.
We assume that the input and outputs have been chosen so
that the resulting system is impedance energy-preserving,
i.e., 1

2
d
dt ‖x(t)‖2 = u(t)T y(t) holds. We want to apply static

feedback to the resulting BCS, see Figure 1. We already
know that, in this case, the closed-loop system is a BCS
and that the operator As = J|D(As) generates a contraction
semigroup, see Lemma 4.1. We want to check whether the
closed-loop system is asymptotically stable. To do so we
need to check that the resolvent (λ −As)

−1 is compact for
λ > 0, see Theorem 4.4.

First we study the eigenvalues of As. From (19b) we know
that 〈Asx,x〉< 0 for all x ∈ D(As). Let x1 be any eigenvector
of As with corresponding eigenvalue λ . Then we have that

Re 〈Asx1,x1〉 = Re 〈λx1,x1〉 = Reλ ‖x1‖2
< 0.

This implies that all eigenvalues of As satisfy Reλ < 0.
Moreover, we have that this eigenvector x1 is the solution
of

P0 x1 +P1
dx1

dz
= λx1 ⇐⇒ dx1

dz
= P−1

1 (λ −P0)x1.

The general solution of the equation above is given by

x1(z) = eP−1
1 (λ−P0)(z−a) c (23)

where c is a constant vector. Using (19) and the boundary
conditions on D(As), see (17), we get

W̃
[

f∂
e∂

]
= W̃Rext

[
x1(b)
x1(a)

]
= 0

⇐⇒ S̃ [I +Ṽ , I −Ṽ ]

[
P1 −P1

I I

][
x1(b)
x1(a)

]
= 0 (24)

where we used Definition 2.1 and (19a). Using (23) in the
above equation gives([

(I +Ṽ )P1 +(I −Ṽ )
]
eP−1

1 (λ−P0)(b−a)

+
[−(I +Ṽ )P1 +(I −Ṽ )

] )
c = 0. (25)

We know that λ is an eigenvalue of As iff the matrix above
is singular. At the beginning of this subsection we showed
that the eigenvalues of As satisfy Reλ < 0, which shows
that the matrix above is nonsingular if Reλ ≥ 0, otherwise
As would have eigenvalues with Reλ ≥ 0. In summary we
have the following result.

Lemma 4.6: Consider the system described in Lemma 4.1
with J given by (22). Then the eigenvalues of As satisfy
Reλ < 0. Furthermore, if λ ≥ 0 the matrix on (25) is
nonsingular and (λ −As)

−1 is a compact operator.
Proof: That the eigenvalues of As satisfy Reλ < 0 and

that the matrix is nonsingular was proved above.
Next we study the resolvent of As. First we study the range

of (λ −As) : D(As) → X for λ ≥ 0. To see this, consider
(λ −As)x = y, which is equivalent to solve

dx
dz

(z) = P−1
1 (λ −P0)x(z)−P−1

1 y(z) (26)

for x ∈ D(As). The general solution of (26) is given by

x(z) = eP−1
1 (λ−P0)(z−a) c−

∫ z

a
eP−1

1 (λ−P0)(z−τ) P−1
1 y(τ)dτ

(27)
with c a constant vector. Since x ∈ D(As) the boundary
conditions (see (17)) are given by (24). Using (27) in (24)
yields([

(I +Ṽ )P1 +(I −Ṽ )
]
eP−1

1 (λ−P0)(b−a)

+
[−(I +Ṽ )P1 +(I −Ṽ )

] )
c =

[
(I +Ṽ )P1 +(I −Ṽ )

]∫ b

a
eP−1

1 (λ−P0)(b−τ) P−1
1 y(τ)dτ.

We already showed that when Reλ ≥ 0 the matrix on the
LHS is nonsingular. In that case, c can be defined uniquely,
which implies that (26) has a unique solution in D(As). This
solution is given by (27). Hence (λ − As)

−1 exists when
Reλ ≥ 0. In order to prove that (27) defines the resolvent of
As we need to show that it is bounded. First observe that the
dimension of the domain of eP−1

1 (λ−P0)(z−a) c is finite, thus it
is a compact operator (hence bounded), see [6, Th. 2.6-9 b,
Th. 8.1-4, Th. 8.1-2 b]. Also, the integral operator on (27)
is compact, see Theorem A.3.52 of [4]. Then, (λ −As)

−1

given by (27) is the sum of two compact operators (see
see [6, p. 407]), hence (λ − As)

−1 is a compact operator
when Reλ ≥ 0.

From the Lemma above and Theorem 4.4 we know that
this type of closed-loop systems (when N = 1) are asymptot-
ically stable. Also, if P0 = 0 we can see that when λ is a pure
imaginary number, the resolvent (27) is clearly a uniformly
bounded operator since P1 has only real eigenvalues and
hence the magnitude of eλP−1

1 z is equal to one. Since As gen-
erates a contraction semigroup it follows that the conditions
on Corollary 3.36 of [5] are satisfied, which proves that, in
this case, the closed-loop is exponentially stable.

V. DYNAMIC FEEDBACK OF AN IMPEDANCE

ENERGY-PRESERVING SYSTEM

In this section we generalize the class of static controllers
described in the previous section. More precisely, we replace
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the static matrix α with a matrix transfer function α(s) where
s ∈ C is a complex variable.

The state space representation of the controller is given by

v̇(t) =Aα v(t)+Bα y(t)

yα(t) =Cα v(t)+Dα y(t) (28)

where v ∈ R
m is the state of the minimal realization. In this

way, equation (15) becomes

u = r− yα = r−Cα v−DαC x, (29)

where (1c) was used.
In the literature, an n×n rational matrix H(s) is said to be

positive real (PR) if: i) all elements of H(s) are analytic in
the open right-half plane Re(s) > 0, ii) poles of any element
of H(s) on the jw-axis are distinct, and the associated residue
matrix of H(s) is ≥ 0, iii) H( jw)+HT (− jw)≥ 0 ∀w which
is not a pole of any element of H( jw).

Definition 5.1 (Tao and Ioannou [7]): A rational matrix
H(s) is strictly positive real (SPR) if H(s− ε) is positive
real (PR) for some ε > 0.

The next lemma is used in the stability analysis (see [7]).
Lemma 5.2: Assume that the transfer matrix H(s) has all

its poles in Re(s) < −γ , where γ > 0 and (A,B,C,D) is a
minimal realization of H(s). Then H(s−γ) is PR if and only
if there exist matrices P, Q and K such that P = PT > 0 and

PA+AT P = −QQT −2γP; PB = CT −QK; KT K = D+DT
.

(30)
Throughout this section the controller is assumed to be

SPR. Let x ∈ X be the state of the plant, v ∈ R
m the state of

the controller, and w = [ x
v ]. Using the feedback control (29)

and the fact that u(t) = Bx(t), see (1b), we can see that the
closed-loop system is now described by

ẇ(t) = Jc w(t), w(0) ∈ X̃[
B +Dα C , Cα

]
w(t) = r(t)[

C 0
]

w(t) = y(t),

(31)

where X̃ =
[

X
R

m

]
is the state space of the closed-loop system,

w = [ x
v ]∈ X̃ , and Jc : X̃ → X̃ is a linear operator defined as

Jc w =

[
J 0

BαC Aα

][
x
v

]
(32)

with D(Jc) = D(J )⊕R
m. The inner product on the space

X̃ is defined as

〈w1,w2〉X̃ = 〈x1,x2〉X +
1
2

vT
1 Pv2 +

1
2

vT
2 Pv1, (33)

where P is the positive definite matrix found in Lemma 5.2.
Lemma 5.3: Let the state of the open-loop system of

Figure 1 satisfy 1
2

d
dt ‖x(t)‖2 = u(t)T y(t) and the controller

α(s) be SPR. Then the system (31)-(32) is a boundary
control system. Furthermore, the operator Ac defined by

Ac w =

[
J 0

BαC Aα

][
x
v

]
(34a)

with

D(Ac) =
{
[ x

v ]∈
[

X
R

m

] ∣∣∣x ∈ D(J ), and
[

f∂
e∂
v

]
∈ kerW̃D

}
,

(34b)

where
W̃D =

[
(Wimp +Dα Cimp), Cα

]
, (34c)

generates a contraction semigroup.
Proof: First we need to prove that there exists an

operator B ∈L (U, X̃) such that for all r ∈U , Br ∈ D(J )×
R

m, and
[

B +Dα C , Cα
]

Br = r. From the proof of
Theorem 4.5 of [1] we know that if the matrix W̃D has
full rank, then such operator B exists. Thus we need to
prove that W̃D has full rank. Since the open-loop system is
assumed to be impedance energy-preserving, we must have
VV T = I. From this and Lemma A-2 we can see that the
matrix (Wimp + Dα Cimp) has full row-rank. Hence, we can
conclude that W̃D in (34c) has also full row-rank.

Equations (34) follow easily from (31) and the proof of
Lemma 4.1. Next we need to prove that Ac generates a
semigroup. We will use the Lumer-Phillips theorem (see
Theorem 2.27 of [5]). First we prove that 〈Acw,w〉 ≤ 0. Let
w = [ x

v ] ∈ D(Ac), then we have

〈Acw,w〉X̃ = 〈J x,x〉X +
1
2
(Aα v+Bα y)T Pv

+
1
2

vT P(Aα v+Bα y)

=〈J x,x〉X +
1
2

vT (AT
α P+PAα)v+

1
2

yT BT
α Pv+

1
2

vT PBα y.

From Equation (4.8) of [1] and Lemma 5.2 we obtain

=
1
2

[
f T
∂ eT

∂
]

Σ
[

f∂
e∂

]
+

1
2

vT (−QQT −2γP)v

+
1
2

yT (Cα −KT QT )v+
1
2

vT (CT
α −QK)y.

Using (A-1) together with (13) and (14) yields

=
1
2

yT u+
1
2

uT y+
1
2

vT (−QQT −2γP)v

+
1
2

yT (Cα −KT QT )v+
1
2

vT (CT
α −QK)y.

Since w = [ x
v ] ∈ D(Ac) we have that Cα v = −(Wimp +

Dα Cimp)
[

f∂
e∂

]
, see (34), and using again (13) and (14) gives,

after simplification

=
1
2

vT (−QQT −2γP)v− 1
2

yT Dα y− 1
2

yT DT
α y

− 1
2

yT KT QT v− 1
2

vT QKy

and using again Lemma 5.2 yields

〈Acw,w〉X̃ = −γ vT Pv− 1
2
(Ky+QT v)T (Ky+QT v). (35)

Since γ > 0 and P is positive definite it thus follows from
the equation above that 〈Acw,w〉X̃ ≤ 0.
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Next we need to prove that the range of (I−Ac) is equal
to X̃ . In order to do so, we can show that for all

[
f
z

] ∈ [
X

R
m

]
there exists [ x

v ] ∈ D(Ac) such that[
f
z

]
=

[
(I −J )x

−BαC x+(I −Aα)v

]
. (36)

Observe that since [ x
v ] ∈ D(Ac) we must have (see (31))

(B +Dα C )x+Cα v = 0. (37)

We need to solve (36) and (37) for
[

f
z

]∈ [
X

R
m

]
given. Recall

that Aα is assumed to have only negative eigenvalues, and
hence (I − Aα) is a nonsingular matrix. Using the lower
equation of (36) into (37) yields

(B +α(1)C )x = −Cα(I −Aα)−1z, (38)

where α(1) =Cα(I−Aα)−1Bα +Dα . We now need to find an
x that satisfies (38) and the upper equation in (36). In these
two equations let z̃ = −Cα(I − Aα)−1z and x = xnew + B̃z̃
where B̃ is such that (B+α(1)C ) B̃ = I (the existence of B̃
is proved in [1]). This gives

(I −J )xnew = f − (I −J )B̃z̃ (39)

(B +α(1)C )xnew = 0. (40)

Following the proof of Theorem 4.1 it is not difficult to see
that if (40) holds then J generates a contraction semigroup.
This implies that (I −J ) has an inverse and hence xnew

exists. Thus, for
[

f
z

] ∈ [
X

R
m

]
we can find [ x

v ] ∈ D(Ac) such
that (36) and (37) holds.

In the rest of this section we denote by Aλ the operator As

described in Lemma 4.1 with α replaced by α(λ ) =Cα(λ I−
Aα)−1Bα + Dα in (18). Next we show that if the resolvent
of Aλ is compact for λ > 0, then the associated closed-loop
system will also have a compact resolvent.

Theorem 5.4: Consider the system described in Theo-
rem 2.2. Let the energy of this system satisfy 1

2
d
dt ‖x(t)‖2 =

u(t)T y(t). Assume that α(s) is a SPR function and that the
resolvent of the operator Aλ described above is compact for
λ > 0. Then (λ I −Ac)

−1 is also compact for λ > 0.
Proof: We will use Theorem 8.1-3 of [6], which states

that an operator is compact iff it maps every bounded se-
quence onto a sequence which has a convergent subsequence.
First we find the inverse of (λ I−Ac) for λ > 0 by following
the same procedure used to find (36)–(40). We know that this
inverse exists since Ac generates a contraction semigroup.
From (39)–(40) we see, in this case, that xnew ∈ D(Aλ )
and xnew = (I −Aλ )−1 f − (I −Aλ )−1(I −J )B̃z̃, where z̃ =
−Cα(I −Aα)−1z. Since x = xnew + B̃z̃ we obtain that

x = (I −Aλ )−1 f − (I −Aλ )−1(I −J )B̃z̃+ B̃z̃, (41)

and from the lower equation of (36) we get

v = (I −Aα)−1BαC x+(I −Aα)−1z. (42)

Let {kn} = {[ fn
zn

]} ∈ X̃ =
[

X
R

m

]
be any bounded sequence in

X̃ and let wn = [ xn
vn ] ∈ D(Ac) such that wn = (λ I −Ac)

−1kn.
By Theorem 5.3 we know that Ac generates a contraction
semigroup and by the Hille-Yosida theorem it follows that

∥∥(λ I −Ac)
−1

∥∥ ≤ 1
λ for λ > 0. Hence the sequence {wn} is

bounded too. Since we know that (λ I −Aλ )−1 is compact
and that J B̃ is bounded (see Definition 3.3.2 of [4]), we
have that {xn} has a convergent subsequence, see (41). Also,
since {vn} is bounded and belongs to a finite dimensional
subspace of X̃ , it follows that {vn} has another convergent
subsequence. Hence, wn = [ xn

vn ] has a convergent subsequence
and therefore (λ I −Ac)

−1 is compact for λ > 0.
Next we give an asymptotic stability result similar to the

one in Theorem 4.4.
Theorem 5.5: Consider the system given by (31). Let the

transfer function α(s) be a SPR function. Let the resolvent
associated with Aλ be compact for λ > 0. Then the system
described by (31) with r = 0, is asymptotically stable.

Proof: The proof is similar to that of Theorem 4.4.
First we prove this for w(0) ∈ D(Ac). By Lemma 4.1 we
know that Ac generates a contraction semigroup. In this case
we have that w(t) = Tc(t)x(0) ∈ D(Ac) for all t ≥ 0, see
Theorem 2.1.10 of [4]. Define the energy function

Ec(t) =
1
2
‖w(t)‖2

X̃ =
1
2
〈w(t),w(t)〉X̃ . (43)

Since w(0) ∈ D(Ac) we have that w(t) is differentiable,
see [4, §2.1]. By differentiating the equation above and
using (31) and (35) we obtain

Ėc(t) = 〈ẇ(t),w(t)〉X̃ = 〈Acw(t),w(t)〉X̃ (44)

=− γ v(t)T Pv(t)− 1
2
(Ky(t)+QT v(t))T (Ky(t)+QT v(t)),

where γ > 0 and P is positive definite. Since (λ I −Aλ )−1

is compact, it follows from Theorem 5.4 that (λ I −Ac)
−1

is also compact. Since (λ I − Ac)
−1 is compact and Tc(t)

is a contraction, it follows from LaSalle’s principle that all
solutions of (31) asymptotically tend to the maximal invariant
set of Oc = {x ∈ X | Ėc(t) = 0}. Let E be the largest invariant
subset of Oc. Next we show that E = {0}. The condition
Ėc(t) = 0 implies, from (44), that v(t) = 0; and hence, v̇(t) =
0. Then by (28) we must have that Bα y(t) = 0. Since α(s) is
SPR, we have that α( jw)+αT (− jw) > 0. This implies that

yT (t)[α( jw)+αT (− jw)]y(t) > 0

⇒ yT (t)[Dα +DT
α ]y(t) > 0 ⇒ KT K > 0.

In the second step the facts α( jw) =Cα( jw−Aα)−1Bα +Dα
and Bα y(t) = 0 were used, and in the third step we used (30).
Since v(t) = 0 and KT K > 0 it follows from (44) that y(t) = 0,
and hence by (28) we also obtain yα(t) = 0.

Therefore from (31) and (34) it follows that the invariant
solution of (31) in Oc reduces to the invariant solution of the
associated open-loop system in the domain (17)-(18). The
rest of the proof follows from the proof of Theorem 4.4.

VI. SCATTERING ENERGY-PRESERVING SYSTEMS

Here we use the term ‘scattering energy-preserving sys-
tem’ in the sense of [3]. In that paper the author shows that
a scattering energy-preserving system satisfies the relation

1
2

d
dt

‖x(t)‖2 = ‖u(t)‖2 −‖y(t)‖2
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for u ∈ C2((0,∞);RnN), x(0) ∈ D(J ) and, Bx(0) = u(0).
In [2] it is shown that, in this case, V = 0, P̃1 = P̃2 = I,
S−T S−1 = 4I, and S−T

2 S−1
2 = 4I. This means that W has the

form W = S
[

I I
]
.

For this type of systems related to the operator J we
have the following result.

Theorem 6.1: Consider the system described in Theo-
rem 2.2 with J e = P1

de
dz (z) and 1

2
d
dt ‖x(t)‖2 = ‖u(t)‖2 −

‖y(t)‖2. Then the system is exponentially stable and exactly
observable in finite time.

Proof: First observe that W has the form W =
S
[

I I
]
. In order to check stability of the system we

study the resolvent of AW = J|D(AW ). Let x ∈ D(AW ) and
observe that y(z) = (λ −AW )x(z) = λ x(z)−P1

dx
dz (z). Thus

dx
dz (z) = λ P−1

1 x(z)−P−1
1 y(z) need to be solved. The general

solution is given by

x(z) = eλP−1
1 (z−a) c−

∫ z

a
eλP−1

1 (z−τ) P−1
1 y(τ)dτ (45)

where c is a constant vector. Since x ∈ D(AW ) the boundary
conditions (see Theorem 2.2) are described by (see (4))

WRext

[
x(b)
x(a)

]
=

[
P1 + I I −P1

][
x(b)
x(a)

]
= 0.

Using (45) in the equation above yields

(P1 + I)

[
eλP−1

1 (b−a) c−
∫ b

a
eλP−1

1 (b−τ) P−1
1 y(τ)dτ

]
+(I −P1)c = 0

⇐⇒
[
(P1 + I)eλP−1

1 (b−a) + (I −P1)
]

c =

(P1 + I)
∫ b

a
eλP−1

1 (b−τ) P−1
1 y(τ)dτ.

It follows from Lemma 14 of [8] that when λ ∈ C\R− the
matrix on the left hand side is nonsingular. In that case, c can
be defined uniquely, which implies that (λ −AW )−1 exists.
Also, it is not difficult to show that (λ −AW )−1 is bounded,
hence Equation (45) defines the resolvent operator of AW .

It is easy to show that the resolvent (45) is uniformly
bounded (see the last paragraph of Subsection IV-A). Since
AW generates a contraction semigroup it follows from Corol-
lary 3.36 of [5] that the system is exponentially stable.
Finally, from Theorem 11.3.8 of [9] one can see that the
system is also exactly observable in finite time.

Lemma 6.2: Consider the system of Theorem 2.2 with
J e = P1

de
dz (z) and 1

2
d
dt ‖x(t)‖2 = ‖u(t)‖2−‖y(t)‖2. Then the

resolvent (λ −AW )−1, with λ ≥ 0, is a compact operator,
where AW = J|D(AW ). Furthermore, the operator ˜AW e =

P0 e(z) + P1
de
dz (z) has compact resolvent for λ > 0, i.e.,

(λ − ÃW )−1 is a compact operator.
Proof: From Theorem 6.1 we know that the resolvent

of AW is given by (45) for λ ≥ 0. The integral operator
on the RHS is clearly compact, see Theorem A.3.52 of [4].
The exponential operator eλP−1

1 (z−a) c is also compact, since
it is a finite rank operator, see Theorem 8.1-4 of [6]. Since
(λ −AW )−1 in (45) is the sum of two compact operators we
have that it is also compact for λ ≥ 0, see [6, p. 407].

Using Lemma A-3 we can conclude that (λ − ÃW )−1 is
compact for λ > 0 since ÃW is also the generator of a
contraction semigroup.

Theorem 6.3: Consider the system of Theorem 2.2 with
J e = P0 e(z)+P1

de
dz (z) and 1

2
d
dt ‖x(t)‖2 = ‖u(t)‖2 −‖y(t)‖2.

Then the system is globally asymptotically stable.
Proof: From Lemma 6.2 we know that (λ −AW )−1,

with λ > 0, is a compact operator, where AW = J|D(AW ). The
rest of the proof follows similar to the proof of Theorem 4.4,
noting that Ė(t) = −‖y(t)‖2.

APPENDIX

Lemma A-1: Let S2, V ∈R
n×n and Rext, Σ∈R

2n×2n where
Σ is given by (5). Consider the matrices Wimp and Cimp given
by (13) and (14), respectively. If V satisfies VV T = I = V TV
(impedance passive system), then we have

CT
impWimp +W T

impCimp = Σ, (A-1)

Cimp CT
imp = 4S2 ST

2 , Wimp W T
imp =

1
4

S−T
2 S−1

2 , (A-2)

Cimp W T
imp = 0, and Wimp CT

imp = 0. (A-3)
Proof: It follows easily by using algebra and VV T = I.

Lemma A-2: Consider the matrices Wimp and Cimp given
by (13) and (14), respectively. Let V and D be n×n matrices,
with VV T = I = V TV . Then, the matrix given by

W̃ = Wimp +DCimp

has full row-rank.
Proof: It is easy to show that the matrix W̃ W̃ T is

nonsingular.
The following lemma is not difficult to prove.
Lemma A-3: Let A = Au + Ab be a closed and densely

defined operator on X , where Ab is a bounded operator on X
and Au is an unbounded operator with D(Au) = D(A). If A
satisfies Re 〈Az,z〉 ≤ 0 and (λ −Au)

−1 is a compact operator
for λ > 0. Then the operator (λ −A)−1 is a compact operator
for λ > 0.
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