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Abstract— Verification procedures, which check whether
a given system satisfies a given specification, are nowadays
mature for industrial usage. The more general supervisor
synthesis problem asks how a system has to be restricted
or which actions have to be selected such that the system
satisfies a given specification. Supervisor synthesis problems
are often formulated in frameworks like game structures
that are more general than the Kripke structures that are
traditionally used in verification. For this reason, current
verification tools can not be used for supervisory control
problems.

In this paper, however, we present a reduction of alter-
nating time µ-calculus model checking problems (on game
structures) to model checking problems of the µ-calculus
on Kripke structures. As a result, arbitrary model checkers
can be used to solve supervisor synthesis problems. As a
demonstration of the applicability of our approach, we show
how the classical supervisory control problems of Ramadge
and Wonham can be solved within our framework.

I. INTRODUCTION

In the past two decades, many verification procedures
for the temporal behavior of reactive systems have

been developed [Schneider, 2003], and this research

already lead to tools that are used in industry. These
tools are able to check whether a system K satisfies a

given temporal specification ϕ. There are a lot of for-
malisms, in particular, the µ-calculus [Kozen, 1983], ω-

automata [Thomas, 1990], as well as various temporal

logics [Pnueli, 1977], [Emerson and Clarke, 1982] and
(monadic) predicate logics [Büchi, 1960] to formulate

the specification ϕ [Schneider, 2003]. Moreover, the

increased industrial interest already lead to standard-
ization efforts on specification logics [Beer et al., 2001],

[Accellera, 2004].

Besides the verification problem, where the entire sys-

tem K and its specification must be already available, the
more general controller/supervisor synthesis problem is

of interest for the development of safety-critical systems.

The task is here to check whether it is possible to restrict
a given system K such that the restriction K′ satisfies

a given specification ϕ. Obviously, this problem is more
general than the verification problem. Efficient solutions

for this problem could be used to guide design decisions

in the development of reactive systems.

The controller synthesis problem is not new: well

established variants are, in particular, the supervisory
control problem [Ramadge and Wonham, 1987], mod-

ule checking [Kupferman and Vardi, 1996], and alternat-

ing time µ-calculus model checking [Alur et al., 2002].

In all of the mentioned references, the general ques-

tion is to check whether the system can be re-

stricted such that a given specification is met. While in
[Kupferman and Vardi, 1996] and [Alfaro et al., 2001],

it was discussed whether supervisor synthesis prob-

lems can be solved by ordinary model checkers,
[Alur et al., 2002] and [Ramadge and Wonham, 1987]

used special specification languages and tools. We briefly
consider the two latter approaches.

In supervisory control

[Ramadge and Wonham, 1987], both the system
and the specification are usually given in form of finite

automata, and the specifications are usually safety

and nonblocking properties. Recently, this formalism
has been extended in [Ziller and Schneider, 2003],

[Ziller and Schneider, 2005] to more general
specifications given in the µ-calculus. This is achieved

by translating supervisory control problems to model

checking problems on a Kripke structure. However, the
temporal logic that was used required a slight extension

of the µ-calculus by a special operator κ.

Alternating time µ-calculus specifications as presented
in [Alur et al., 2002] are evaluated on finite state transi-

tion systems where two players (representing the system
and the environment) concurrently and independently

select actions that are allowed in the considered state.

Alternating time µ-calculus extends the ordinary µ-
calculus with new modal operators to describe that one

of the players can enforce by its choice of an action that

a certain state set is reached, regardless of the choice
of the other player. Using alternating time µ-calculus,

it is therefore easier to formulate statements like ‘the
controller can enforce that certain states are visited

irrespectively of how the environment behaves’. Such

typical properties can not be directly formulated using
the ordinary µ-calculus. Therefore, alternating time µ-

calculus and the derived alternating time temporal logics

ATL and ATL* have been proposed as extensions to
traditional temporal logics like LTL or CTL* that are

already used for verification.
In this paper, however, we will show how alter-

nating time µ-calculus model checking problems (on

concurrent game structures) are translated to ordinary
µ-calculus model checking problems (on Kripke struc-

tures). The purpose of this translation is to use the effi-

cient machinery offered by existing model checking tools
to solve supervisory control problems. We emphasize

that we do not argue that alternating time µ-calculus
is unnecessary. Instead, we want to show that already

available µ-calculus model checkers can be used to solve

problems that were formulated with alternating time µ-
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calculus.
To demonstrate the applicability of our transla-

tion, we describe the supervisory control problem of

[Ramadge and Wonham, 1987] in alternating time µ-
calculus, which allows us a further translation to an ordi-

nary µ-calculus model checking problem. In comparison

to the translation given in [Ziller and Schneider, 2003],
[Ziller and Schneider, 2005], the approach presented in

this paper does not require the introduction of new
operators in the µ-calculus. Hence, a side product of

our approach is the reduction of the classical supervi-

sory control problem to a pure µ-calculus model-checking
problem that can be solved with standard tools.

The outline of the paper is as follows: In the next

section, we review basic definitions of Kripke structures,
the propositional µ-calculus, and the alternating time

µ-calculus. In Section III, we present our reduction

from alternating time µ-calculus model checking to the
propositional µ-calculus model checking. Section IV de-

scribes the reduction from supervisory control problems

to alternating time µ-calculus model checking.

II. FORMAL BACKGROUND

A. The Propositional µ-Calculus

The propositional µ-calculus is a well-known spec-

ification logic whose model checking algorithms

form the heart of state-of-the-art verification tools
[Schneider, 2003]. We briefly present its syntax and

semantics in this section.

Definition 1 (Syntax of µ-Calculus): Given a set of
variables V , the set of µ-calculus formulas over V is

defined as the least set Lµ that satisfies the following

rules:

• V ∪ {0, 1} ⊆ Lµ

• ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ ∈ Lµ, provided that ϕ, ψ ∈ Lµ

• ♦ϕ, �ϕ ∈ Lµ, provided that ϕ ∈ Lµ

• µx.ϕ, νx.ϕ ∈ Lµ, provided that ϕ ∈ Lµ and x ∈ V .

The semantics is defined on labeled transition systems

which are often called Kripke structures due to the
relationship to modal logic [Schneider, 2003].

Definition 2 (Kripke Structures): A Kripke structure

K = (I,S,R,L) for a finite set of variables V is given
by a finite set of states S, a set of initial states I ⊆ S,

a transition relation R ⊆ S × S, and a label function

L : S → 2V that maps each state to a set of variables.
The meaning of a Lµ formula is a set of states that is

recursively described in the next definition. To this end,

we make use of the following abbreviations of existential
and universal predecessors of a state set Q:

preR∃ (Q) = {s ∈ S | ∃s′ ∈ S. R(s, s′) ∧ s′ ∈ Q}

preR∀ (Q) = {s ∈ S | ∀s′ ∈ S. R(s, s′) → s′ ∈ Q}

preR∃ (Q) is the set of states that have at least one

successor state in Q, and preR∀ (Q) is the set of states

that have no successor states outside Q. Using these set
operators, the semantics is as follows:

Definition 3 (Semantics of µ-Calculus): Given a
Kripke structure K = (I,S,R,L) over the variables V ,

we associate with each formula Φ ∈ Lµ a set of states

�Φ�K ⊆ S by the following rules:

• �0�K := {}
• �1�K := S
• �x�K := {s ∈ S | x ∈ L(s)} for all variables x ∈ V
• �¬ϕ�K := S \ �ϕ�K
• �ϕ ∨ ψ�K := �ϕ�K ∪ �ψ�K
• �ϕ ∧ ψ�K := �ϕ�K ∩ �ψ�K
• �♦ϕ�K := preR∃ (�ϕ�K)
• ��ϕ�K := preR∀ (�ϕ�K)
• �µx.ϕ�K :=

⋂
{Q ⊆ S | �ϕ�KQ

x
⊆ Q}, where KQ

x

is obtained by changing the label function L of K
such that exactly the states in Q are labeled with x.

• �νx.ϕ�K :=
⋃
{Q ⊆ S | �ϕ�KQ

x
⊆ Q}, where KQ

x is

defined as above.
Global model checking procedures are used to compute

the set of states �Φ�K for given Φ and K. Many so-
phisticated algorithms have been developed in the past

that even take advantage of abstractions and other tech-
niques to handle complex problems [Schneider, 2003].

B. Alternating Time µ-Calculus

Concurrent game structures [Alur et al., 2002] extend
Kripke structures as follows: For every transition, two

players A and B choose independently of each other
actions α and β, respectively, and the resulting pair

(α, β) uniquely determines the next state of the game.
Definition 4 (Concurrent Game Structure): A concur-

rent game structure G = (I,S, δ, ΓA, ΓB,L) for a set of
variables V and a set of actions A is given by a finite

set of states S, a set of initial states I ⊆ S, a partical

transition function δ : S×A×A → S, and label functions
ΓA, ΓB : S → 2A, and L : S → 2V .

out wait

in moved

(req, deny)

(req, grant)
(re

q, g
ran

t)

(abort, ∗)

Fig. 1. Example for a Concurrent Game Structure

Figure 1 illustrates an example for a concurrent game

structure that formalizes a protocol for a train entering
a railroad station (we use * to represent any action).

Since concurrent game structures are generalizations

of Kripke structures, we can directly use Definition 3

to evaluate µ-calculus formulas on concurrent game
structures. However, the additional labels on the transi-

tions induce further modal operators [Alur et al., 2002]:

These additional modal operators express that one of the
players can enforce by a suitable choice of an action

that, regardless of the choice of the other player, a
certain state set is reached. The addition of these modal

operators to the µ-calculus yields the alternating time

µ-calculus:
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Definition 5 (Syntax of Alternating Time µ-Calculus):
Given a set of variables V , the formulas of the

alternating time µ-calculus LAT is the least set that

satisfies the following conditions:

• V ∪ {0, 1} ⊆ LAT

• ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ ∈ LAT , provided that ϕ, ψ ∈ LAT

• ♦ϕ, �ϕ ∈ LAT , provided that ϕ ∈ LAT

• ♦Aϕ, ♦Bϕ ∈ LAT , provided that ϕ ∈ LAT

• µx.ϕ, νx.ϕ ∈ LAT , provided that ϕ ∈ LAT

The semantics of LAT is defined on concurrent game

structures analogously to the semantics of Lµ on Kripke
structures. The interesting new point is the semantics of

the new modal operators ♦A and ♦B:
Definition 6 (Semantics of LAT ): Given a concurrent

game structure G = (I,S, δ, ΓA, ΓB,L) for a set of
variables V and a set of actions A, we associate with

each formula Φ ∈ LAT a set of states �Φ�G ⊆ S by the

following rules:

• �0�G := {}
• �1�G := S
• �x�G := {s ∈ S | x ∈ L(s)} for all variables x ∈ V
• �¬ϕ�G := S \ �ϕ�G
• �ϕ ∨ ψ�G := �ϕ�G ∪ �ψ�G
• �ϕ ∧ ψ�G := �ϕ�G ∩ �ψ�G
• �♦ϕ�G :=

{
s ∈ S

∣∣∣∣ ∃a ∈ ΓA(s).∃b ∈ ΓB(s).
δ(s, a, b) ∈ �ϕ�G

}

• ��ϕ�G :=

{
s ∈ S

∣∣∣∣ ∀a ∈ ΓA(s).∀b ∈ ΓB(s).
δ(s, a, b) ∈ �ϕ�G

}

•
�
♦Aϕ

�
G

:=

{
s ∈ S

∣∣∣∣ ∃a ∈ ΓA(s).∀b ∈ ΓB(s).
δ(s, a, b) ∈ �ϕ�G

}

•
�
♦Bϕ

�
G

:=

{
s ∈ S

∣∣∣∣ ∃b ∈ ΓB(s).∀a ∈ ΓA(s).
δ(s, a, b) ∈ �ϕ�G

}
• �µx.ϕ�G :=

⋂
{Q ⊆ S | �ϕ�GQ

x
⊆ Q}, where GQ

x is

obtained by changing the label function L of G such
that exactly the states in Q are labeled with x.

• �νx.ϕ�G :=
⋃
{Q ⊆ S | �ϕ�GQ

x
⊆ Q}, where GQ

x is
defined as above.

Intuitively, a state s satisfies ♦Aϕ if player A can choose

an action in state s such that, no matter which action

player B chooses, a state s′ is reached where ϕ holds.
Analogously,

�
♦Bϕ

�
G

is the set of states where player

B can enforce that a state s′ where ϕ holds is reached,
independently of A’s choice. Note that the above four

modal operators cover all possible quantifier prefixes. As
¬�ϕ is equivalent to ♦ϕ, we can even eliminate either

� or ♦. Note, however, that there is no such duality

between ♦A and ♦B, since their duals correspond to
two further operators.

III. TRANSLATING LAT TO Lµ

In this section, we show that LAT model checking and

Lµ model checking are equivalent problems that can
be easily reduced to each other. Thus, we can solve

essentially the same problems with both formalisms. As
LAT and concurrent game structures are extensions of

Lµ and Kripke structures, respectively, one reduction

is immediately clear. To show the other reduction, we

formally describe a translation from concurrent game
structures to associated Kripke structures, and from LAT

formulas ϕ to corresponding Lµ formulas ATµ (ϕ).

Definition 7 (Kripke Structure of a Game Structure):

Given a concurrent game structure G = (I,S, δ,

ΓA, ΓB,L) for a set of variables V and a set of
actions A, we define the associated Kripke structure

KG = (I ′,S′,R,L′) over the variables V ∪ {xA, xB, xN}
as follows:

• I ′ = I × {nop} × {0}
• S′ = S × (A ∪ {nop}) × {0, 1}
• R((s, nop, 0), (s, α, ι))

:⇔

⎛
⎜⎜⎜⎜⎝

ι = 1 ∧ α ∈ ΓA(s)∧
∃b ∈ ΓB(s). ∃s′ ∈ S. s′ = δ(s, α, b)

∨
ι = 0 ∧ α ∈ ΓB(s)∧

∃a ∈ ΓA(s). ∃s′ ∈ S. s′ = δ(s, a, α)

⎞
⎟⎟⎟⎟⎠

• R((s, α, ι), (s′, nop, 0))

:⇔

⎛
⎜⎜⎜⎜⎝

ι = 1 ∧ α ∈ ΓA(s)∧
∃b ∈ ΓB(s). s′ = δ(s, α, b)

∨
ι = 0 ∧ α ∈ ΓB(s)∧

∃a ∈ ΓA(s). s′ = δ(s, a, α)

⎞
⎟⎟⎟⎟⎠

• L′((s, α, ι))

:= L(s) ∪

⎧⎨
⎩

{xN} if α = nop ∧ ι = 0

{xA} if α ∈ ΓA(s) ∧ ι = 1

{xB} if α ∈ ΓB(s) ∧ ι = 0

s

s′

(a, b) =⇒

s, nop, 0

s, a, 1 s, b, 0

s′, nop, 0

Fig. 2. From Game Structures to Kripke Structures

The idea behind the construction of KG is the intro-

duction of intermediate states as shown in Figure 2 to

convert the concurrent game structure into a turn based
game structure, where the order in which the players

make their moves is irrelevant: States (s, nop, 0) directly
correspond to states s ∈ S of the game structure. Every

transition from a state s ∈ S with s′ = δ(s, a, b) is

split into four transitions with two intermediate states as
shown in Figure 2: one that leads from state (s, nop, 0) to

(s, a, 1) which means that player A made the first move.

Moreover, there is a transition from (s, nop, 0) to (s, b, 0)
which means that player B made the first move. From

states (s, a, 1) and (s, b, 0) there are further transitions
to (s′, nop, 0) to complete the transition of G in KG .

States of the form (s, nop, 0) are called choice states. As

each choice state (s, nop, 0) directly corresponds to the
state s of the game structure, it is possible to identify sets

of states of the game structure to corresponding states

of the Kripke structure.
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out, nop, 0 out, deny, 0 wait, nop, 0

out, grant, 0 out, req, 1 wait, req, 1 wait, grant, 0 wait, abort, 1 wait, deny, 0

in, nop, 0 moved, nop, 0

Fig. 3. Associated Kripke structure for the game structure of Figure 1

As an example for the translation, consider the associ-

ated Kripke structure shown in Figure 3 that is obtained

from the game structure of Figure 1 (we omitted how-
ever the labels for {xA, xB, xN}).

For the following discussion, we make implicitly use
of certain invariants of the above construction which are

listed in the next lemma.

Lemma 1 (Invariants for the Construction of KG):

Given a concurrent game structure G =
(I,S, δ, ΓA, ΓB,L) and its associated Kripke structure

KG as defined in Definition 7. Then, the following holds
for every transition R((s, α, ι), (s′, α′, ι′)):

• α = nop implies ι = 0

• α′ = nop implies ι′ = 0

• α ∈ A holds iff α′ = nop

• α = nop holds iff α′ ∈ A
• α ∈ A and ι = 1 imply that α ∈ ΓA(s)
• α ∈ A and ι = 0 imply that α ∈ ΓB(s)

In particular, the above lemma implies that the transition

system of KG is a bipartite graph that consists of two
kinds of states: those with actions α ∈ A and those with

action α = nop. Moreover, the action nop determines

the boolean flag ι = 0. For actions other than nop, the
boolean flag ι stores the information which one of the

players was responsible for the first half of the move.

We already explained the translation from game struc-
tures to Kripke structures. Next, we proceed with the

translation of LAT to Lµ:

Definition 8 (Translating LAT to Lµ): For every for-

mula ϕ ∈ LAT over the variables V , we define a formula

ATµ (ϕ) ∈ Lµ over the variables V ∪ {xA, xB, xN}
inductively as follows :

• ATµ (0) := 0

• ATµ (1) := xN

• ATµ (x) := x for variables x ∈ V
• ATµ (¬ϕ) := xN ∧ ¬ATµ (ϕ)
• ATµ (ϕ ∧ ψ) := ATµ (ϕ) ∧ ATµ (ψ)
• ATµ (ϕ ∨ ψ) := ATµ (ϕ) ∨ ATµ (ψ)
• ATµ (♦ϕ) := ♦♦ATµ (ϕ)
• ATµ (�ϕ) := ��ATµ (ϕ)
• ATµ

(
♦Aϕ

)
:= ♦(xA ∧ �ATµ (ϕ))

• ATµ

(
♦Bϕ

)
:= ♦(xB ∧ �ATµ (ϕ))

• ATµ (µx.ϕ) := µx.ATµ (ϕ)
• ATµ (νx.ϕ) := νx.ATµ (ϕ)

Note that according to the definition of the associ-

ated Kripke structure KG , we have �xN �KG
= S ×

{nop} × {0}, i.e., the choice states. Moreover, �xN �KG
∩

�xA ∨ xB�KG
= {}, i.e., each state where either xA or xB

holds is not a choice state. For this reason, we could also
perform the construction without the variable xN and

use ¬(xA ∨ xB) instead of xN in the above translation.
Theorem 1: Given a concurrent game structure G =

(I,S, δ, ΓA, ΓB,L) for a set of variables V and a set of

actions A, and an arbitrary formula ϕ ∈ LAT . Then, the

following holds:

�ATµ (ϕ)�KG
= �ϕ�G × {nop} × {0}

Hence, we can reduce the computation of �ϕ�G to the
computation of �ATµ (ϕ)�KG

, which can be solved by

ordinary µ-calculus model checking.
Concerning the complexity, we note that every al-

ternating time µ-calculus formula is translated to an

equivalent µ-calculus formula of the same alternation

depth and a size which is linear in the size of the original
formula. The number of transitions of KG is at most

multiplied by four, and the number of states of KG is

O(|S||A|). It is well-known that model checking of µ-
calculus formulas ϕ of alternation depth 
 and length |ϕ|
can be done on every Kripke structure K = (I,S,R,L)

in time O

((
|ϕ||S|

�

)�−1

|R| |ϕ|

)
(see [Schneider, 2003]).

We immediately obtain the following result:
Theorem 2: For every LAT -formula ϕ of alternation

depth 
 and length |ϕ|, and every concurrent game G =
(I,S, δ, ΓA, ΓB,L) there is an algorithm to compute the

satisfying states �ϕ�G in time

O

((
|ϕ| |S| |A|




)�−1

|δ| |ϕ|

)
.

In [Alur et al., 2002] an algorithm is presented that

modified an existing µ-calculus model-checking algo-
rithm to be suited for alternating time µ-calculus model-

checking. This algorithm involves the calculation of

some turn-based games in each iteration step. Instead,
our algorithm performs this work in one simple step

at the beginning of the algorithm. The above improve-
ment of the complexity compared to the complexity

O
(
(|ϕ| |δ|)�+1

)
given in [Alur et al., 2002] is due to

our use of improved algorithms for µ-calculus model
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checking. Nevertheless, it shows that our reduction is
efficient, i.e., there is no loss of efficiency due to the

reduction.

IV. SUPERVISORY CONTROL

In this section, we show how to solve

the supervisory control problem stated in

[Ramadge and Wonham, 1987] with the so far
developed translations. In supervisory control, a

finite state automaton is considered whose input set
Σ is partitioned into a set of controllable inputs Σc

that can be prevented from occurring by a supervisor

and the uncontrollable inputs Σu that can not be
influenced by the supervisor. The supervisory control

problem of [Ramadge and Wonham, 1987] considers

two additional state sets: the bad states Qb and the
marked states Qm. It is the task of the supervisor to

find the least restriction of controllable inputs for every
state such that (1) in every remaining reachable state,

it is possible to reach a marked state in Qm
1, and (2)

that no bad state of Qb is reachable.

To model the problem with a game structure, we
assume that we are given a finite state machine M =
〈Q, Σ, δ, q0, Qm, Qb〉 with states Q, inputs Σ = Σc ∪
Σu, a partial transition function δ : Q × Σ → Q,
an initial state q0 ∈ Q, and bad and marked state

sets Qb, Qm ⊆ Q. In [Ziller and Schneider, 2003],
[Ziller and Schneider, 2005], this supervisory control

problem is solved by constructing the following asso-

ciated Kripke structure of an automaton:

Definition 9 (Kripke Structure of an Automaton):

Given an automaton M = 〈Q, Σ, δ, q0, Qm, Qb〉, we

define its associated Kripke structure KA = (I,S,R,L)
over the Boolean variables VA := {xq | q ∈
Q} ∪ {xb, xm, xu} as follows:

• S := Q × {0, 1}
• I := {(q0, 0), (q0, 1)}
• R((q, 0), (q′, 0)) :⇔ ∃σ ∈ Σu.q′ = δ(q, σ)
• R((q, 1), (q′, 1)) :⇔ ∃σ ∈ Σ.q′ = δ(q, σ)

• L((q, 0)) := {xq, xu} ∪

{
{xb} if q ∈ Qb

{} if q �∈ Qb

• L((q, 1)) := {xq} ∪

{
{xm} if q ∈ Qm

{} if q �∈ Qm.
This Kripke structure can be divided into two parts: One

part that corresponds to the uncontrollable inputs, and
the other that corresponds to all inputs.

We will mimic the behavior of this Kripke structure by

a concurrent game structure as follows: the concurrent

game GM = (I,S, δG , ΓC , ΓU ,LG) is defined over the
set of actions2 A = {accept, reject} ∪ Σc ∪ Σu and is

1Note, that it is not required that every path reaches a marked state.
Instead, every state must have at least one path to reach a marked
state.

2In contrast to the construction given in
[Ziller and Schneider, 2003], [Ziller and Schneider, 2005], we
retain the inputs σ ∈ Σ as labels on the transitions in order to not
only check whether there is a solution, but also to derive a suitable
solution.

played by two players C and E (the controller and the
environment). The game structure GM inherits its states

and transitions directly from the automaton M, i.e., we

have S = Q and state pairs (s, s′) are connected by
a transition in GM iff these states are connected by a

transition in M.
In every state s, player E (the environment) selects

one of the possible inputs σ ∈ Σc ∪ Σu that the au-
tomaton can accept in this state. If the input σ ∈ Σc

is controllable and leads to state s′ in the automaton,
then we add a corresponding transition from s to s′

labeled with (accept, σ) to GM. As player C has the

choice to select either action accept or reject, it can
disable this input, so that the transition will not take

place. On the other hand, if the input σ ∈ Σu is not

controllable and leads to state s′ in the automaton,
then we add two corresponding transitions from s to s′,

one labeled with (accept, σ) and the other one labeled
with (reject, σ). Hence, no matter whether player C

chooses action accept or reject, it can not disable such a

transition. The formal definition of the game structure
GM = (I,S, δG , ΓC , ΓU ,LG) is therefore as follows:

• I = {q0}
• S = Q

• ΓC(s) = {accept, reject}
• ΓU (s) = {σ ∈ Σc ∪ Σu | ∃s′. s′ = δ(s, σ)}
• s′ = δG(s, α, σ)

:⇔

⎛
⎝ α ∈ {accept, reject} ∧ σ ∈ Σu ∧ s′ = δ(s, σ)

∨
α ∈ {accept} ∧ σ ∈ Σc ∧ s′ = δ(s, σ)

⎞
⎠

• L(s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
{xb, xm} if s ∈ Qm ∩ Qb

{xb} if s ∈ Qb

{xm} if s ∈ Qm

{} otherwise

Hence, for every uncontrollable transition s
σ
−→
M

s′ with

σ ∈ Σu, there are two transitions s
(accept, σ)
−−−−−−−→

M
s′ and

s
(reject, σ)
−−−−−−−→

M
s′ in the game structure GM, and for every

controllable transition s
σ
→ s′ with σ ∈ Σc, there is only

one transition s
(accept, σ)
−−−−−−−→

M
s′. The latter means that the

controller C has no possibility to either disable or enable
the transition, while in the former case, the transition

can be taken for input σ, regardless of the choice of the

controller. Thus, the definition of the transition relation
δG ensures that the controllability property is captured

in our game structure: an uncontrollable input may not
be prevented by player C, while every controllable input

may be prevented (disabled) by player C.
To finally solve the supervisory control problem, we

can proceed similarly to [Ziller and Schneider, 2003]: A

state does not violate the specification, if it is

• Co-reachable, i.e., a marked state can be reached
and

• good, i.e., no bad states can be reached via an

uncontrollable input.
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Therefore, in [Ziller and Schneider, 2003],
[Ziller and Schneider, 2005], an equation system3

is given that works on the above defined Kripke

structure:{
xCo

µ
= κ(xG) ∧ (♦xCo ∨ xm)

xG
ν
= xu ∧ �(xG ∧ κ(xCo)) ∧ ¬xb.

This is an equation system of the ordinary µ-
calculus with the difference that an operator κ() is

used to switch from one part of the Kripke struc-

ture to the other according to the following defi-
nition: κ(Q) := {(q,¬i) | (q, i) ∈ Q}. A de-

tailed discussion on the correctness of the above equa-

tion system is found in [Ziller and Schneider, 2003],
[Ziller and Schneider, 2005].

In the following, we concentrate on the corresponding

equation system on the associated game. The coreach-
able states can be calculated by the following formula:

x′
Co

µ
= x′

G ∧ (♦x′
Co ∨ xm),

where x′
Co denotes the coreachable states and x′

G de-
notes the good states. For calculating the bad states, we

note that a state is bad, if an uncontrollable input leads

to a state which is known to be bad or not coreachable.
Therefore a state is bad, if player E can enforce a

transition to an already known bad state, or to a state

which is known to be not coreachable. This is calculated
by the following formula:

x′
B

µ
= ♦E(x′

B ∨ ¬x′
Co) ∨ xb.

By negation of the above equation, we get the good
states, i.e., those states that should never be left:

x′
G

ν
= ¬♦E(¬x′

G ∨ ¬x′
Co) ∧ ¬xb.

We therefore get the following equation system:

E′ =

{
x′

Co

µ
= x′

G ∧ (♦x′
Co ∨ xm)

x′
G

ν
= ¬♦E(¬x′

G ∨ ¬x′
Co) ∧ ¬xb.

The above equation system is very similar to the one

that has been presented in [Ziller and Schneider, 2003],

[Ziller and Schneider, 2005]. A solution to the supervi-
sory control problem may be given by evaluating the

above equation system which is a standard problem,

once we translate it further to a µ-calculus model
checking problem. To show the correctness of the pre-

sented algorithm, we will give a reduction to the equa-
tion system formulated in [Ziller and Schneider, 2003],

[Ziller and Schneider, 2005]:

Theorem 3: Given an automaton M =
〈Q, Σ, δ, q0, Qm, Qb〉, its associated Kripke structure
KM, and its associated game GM, the following holds:

�xCo�KM
= �x′

Co�GM
× {1}

3Equation systems with minimality and maximality constraints are
an equivalent formulation of the µ-calculus [Schneider, 2003].

V. CONCLUSIONS

In this paper, we described a reduction from alter-

nating time µ-calculus model-checking problems (on

concurrent game structures) to equivalent proposi-
tional µ-calculus model-checking problems (on Kripke

structures). The purpose of this reduction is that al-
ready existing model checking tools can be used to

solve control problems that are formalized by the al-

ternating time µ-calculus. In addition, we presented
a reduction of the supervisory control problem of

[Ramadge and Wonham, 1987] to an equivalent alter-

nating time µ-calculus model-checking problem. Using
the results given in this paper, we can further translate

the problem to an ordinary µ-calculus model-checking
problem. This allows us to use µ-calculus model check-

ing algorithms to solve the supervisory control problems

like the classical one introduced by Ramadge and Won-
ham.
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