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Abstract— The Kalman-Yakubovich-Popov (KYP) lemma is
extended with new conditions that are equivalent to solvability
of the Lur’e equation or the corresponding linear operator
inequality. The relation established between the KYP lemma
and an extremum problem on the set of positive semi-definite
solutions of the generalized Lyapunov inclusion. It is proved
that the statements of the KYP lemma are necessary and
sufficient conditions for value to be bounded in this problem.
The approach is based on the special Fenchel duality theorem
and presents the new proof of the KYP lemma as well. The
linear-quadratic optimization problem for a behavioral system
in a Hilbert space is considered to illustrate the application of
the new statements that are added to the KYP lemma.

I. INTRODUCTION

The Kalman-Yakubovich-Popov (KYP) lemma is a cor-
nerstone of systems theory. It has numerous applications
in stability theory of nonlinear systems, optimal and robust
control and filtration, stochastic realization theory, adaptive
control and other areas. The KYP lemma was formulated by
V.M.Popov [1] as an open problem. The first proofs were
obtained by V.A.Yakubovich [2] and R.Kalman [3] for the
single input systems. The comprehensive overview of the
results concerned with the finite dimensional KYP lemma
can be found in [4], [5].

The infinite dimensional versions of the KYP lemma are
presented in [6], [7] for bounded operators and in [8], [9],
[10] for some classes of unbounded operators. We deal with
bounded operators in a Hilbert space.

In view of fundamental importance of the KYP lemma the
search continues for new proofs [11], [12] and generaliza-
tions [13] of this result.

The original KYP lemma claims the equivalence of the
following three statements:

1◦. There exists a solution of the Lur’e equation.
2◦. There exists a solution of the linear matrix (KYP)

inequality.
3◦. The so-called frequency domain condition is fulfilled.

(This condition is expressed in terms of some quadratic
form that depends on a complex parameter. The condi-
tion holds if this form is positive semi-definite on the
imaginary axis.)

In many papers devoted to the KYP lemma [9], [10], [11],
[12], [13] the problem of the Lur’e equation solvability is
not considered, the attention is focused on equivalence of
the linear matrix inequality and frequency domain condition
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or their generalizations. It should be noted that under some
conditions of regularity the Lur’e equation is equivalent to
the algebraic Riccati equation. The solvability of one or
another equation is important in a number of applications.
Our purpose is to supplement lemma with new statements
that are equivalent to generalized versions of the statements
1◦ – 3◦.

We consider an auxiliary extremum problem in the space
of self-adjoint trace-class operators. The problem is to
minimize a linear functional on the set of positive semi-
definite solutions of the generalized Lyapunov equation (or
inclusion). The main tool for solution of the problem is a
specialized version of the Fenchel duality theorem. Using
duality we demonstrate that each of statements 1◦ – 3◦ is a
necessary and sufficient condition for the value to be finite
in this extremum problem.

In our formulation of the KYP lemma the frequency
condition is fulfilled on an arbitrary straight line or circle on
the complex plane. The statements 1◦ and 2◦ are modified
accordingly. This allows to consider both continuous-time
and discrete-time versions of KYP lemma. The idea of the
modification was proposed by Yakubovich in the editorial
comment to Russian translation of [14] and it was realized
in [15]. In addition, the statements are formulated in a form
that is convenient for application to behavioral systems. In
finite dimensions our generalized statements 2◦ and 3◦ of the
KYP lemma are special cases of corresponding statements
in [13]. The role of KYP inequality in dissipativity analysis
of finite dimensional behavioral systems was considered in
[16].

In section III we apply the extended KYP lemma to infinite
horizon optimization for the linear behavioral system. The
cost function is exponentially weighted integral of quadratic
form of system behavior. The example demonstrates a new
approach to linear-quadratic optimization.

Some preliminary results on the extended KYP lemma in
a Hilbert space were presented on Fourth European Congress
of Mathematics (Stockholm, 2004) and are published in [17].
The finite dimensional version of the result is to appear in
[18].

II. EXTENDED KALMAN-YAKUBOVICH-POPOV LEMMA

Let us introduce some notation. Let X , U be separable
Hilbert spaces over field of complex numbers C, W =
X ⊕U . The space of linear bounded operators from W to X ,
is denoted B(W,X ), B(W) = B(W,W), B̂(W) ⊂ B(W)
is a space of self-adjoint operators, C1(W) ⊂ B(W) is a
space of trace-class operators, Ĉ1(W) ⊂ C1(W) is a space
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of self-adjoint trace-class operators, Ĉ+
1 (W) ⊂ Ĉ1(W) is

a cone of positive semi-definite trace-class operators. The
space C1(W) is an ideal of the algebra B(W), i.e., for any
S ∈ C1(W), A ∈ B(W), SA ∈ C1(W), AS ∈ C1(W). The
trace is a linear functional on C1(W) that for any S ∈ C1(W)
is given by tr(S) =

∑
λi(S), where λi(S), i = 1, 2, . . . are

eigenvalues of S. Any linear functional on Ĉ1(W) can be
represented as tr(GS), where G ∈ B̂(W), S ∈ Ĉ1(W).

By M∗ ∈ B(X ,W) denote adjoint of an operator M ∈
B(W,X ). Let 〈., .〉 be inner product in W. We use shorthand
ww∗ for the one-dimensional operator 〈., w〉w ∈ B̂(W), w ∈
W. This notation is well defined provided we identify any
vector w ∈ W with the operator from C to W that takes λ
to λw.

Let operator Λ : Ĉ1(W) → Ĉ1(X ) be given by

Λ(S) = (M,N)(Θ ⊗ S)(M,N)∗, (1)

where M,N ∈ B(W,X ), Θ = (Θi,j)i,j=1,2 is self-adjoint

matrix, det Θ < 0, Θ ⊗ S =
(

Θ11S Θ12S
Θ21S Θ22S

)
. If Θ =(

0 1
1 0

)
, W = X , N = IX (IX is identity operator in

X ), then Λ(S) = MS +SM∗ is the Lyapunov operator. On
this account the defined by (1) operator Λ can be called the
generalized Lyapunov operator. The conjugate to Λ is given
by

Λ′(H) = (M∗, N∗)(Θ� ⊗ H)(M∗, N∗)∗.

Take G ∈ B̂(W), Q ⊂ Ĉ1(X ). Consider the extremum
problem:

(A) minimize tr(GS) over the set of operators S ∈ Ĉ+
1 (W)

that satisfy the generalized Lyapunov inclusion

Λ(S) ∈ Q. (2)

We shall demonstrate that the KYP lemma defines neces-
sary and sufficient conditions for the value in problem (A)
be finite (singular case) or be achieved (regular case).

Define sets Γ = {λ ∈ C | (λ, 1)Θ(λ, 1)∗ = 0}, Ω± =
{λ ∈ C | ± (λ, 1)Θ(λ, 1)∗ > 0}. The curve Γ is a straight
line or circle, Ω± are open domains that are separated by
Γ. Varying the matrix Θ we can define any straight line or
circle on the complex plane.

Let the functional PQ : B̂(X ) → R̄ be given by

PQ(H) = inf
Q∈Q

tr(QH),

where Q ⊂ Ĉ1(X ). If Q = {Q} (Q ∈ Ĉ1(X )), then
PQ(H) = tr(QH).

Consider the following condition:

(Y) there exist f± ∈ B(W,U) such that Sp
(

N
f±

)
�	 0

and Sp

(
M

(
N
f±

)−1 (
IX
0

))
⊂ Ω±.

This condition is analogous to the condition that was
introduced by Yakubovich in [7].

First we consider the singular case dealing with non-strict
KYP inequality.

Theorem 1: If condition (Y) is fulfilled, then for any G ∈
B̂(W) the following statements are equivalent:

1◦. There exist H ∈ B̂(X ), h ∈ B(W,U) that satisfy the
generalized Lur’e equation

Λ′(H) − G = −h∗h. (3)

2◦. There exists H ∈ B̂(X ) that satisfies the generalized
KYP inequality

Λ′(H) − G ≤ 0. (4)

3◦. The frequency condition is fulfilled, i. e., the inequality

w∗Gw ≥ 0 (5)

holds for all w ∈ W that satisfy the equation

(λN − M)w = 0 (6)

with some λ ∈ Γ.
4◦. The inequality (5) holds for all w ∈ W that satisfy the

equation
Λ(ww∗) = 0. (7)

5◦. The inequality
tr(GS) ≥ 0

holds for all S ∈ Ĉ+
1 (W) that satisfy the equation

Λ(S) = 0. (8)

6◦. There exists Q ∈ Ĉ1(X ) such that

inf
S∈Ĉ+

1 (W):Λ(S)=Q
tr(GS) > −∞.

7◦. The duality relation

inf
S ∈ Ĉ+

1 (W)
Λ(S) ∈ Q

tr(GS) = max
H ∈ Ĉ1(X )

Λ′(H) − G ≤ 0

PQ(H) (9)

is fulfilled for any convex bounded nonempty set Q ⊂
Ĉ1(X ).
There are uniquely defined solutions of (4) H± ∈ B̂(X )
such that the inequalities

H− ≤ H ≤ H+

hold for any H ∈ B̂(X ) that satisfies (4). There exist
h± ∈ B(W,U) such that the pairs H+, h+ and H−, h−

satisfy (3).
Let us demonstrate how standard formulation of the KYP

lemma [4], [7] can be obtained from Theorem 1. Take

Θ =
(

0 1
1 0

)
, N = (IX , 0),

M = (A,B), A ∈ B(X ), B ∈ B(U ,X ).
(10)

In this case Γ = iR is imaginary axis, Ω± = C± are right
and left open half-planes, and

Λ′(H) =
(

HA + A∗H HB
B∗H 0

)
.
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Thus, we see that (3) and (4) coincide with the standard Lur’e
equation and the KYP inequality respectively. Equation (6)
takes the form

iωx = Ax + Bu, (11)

where ω ∈ R. If we suppose that Sp(A)∩ iR = ∅, then (11)
is equivalent to x = (iωIX − A)−1Bu. Consider the Popov
operator

Π(iω) =
(

(iωIX − A)−1B
IU

)∗
G

(
(iωIX − A)−1B

IU

)
,

then statement 3◦ of Theorem 1 takes the form of standard
frequency domain condition

Π(iω) ≥ 0, ∀ω ∈ R.

Let f± ∈ B(W,U) be operators from condition (Y). In

considered case

(
N
f±

)−1 (
IX
0

)
=

(
IX
K±

)
, where

K± ∈ B(X ,U). Thus, condition (Y) can be formulated as
follows: there exist K± such that Sp(A + BK±) ⊂ C±,
i. e., operator A + BK− is Hurwitz and A + BK+ is
anti-Hurwitz. This coincides with formulation in [7]. In the
finite dimensional case (W,X ,U are finite dimensional) (Y)
is fulfilled iff the pair A,B is controllable. In the infinite
dimensional case (Y) does not imply controllability of A,B.

If in (10) we put Θ =
(

1 0
0 −1

)
, then Γ is the unit

circle, Λ′(H) =
(

A∗HA − H A∗HB
B∗HA B∗HB

)
. In this case

we obtain the discrete-time version of the KYP lemma or
the Kalman-Szego lemma.

In the regular case inequality (4) is replaced with the strict
one.

Theorem 2: If condition (Y) is fulfilled, then for any G ∈
B̂(W) the following statements are equivalent:
1◦. There exist H ∈ B̂(X ), h ∈ B(W,U) that satisfy (3)

and

Sp
(

N
h

)
�	 0, Sp

(
M

(
N
h

)−1(
IX
0

))
∩ Γ = ∅.

(12)
2◦. There exist H ∈ B̂(X ), δ > 0 such that

Λ′(H) − G ≤ −δIX . (13)

3◦. There exists δ > 0 such that

w∗Gw ≥ δ|w|2 (14)

for all w ∈ W that satisfy (6) with some λ ∈ Γ.
4◦. There exists δ > 0 such that (14) holds for all w ∈ W

that satisfy (7).
5◦. There exists δ > 0 such that

tr((G − δIk)S) ≥ 0

for all S ∈ Ĉ+
1 (W) that satisfy (8).

6◦. There exists Q ∈ Ĉ1(X ), δ > 0 such that

inf
S∈Ĉ+

1 (W):Λ(S)=Q
tr((G − δIX )S) > −∞.

7◦. For any convex weakly compact nonempty set Q ⊂
Ĉ1(X ) the following duality relation is fulfilled:

min
S ∈ Ĉ+

1 (W)
Λ(S) ∈ Q

tr(GS) = max
H ∈ B̂(X )

Λ′(H) − G ≤ 0

PQ(H). (15)

There are uniquely defined solutions of (4) H± ∈ B̂(X )
such that for any H ∈ B̂(X ) the inequality Λ′(H)−G <
0 implies

H− < H < H+. (16)

There exist h± ∈ B(W,U) such that the pairs H+, h+

and H−, h− satisfy (3). If ±Θ11 ≤ 0, then

Sp
(

N
h±

)
�	 0, Sp

(
M

(
N
h±

)−1(
IX
0

))
⊂ Ω±.

(17)
If there is S ∈ Argmin{tr(GS) | S ∈
Ĉ+
1 (W), Λ(S) ∈ Q} such that ±Λ(S) ≥ 0, then

H± ∈ Argmax{PQ(H) | H ∈ B̂(X ), Λ′(H)−G ≤ 0}.
Remark 1: If Θ11 = 0, then Γ is a straight line and (17)

is fulfilled for both operators h+ and h−. If Θ11 �= 0, then
Γ is a circle and (17) can be fulfilled only for one of two
operators h±.

Remark 2: From duality relation (15) it follows that
the pair of operators S, H (S ∈ Ĉ+

1 (W), Λ(S) ∈ Q,
H ∈ B̂(X ), Λ′(H) − G ≤ 0) satisfies inclusions S ∈
Argmin{tr(GS) | S ∈ Ĉ+

1 (W), Λ(S) ∈ Q}, H ∈
Argmax{PQ(H) | H ∈ B̂(X ), Λ′(H) − G ≤ 0} iff

tr(GS) = PQ(H). (18)
Let us consider the special case (10). Putting G =(
Gxx Gxu

Gux Guu

)
, where Gxx ∈ B̂(X ), Gxu ∈ B(U ,X ),

Gux ∈ B(X ,U), Guu ∈ B̂(U), we can see from (13) that
Sp(Guu) ⊂ (0, +∞). In the considered case the pair H,h
satisfies the Lur’e equation (3) iff H satisfies the algebraic
Riccati equation

HA∗ + A∗H + (HB −Gxu)G−1
uu (B∗H −Gux)−Gxx = 0.

(19)
For finite dimensions the ordering (16) of equation (19)
solutions was first obtained in [19]. This result is also known
in the infinite dimensional case.

The proof of Theorems 1 and 2 is outlined in Section IV.

III. LINEAR-QUADRATIC OPTIMIZATION

As an illustrative example of the extended KYP lemma
application we consider the linear-quadratic optimization
problem for the behavioral system

Nẇ(t) = Mw(t), (20)

where w(.) : [0, +∞) → W has derivative at every t ∈
[0, +∞), N,M ∈ B(W,X ).

In special case N = (IX , 0) the system (20) has standard
state-space representation

ẋ(t) = Ax(t) + Bu(t), (21)
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where w = x⊕ u, x ∈ X , u ∈ U , M = (A,B), A ∈ B(X ),
B ∈ B(U ,X ).

Given G ∈ B̂(W), α ∈ R, we consider the quadratic
functional

Φ(w(.)) =
∫ +∞

0

eαtw∗(t)Gw(t) dt,

which is defined for all w(.) ∈ L2,α(W) def=
{w(.) |

∫ +∞
0

eαt|w(t)|2 dt < ∞}.
Take q ∈ X . Consider the following optimization problem:

(B) minimize Φ(w(.)) over the set of w(.) ∈ L2,α(W) that
satisfy (20) and the initial condition

Nw(0) = q. (22)

The problem was formulated in [7] for system (21). The
linear-quadratic optimization of finite-dimensional behav-
ioral systems was investigated in [20], [21]. We would like
to illustrate difference of our approach from others.

Consider operator I(w(.)) =
∫ +∞
0

eαtw(t)w(t)∗ dt. It
maps L2,α(W) into Ĉ+

1 (W). For any solution of (20) we
have

N d
dt (e

αtww∗)N∗ = αN(eαtww∗)N∗+
M(eαtww∗)N∗ + N(eαtww∗)M∗.

(23)

Integrating (23) on the interval [0, +∞) and taking into
account (22) we obtain the equation

Λ(I(w(.))) = −qq∗, (24)

where Λ is given by (1) with Θ =
(

0 1
1 α

)
. Using the

operator I we can represent the cost function in the following
form

Φ(w(.)) = tr(GI(w(.))).

In parallel with problem (B) let us consider problem (A)
putting Q = {−qq∗}. In this case inclusion (2) takes the
form of equation

Λ(S) = −qq∗. (25)

Due to (24) the operator S = I(w(.)) satisfies (25) for
any w(.) ∈ L2,α(W) satisfying (20) and (22). Hence

inf{Φ(w(.))| w(.) ∈ L2,α(W), w(.) satisfies (20), (22)}≥
inf{tr(GS) | S ∈ Ĉ+

1 (W), S satisfies (25)}.
(26)

The idea of our approach is to replace problem (B) with
problem (A). The relation between the problems is defined
by the following corollary of Theorems 1 and 2.

Corollary 1: Let condition (Y) be fulfilled.
• If one of statements 1◦–7◦ of Theorem 1 holds,

then inf{Φ(w(.)) | w(.) ∈ L2,α(W), w(.) satisfies
(20), (22)} > −∞ for any q ∈ X .

• If one of statements 1◦–7◦ of Theorem 2 holds, then
for any q ∈ X there exists optimal solution w◦(.) of
problem (B) that is uniquely defined as a solution of
interconnected behavioral system (20) and

h−w(t) = 0, (27)

satisfying the initial condition (22). The optimal value
of cost function is given by

Φ(w◦(.)) = −q∗H−q. (28)

Here H−, h− are operators defined in statement 7◦ of
Theorem 2. The interconnected system (20), (27) admits
the representation in state-space form

ẋ(t) = MF−x(t), w(t) = F−x(t), (29)

where F− =
(

N
h−

)−1 (
IX
0

)
and

Sp(MF−) ⊂ {λ ∈ C | Reλ < −α/2}. (30)

• If any one statement of Theorem 1 is not ful-
filled, then inf{Φ(w(.)) | w(.) ∈ L2,α(W),
w(.) satisfies (20), (22)} = −∞ for any q ∈ X .

Proof: First statement. From statement 7◦ of Theorem 1 it
follows that inf{tr(GS) | S ∈ Ĉ+

1 (W), Λ(S) = −qq∗} >
−∞. Together with (26) this proves the statement.

Second statement. If x = Nw, then for any solution
w(.) of (20), (27) the pair w(.), x(.) satisfies (29). Converse
is also true. Thus, (29) is the state-space representation
of (20). If x◦(.), w◦(.) is a solution of (29) that satisfies
the initial condition x◦(0) = q, then (22) is fulfilled.
From (30) it follows that x◦(.) ∈ L2,α(X ) and w◦(.) ∈
L2,α(W). Multiplying both sides of (3) by w◦(t)w◦(t)∗

and taking into account equality h−F− = 0 we obtain
Λ′(H−)w◦(t)w◦(t)∗ = Gw◦(t)w◦(t)∗ for all t ∈ [0, +∞).
Integrating this equation on [0, +∞) with the weight eαt we
get equation Λ′(H−)I(w◦(.)) = GI(w◦(.)). Calculating the
trace of both sides of this equation we obtain

tr(Λ′(H−)I(w◦(.))) = tr(GI(w◦(.))). (31)

By definition of conjugate operator

tr(Λ(S)H) = tr(Λ′(H)S), (32)

for all S ∈ Ĉ1(W) and H ∈ B̂(X ). Equations (31), (32) and
(24) imply

PQ(H−) = tr(−qq∗H−) = tr(GI(w◦(.))). (33)

From the statement 7◦ of Theorem 2 and Remark 2 it
follows that I(w◦(.)) ∈ Argmin{tr(GS) |S ∈ Ĉ+

1 (W),
S satisfies (25)}. Taking into account (26) we get
w◦(.) ∈Argmin{Φ(w(.)) | w(.) ∈ L2,α(W), w(.) satisfies
(20), (22)}, i. e., w◦(.) is the optimal solution of problem
(B). Equation (28) follows from (33).

The proof of the third statement is analogous to the proof
of corresponding result in [7].

IV. KEY ELEMENTS OF THEOREMS 1 AND 2 PROOF

Taking into account limited volume of the paper we cannot
present complete proofs. In this section we formulate the
most important auxiliary statements and outline the proofs.
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A. Fenchel duality in extremum problem (A)

Denote domPQ = {H ∈ B̂(X ) | PQ(H) > −∞}. It is not
hard to prove that

inf
S ∈ Ĉ+

1 (W)
Λ(S) ∈ Q

tr(GS) ≥ sup
H ∈ domPQ

Λ′(H) − G ≤ 0

PQ(H). (34)

Hereafter we assume that sup ∅ = −∞.
Theorems 1 and 2 are based on the following duality

result.
Theorem 3: Let Q ⊂ Ĉ1(X ) be convex nonempty set. If

condition (Y) is fulfilled, then:
• The duality relation

inf
S ∈ Ĉ+

1 (W)
Λ(S) ∈ Q

tr(GS) = sup
H ∈ domPQ

Λ′(H) − G ≤ 0

PQ(H)

holds.
• If there exists H ∈ domPQ that satisfies (4), then
Argmax{PQ(H) | H ∈ domPQ, Λ′(H) − G ≤ 0} �= ∅.
• If there exist H ∈ domPQ, δ > 0 such that (13) holds and

Argmin{tr(QH) | Q ∈ Q} �= ∅ ∀H ∈ domPQ, (35)

then Argmin{tr(GS) | S ∈ Ĉ+
1 (W), Λ(S) ∈ Q} �= ∅ and

for any S◦ ∈ Argmin{tr(GS) | S ∈ HM+
k , Λ(S) ∈ Q},

H◦ ∈ Argmax{PQ(H) | H ∈ domPQ, Λ′(H) − G ≤ 0}

tr(GS◦) = PQ(H◦) = tr(Λ(S◦)H◦). (36)
For reasons of space we only can comment briefly the

proof of Theorem 3. Theorem 3 is a version of Fenchel
duality results [22], [23]. It is shown in [18] that for finite
dimensions Theorem 3 is a corollary of the corresponding
results in [22]. In the infinite dimensional case the known
results [23] cannot be applied, because the operator Λ is
defined on Ĉ1(W), which is not a reflexive space.

Our proof uses the fact that Ĉ1(W) is a vector lattice. The
proof is based on usual technique of convex sets separation.
Condition (Y) guarantees that the so-called Slater condition
is fulfilled. This can be seen from the following simple

Lemma 1: If (Y) is fulfilled, then Λ(Ĉ+
1 (W)) = Ĉ1(X ).

B. The structure of solutions set of homogeneous generalized
Lyapunov equation

Theorem 4: Every solution S ∈ Ĉ+
1 (W) of (8) has the

form
S =

∑
j∈J

wjw
∗
j , (37)

where vectors wj ∈ W, j ∈ J, are solutions of (7), J ⊂ N
is a finite or infinite set of indexes. In addition

{w satisfies (7)} = cl {w satisfies (6)}. (38)
In finite dimensional case Theorem 4 is a corollary of cor-

responding results in [11]. However the technique employed
in [11] cannot be used in the infinite dimensional case. Our
proof [17] is based on a theorem on completeness of the
system of root vectors of some unbounded operators [24].

C. Proof of implications 2◦ ⇒ 3◦ ⇒ 4◦ ⇒ 5◦ ⇒ 6◦ ⇒ 2◦

Let us prove the implications sequence of Theorem 1.
The corresponding implications of Theorem 2 are proved
analogously.

Consider the implication 2◦ ⇒ 3◦. If w satisfies (6),
then w∗Λ′(H)w = 0. Multiplying both sides of (4) by w∗

from the left and by w from the right, we obtain (5). The
implication 3◦ ⇒ 4◦ follows from (38). The implication
4◦ ⇒ 5◦ follows from (37). The implication 5◦ ⇒ 6◦

is trivial. The implication 6◦ ⇒ 2◦ follows from the first
statement of Theorem 3.

D. Proof of implication 2◦ ⇒ 7◦

Consider the implication 2◦ ⇒ 7◦ in Theorem 2. Taking
into account that for any weakly compact set Q (35) holds
and domPQ = B̂(X ) we obtain (15) as a corollary of the
third statement of Theorem 3.

The rest of statement 7◦ can also be proved using The-
orem 3, but this proof is too cumbersome to be presented
here. Therefore we give another shorter proof that does not
include inequality (16) and is based on Theorem 1 from [7].

Take a square matrix Ψ of order 2, det Ψ �= 0, and an op-
erator T ∈ B(W), Sp(T ) �	 0. Consider the transformation
T of variables that were introduced in Section II

(MT , NT ) = (M,N)(Ψ ⊗ Ik)(I2 ⊗ T−1),
ΘT = Ψ−1Θ(Ψ−1)∗, GT = (T−1)∗GT−1,
ΛT (S) = (MT , NT )(ΘT ⊗ S)(MT , NT )∗.

(39)

It is easy to see that

tr(GT ST ) = tr(GS), ΛT (ST ) = Λ(S),
Λ′

T (H) = (T−1)∗Λ′(H)T−1,
(40)

where ST = TST ∗. Additional properties of transformation
(39) are given in the following

Lemma 2: If Θ,M,N satisfies (Y), then there exists
the transformation T defined by (39) such that the triple
ΘT , NT ,MT has the form (10) and satisfies (Y).

Suppose that ±Θ11 ≤ 0. Let an operator h ∈ B(W,U) be
such that hT = hT−1 satisfies the conditions

Sp
(

NT

hT

)
�	 0, Sp

(
MT

(
NT

hT

)−1 (
IX
0

))
⊂ C±.

(41)
Then

Sp
(

N
h

)
�	 0, Sp

(
M

(
N
h

)−1 (
IX
0

))
⊂ Ω±.

The proof of Lemma 2 is not hard and is omitted.
Consider solvability of Lur’e equation (3). By Lemma 2

it follows that the triple Θ,M,N can be transformed
to ΘT ,MT , NT satisfying (10). By (40) the operators
ΘT ,MT , NT , GT satisfy (13). Applying Theorem 1 from [7]
we can conclude that there exist operators H± ∈ B̂(X ),
K± ∈ B(X ,U), R ∈ B̂(U) such that Λ′

T (H±) − GT =
(K±, IU )∗R(K±, IU ) and Sp(A − BK±) ⊂ C±. Define
h± = R1/2(K±, IU )T, then (3) holds for the pairs H±, h±.

From the equations

(
NT

h±
T

)
=

(
IX 0

R1/2K± R1/2

)
,
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MT

(
NT

h±
T

)−1 (
IX
0

)
= A − BK± it follows that (41)

holds. Applying Lemma 2 we obtain (17).
The implication 2◦ ⇒ 7◦ in Theorem 1 is proved analo-

gously.

E. Proof of implications 7◦ ⇒ 1◦ ⇒ 2◦

The implications 7◦ ⇒ 1◦ are trivial in both theorems.
The implication 1◦ ⇒ 2◦ is trivial in Theorem 1.

It is easier to prove the implication 1◦ ⇒ 3◦ instead of
1◦ ⇒ 2◦ in Theorem 2. Let the transformation (39) be
defined by the identity matrix Ψ = IC2 and the operator

T =
(

N
h

)
. Then NT = (IX , 0), the operator MT can

be represented as MT = (A,B), A ∈ B(X ), B ∈ B(U ,X ),

and A = M

(
N
h

)−1 (
IX
0

)
. From (12) it follows that

Sp(A) ∩ Γ = ∅ and hence there exists δ1 > 0 such that

‖(λIX − A)−1B‖ ≤ δ1 (42)

for all λ ∈ Γ. Taking into account that hT = hT−1 = (0, IU )
we have

Λ′
T (H) − GT = −

(
0 0
0 IU

)
.

Let the vector wT = Tw, w ∈ W, be represented as wT =
xT ⊕ uT , where xT = Nw, uT = hw. Then for any w
satisfying (6) with some λ ∈ Γ we have

λxT = AxT + BuT . (43)

Take δ2 = (1 + δ2
1)−1. Then from (42) it follows that

for any wT satisfying (43) |uT |2 ≥ δ2|wT |2. Therefore
for any w satisfying (6) we have w∗Gw = w∗(G −
Λ′(H))w = w∗

T (GT − Λ′
T (H))wT = |uT |2 ≥ δ2|wT |2 ≥

δ2‖T−1‖−2|w|2. Consequently, (14) is fulfilled with δ =
δ2‖T−1‖−2. This completes the proof.

V. CONCLUSION

The paper is devoted to extension of the KYP lemma
with additional statements. Although we focus on infinite
dimensional case the result is also new in finite dimensions.
Besides, we present the new proof of the generalized version
of the KYP lemma. The crucial points of the proof are
Theorems 3 and 4, which are of independent interest. These
theorems can be used in various linear-quadratic optimization
problems.

The illustrative example presented in Section III is a
version of the standard linear-quadratic optimization problem
for a behavioral system. The consideration of the exponen-
tially weighted functional allows to look for optimal behavior
that has the desired decay rate. The example demonstrates
the new approach to the linear-quadratic optimization. The
optimization problem for the differential equation in a Hilbert
space is replaced with the extremum problem on the solutions
of the generalized Lyapunov equation, which is an algebraic
equation in the space of trace-class operators.

The proposed result can be used in the linear-quadratic
optimization with quadratic constraints. The S-procedure
based method for solution of such problems was proposed in
[25]. Using Theorems 3 and 4 we can tackle a wider range
of problems.

REFERENCES

[1] V. M. Popov, ”Absolute Stability Of Nonlinear Systems Of Automatic
Control,” Automatics and Remote Control vol. 22, 1961, pp. 961–979.

[2] V. A. Yakubovich, ”The Solution To Certain Matrix Inequalities In
Automatic Control,” Dokl. Akad. Nauk USSR 143, 1962, pp. 1304–
1307.

[3] R. E. Kalman, ”Lyapunov Functions For The Problem Of Lur’e In
Automatic Control,” Proc. Nat. Acad. Sci. USA 49, 1963, pp. 201–
205.

[4] V. A. Yakubovich, ”The Frequency Theorem In Control Theory,”
Siberian Math. Journ., 14, 1973, pp. 384–419.

[5] V. A. Yakubovich, G. A. Leonov and A. Kh. Gelig, Stability Of
Stationary Sets In Control Systems With Discontinuous Nonlinearities,
Series on Stability, Vibration and Control of Systems, Series A, vol. 14,
World Scientific Publishing, 2004.

[6] V. A. Yakubovich, ”A Frequency Theorem For The Case In Which
The State And Control Spaces Are Hilbert Spaces With An Application
To Some Problems In The Synthesis Of Optimal Controls. I,” Siberian
Math. J., vol. 15, 1974, pp. 457–476.

[7] V. A. Yakubovich, ”A Frequency Theorem For The Case In Which The
State And Control Spaces Are Hilbert Spaces With An Application To
Some Problems In The Synthesis Of Optimal Controls. II,” Siberian
Math. J., vol. 16, 1975, pp. 828–845.

[8] A. V. Balakrishnan, ”On A Generalization Of The Kalman-Yakubovich
Lemma,” Appl. Math. Optim., vol. 31, 1995, pp. 177–187.

[9] R. F. Curtain, ”The Kalman-Yakubovich-Popov Lemma for Pritchard-
Salamon systems,” Systems & Control Letters vol. 27, 1996, pp. 67–72.

[10] L. Pandolfi, ”The Kalman-Popov-Yakubovich Theorem: An Overview
And New Results For Hyperbolic Control Systems,” Nonlinear Anal-
ysis, Methods & Applications vol. 30, 1997, pp. 735–745.

[11] A. Rantzer, ”On Kalman-Yakubovich-Popov Lemma,” Systems &
Control Letters, vol. 28, 1996, pp. 7–10.

[12] V. Balakrishnan and L. Vandenberghe, ”Semidefinite Programming
Duality and Linear Time-Invariant Systems,” IEEE Trans. Automat.
Contr., vol. 48, 2003, pp. 30–41.

[13] T. Iwasaki and S. Hara, ”Generalized KYP Lemma: Unified Frequency
Domain Inequalities With Design Applications,” IEEE Trans. Automat.
Contr., vol. 50, 2005, pp. 41–59.

[14] V. M. Popov, Hyperstability Of Control Systems, Editura Academiei,
Bucuresti and Springer Verlag, Berlin, 1973.

[15] A. N. Churilov, ”On The Solvability Of Some Matrix Inequalities,”
Vestnik Leningrad Univ. Math., vol. 13, 1981, pp. 149-154.

[16] R. van der Geest and H. Trentelman, ”The Kalman-Yakubovich-Popov
Lemma In A Behavioral Framework,” Systems & Control Letters,
vol. 32, 1997, pp. 283–290.

[17] S. V. Gusev, ”The Structure Of Semi-Definite Solutions Of Homoge-
neous Generalized Lyapunov Equation And Frequency Theorem In A
Hilbert Space,” Vestnik St. Petersburg University, no. 3, 2005.

[18] S. V. Gusev, ”Fenchel Duality, S-Procedure and The Yakubovich-
Kalman Lemma,” Automatics and Remote Control, to appear.

[19] J. C. Willems, ”Least Squares Stationary Optimal Control and the
Algebraic Riccati Equation,” IEEE Trans. Automat. Contr., vol. 16,
1971, pp. 621–634.

[20] J. C. Willems, ”LQ-Control: a Behavioral Approach,” Proc. 32nd IEEE
CDC, San Antonio, 1993, pp. 3664–3668.

[21] A. Ferrante and S. Zampieri, ”Linear Quadratic Optimization in the
Behavioral Approach,” SIAM Journal on Optimization and Control,
vol. 39, 2000, pp. 159–178.

[22] R. T. Rockafellar, Convex Analysis, Princeton, NJ, 1970.
[23] I. Ekeland and R. Temam, Convex Analysis and Variational Problems,

North-Holland, Amsterdam, Elsevier, New-York, 1976.
[24] I. Ts. Gohberg and M. G. Krein, Introduction to the Theory of Linear

Non-selfadjoint Operators, Trans. of Math. Monogr., vol. 18, AMS,
Providence, RI, 1996.

[25] V. A. Yakubovich, ”Nonconvex Optimization Problem: The Infinite-
Horizon Linear-Quadratic Control Problem With Quadratic Con-
straints,” Systen & Control Letters, vol. 19, 1992, pp. 13–22.

1570


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




