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Abstract— This paper attempts to view texture analysis and
synthesis in image processing as a problem of realization
and subspace identification in terms of reciprocal processes
defined on a finite interval. We discuss modeling of textures
in the framework of acausal stochastic systems and stochastic
realization theory.

Index Terms— Reciprocal processes, image analysis, texture
synthesis and recognition, stochastic realization, identification.

I. INTRODUCTION

We shall consider a similar setup for texture analy-
sis as that recently described in [11]. Let I(k, l), k =
1, . . . , N, l = 0, 1, . . . , m − 1 be the pixel intensity values
of an image. We shall group all the intensity values of the
k−th row of the image into an m-dimensional vector

y(k) :=
[I(k, 0) . . . I(k, m − 1)

]�
Our goal will be to discuss a class of stochastic models of
the signal {y(k), k = 1, . . . , N} which seems to be partic-
ularly adapted to describe the spatial dynamics (or spatial
correlation structure) of textured images. These models are
the simplest class of linear models able to describe “nearest
neighborhood” interactions with a natural acausal structure.

II. RECIPROCAL PROCESSES ON A FINITE INTERVAL

The process {y(k)} is only defined for 1 ≤ k ≤ N
but it can be extended periodically on the whole line of
integers by setting y(k + νN) = y(k) for arbitrary ν ∈ Z.
In this way it becomes periodic, or equivalently, a process
on the discrete unit circle T. In this paper all processes will
be vector valued zero-mean second order processes defined
on the discrete unit circle T := {1, . . . , N} where the
arithmetics is to be interpreted modulo N . Subintervals of
T are defined in the obvious way, say [k0, k1] = {k0, k0 +
1, . . . , k1}, (k0, k1) = {k0 + 1, . . . , k1 − 1}, etc. Let H

be some ambient Hilbert space of second-order zero-mean
random variables with the usual inner product 〈ξ, η〉 :=
E{ξη}, containing all random quantities which we shall
discuss later on. The following definition introduces a natural
generalization of the Markov property to processes defined
on a finite set (and in fact to processes defined on rather
general partially ordered sets).

Definition 2.1: Let x := {x(k), k ∈ T} be a n-
dimensional process and [k0, k1] ⊆ T an arbitrary interval.
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The process x is reciprocal if for all k ∈ [k0, k1] and
h ∈ (k0, k1)c (the complementary interval of (k0, k1),
namely [k1, k0]) it holds that x(k) and x(h) are conditionally
uncorrelated given the boundary values x(k0) and x(k1).

There is a vast literature on reciprocal processes [5], [6],
[9], [10]. Throughout this paper symbols like x y etc. will
denote the random vector obtained by stacking all (vector)
variables of the process sequentially into a unique big N ∗n
dimensional column vector. A reciprocal process x is said
to be of full rank (or non-singular) if the Toeplitz matrix
Σ := Exx� is positive definite (i.e. nonsingular).

In order to capture the notion of spatial homogeneity
(i.e. stationarity in the space variable) which we consider
as a defining characteristic of textures, we shall restrict
to stationary processes. Abstractly, one says that y is a
stationary process on T if there is a unitary operator U on
H such that

y(k) = Uky(0) k ≤ N (II.1)

which obviously implies that the covariance of the process
depends only on the difference of the arguments, so that we
can set

R(k − h) := Ey(t + k)y(t + h)�. (II.2)

Since y(t + k + νN) = y(t + k), R(k) is periodic of
period N . From [9], [10] we quote the following fundamental
representation theorem

Theorem 2.2: Every stationary reciprocal process on T

can be represented by a three terms recursion of the following
form

Mx(k) = F�x(k − 1) + Fx(k + 1) + e(k) (II.3)

where M,F are constant matrices, M is symmetric and
positive definite, and e is a locally correlated process, i.e

Ee(k)e(h)� = 0 |k| > 1 (II.4)

such that

Ex(k)e(k)� = I Ex(k)e(h)� = 0 k �= h (II.5)

A technical condition which is needed in the analysis of
reciprocal processes is that the determinant of the matrix
M − F�z−1 − Fz should not be identically zero. This is
guaranteed if the time horizon is large enough [8].

Note that (II.4) is just saying that {e(k)} is a stationary
vector MA process of order one. As we shall see in a moment
this process will be of full rank n if and only if x is full rank.
It follows that there must exist an n-dimensional stationary
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white noise {w(k)} and n × n matrices Q = Q� > 0 =
Var [w(k)], and B such that

e(k) = w(k) + Bw(k − 1) (II.6)

Introducing the block-circulant matrix (for circulant matrices
see [2]),

Λ :=

⎡
⎢⎢⎢⎢⎢⎢⎣

M, −F 0 . . . 0 −F�

−F� M −F . . . 0 0
0 −F� M −F . . . 0

. . . . . . . . . . . . . . . 0
0 . . . . . . −F� M −F

−F . . . . . . . . . −F� M

⎤
⎥⎥⎥⎥⎥⎥⎦

:= Circ
[
M, −F, . . . −F�]

(II.7)

it is immediate to see that equation (II.3) can be rewritten in
compact form as

Λx = e.

Right-multiplying by e�, this equation provides immediately
an expression for the variance of the process e namely

Eee� = Λ

which, in accordance with (II.4) is block-tridiagonal circu-
lant. It then follows that x is full rank if and only if Λ is
invertible. In this case the variance matrix of x is

Σ := Exx� = Λ−1 (II.8)

which, as anticipated, clearly implies that M should also
be positive definite. In other words, the covariance of a
reciprocal stationary process on the circle must be the
inverse of a block-tridiagonal circulant matrix. In fact if
we extract the boundary values, the internal process e0 =
{e(k) | k = 2, . . . , N − 1} subordinated by e on (1, N), has
exactly a block-tridiagonal covariance

Λ0 :=

⎡
⎢⎢⎢⎢⎢⎢⎣

M, −F 0 . . . 0
−F� M −F . . . 0

0 −F� M −F . . .
. . . . . . . . . . . . 0
0 . . . −F� M −F
0 . . . . . . −F� M

⎤
⎥⎥⎥⎥⎥⎥⎦

. (II.9)

Using this expression it is easy to see that the parameters of
the MA representation can be expressed in terms of the orig-
inal parameters of the descriptor representation (II.3) (and
conversely). For, from the moving average representation
(II.6) rewritten in matrix form as⎡
⎢⎢⎢⎣

e(2)
e(3)

...
e(N − 1)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

B I 0 . . . . . .
0 B I 0 . . .

. . . . . . . . . . . . . . .
0 0 . . . B I

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎣

w(1)
w(1)

...
w(N − 1)

⎤
⎥⎥⎥⎦

we compute the covariance matrix of e0 and impose it to be
equal to Λ0, obtaining

M = Q + BQB�, F = −QB� (II.10)

which can be inverted to get

B = −F�Q−1, Q = −F�Q−1F + M. (II.11)

The last equation is an algebraic Riccati-type equation which,
by positive definiteness of Λ0, can be shown to have a unique
positive definite solution Q [7], [4]. Hence there is a one-to-
one map (M, F ) ↔ (Q,B) mapping the parameters of the
reciprocal descriptor model (II.3) into those of the MA model
(II.6). This fact will be useful in solving the identification
problem later on.

Incidentally, observe that the process e on the whole
interval [1, N ] can be represented as⎡

⎢⎢⎢⎣
e(1)
e(2)

...
e(N)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

I 0 0 . . . B
B I 0 . . . . . .
0 B I 0 . . .

. . . . . . . . . . . . . . .
0 0 . . . B I

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

w(1)
w(2)

...
w(N)

⎤
⎥⎥⎥⎦ .

We now come to the fundamental object of interest in this
paper.

Definition 2.3: An m-dimensional stationary process
y := {y(k), k ∈ T} admits a reciprocal realization, if there
is an n-dimensional reciprocal stationary process x such that

y(k) = Cx(k) k ∈ T (II.12)

for a suitable constant matrix C.
Hence reciprocal realizations (the models we are interested

in) are of the following form

Mx(k) = F�x(k − 1) + Fx(k + 1) + e(k) (II.13)

y(k) = Cx(k) (II.14)

Note that we could easily make M = I by substituting
e(k) with a non normalized input process say M−1/2e(k)
and by rescaling the other parameters of the realization
accordingly. There is a natural notion of minimality of
reciprocal realizations and a simple rank test to check it [10]
which however we shall not go through in this short survey.
We shall instead study the structure of the covariance of
processes which admit reciprocal realizations.

First note that the state covariance matrix Σ(τ) := Ex(k+
τ)x(k)� also satisfies a three terms recursion

MΣ(k) = F�Σ(k − 1) + FΣ(k + 1) + Iδ(k) k ∈ T

(II.15)
where δ(k) is the usual Kronecker function equal to one if
k = 0 and zero otherwise. Introducing Σ1(k) := Σ(k − 1)
we can formally rewrite the recursion as[

F 0
0 I

] [
Σ(k + 1)
Σ1(k + 1)

]
=

[
M −F�

I 0

] [
Σ(k)
Σ1(k)

]
(II.16)

which, assuming F nonsingular can be solved to get[
Σ(k)
Σ1(k)

]
= Φk

[
Σ0

Σ1

]
Σ0 = Σ(0)
Σ1 = Σ1(0) (II.17)

where

Φ =
[
F−1M −F−1F�

I 0

]
(II.18)
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In conclusion we see that the covariance function of a pro-
cess realizable by a reciprocal realization has the following
structure

R(k) = Ey(t+k)y(t)� =
[
C 0

]
Φk

[
Σ0

Σ1

]
C� ∀k ∈ T

(II.19)
where the expression holds for all k’ s. Assuming that the
realization we are using is minimal, and recalling standard
results from linear system realization theory, the expression
above shows that the block-Hankel matrix constructed with
the covariances lags {R(k); k = 1, . . . , N} must have rank
exactly equal to twice the dimension of the state process,
i.e. 2n. A similar conclusion holds in case F is singular, in
which case however we need to bring in the fine structure
of the matrix pencil appearing in (II.16), see [8] .

Our main interest in this paper is to solve the inverse prob-
lem of computing the parameters of a (minimal) realization,
(C, M, F ) from the output covariance data {R(k)}.

III. IDENTIFICATION OF RECIPROCAL PROCESSES

In the applications we have in mind, the state vector
will generally have smaller dimension than the output and
hence the matrix C (which without loss of generality we
assume with linearly independent columns) will have n < m
columns. In this case it is easy to show that the process y
is itself reciprocal but it is in general a singular reciprocal
process. There must hence exist a n × m matrix C� (any
left inverse of C would do) such that x(k) := C�y(k) is
reciprocal of full rank and the Toeplitz matrix R := Eyy�

admits a factorization (⊗ denoting Kronecker product)

R = (IN ⊗ C)Σ(IN ⊗ C)� (III.1)

where Σ > 0 is the covariance of an n-dimensional full-
rank reciprocal process. A possible way of determining such
a C matrix is to compute the numerical range space of
the first block row of the matrix R, say by Singular Value
Decomposition

[
R(0) R(1) R(2) . . .

]
=

[
U1 U2

] [
D1 0
0 D2

] [
V �

1

V �
2

]
Here the diagonal matrix D2 contains the “small” singular
values which describe the “noise” in the data and are to be
discarded. The “denoised” range space is then approximated
by that of the matrix U1. In this way we choose a C matrix
with orthonormal columns and a very convenient left inverse
to choose is just C� = U�

1 .
For the rest of the section we shall concentrate on the

problem (which we have been reducing our original problem
to) of computing (i.e. estimating) the parameters (M,F ) of a
second-order descriptor model (II.3) of an observed full-rank
reciprocal process x.

Under the assumption of a Gaussian distribution for x,

pΛ(x) =
1√

(2π)nNdet (Λ−1)
exp

(
−1

2
x�Λx

)
,

the estimation of the model parameters (M, F ) can be cast in
the framework of maximum likelihood estimation. Observe

that the covariance Λ is parameterized through M and L as
given by formula (II.7).

Assume that T independent samples x :=
(
x(1), .., x(T )

)
of the process x are available (ideally, assume that T inde-
pendent sample images of the same texture are available).
Then it is possible to write the exact log-likelihood in the
form

L(M, F ) = log det (Λ) − 1
T

Trace

{
T∑

i=1

[
x(i)

]�
Λx(i)

}
(III.2)

where we have neglected constant terms not depending on
the parameters.

After some manipulations and grouping of terms in the
expression (III.2) and using the structure of the matrix Λ
one obtains

L(M, F ) = log det (Λ) +
−Trace {MT0 (x)}+
+Trace {FT1 (x)}

(III.3)

where T0 and T1 are given by:

T0 (x) =
1
T

T∑
i=1

N∑
j=1

x(i)(j)
[
x(i)(j)

]�
(III.4)

and

T1 (x) = 2
T

∑T
i=1

∑N
j=2 x(i)(j)

[
x(i)(j − 1)

]�
+ 2

T

∑T
i=1 x(i)(1)

[
x(i)(N)

]�
(III.5)

from (III.3) we can easily see that hat T0 and T1 are sufficient
statistics for the parameters (M, F )1. It is a well-known
fact in statistics that the maximum likelihood estimator is a
function of a minimal sufficient statistics, which in our case
are T0 (its upper triangular part) and T1. From the theory of
exponential families, it also follows (see [1]) that T0 and T1

are Maximum Likelihood (and therefore efficient) estimators
for their expected values, which are given by

ET0 = NΣ(0) ET1 = NΣ(1)

Hence, the maximum likelihood estimators of M ad L
must be expressible as functions of the maximum likelihood
estimators of Σ(0) and Σ(1)

Σ̂(0) :=
T0(x)

N
Σ̂(1) :=

T1(x)
N

. (III.6)

In fact the problem of estimating (M, F ) from Σ̂(0) and
Σ̂(1) is a classical Covariance Selection Problem. For de-
tails we shall refer the reader to the seminal paper [3].
From Dempster’s covariance selection theory it follows that
our problem can be reformulated as that of completing
the covariances Σ̂(0), Σ̂(1) with a sequence of estimates
Σ̂(2), ...Σ̂(N − 1) in such a way that the (block-circulant)

estimate Σ̂ = Circ
[
Σ̂(0), Σ̂(1)�, . . . , Σ̂(N − 1)�

]
admits

1Note that the matrix M is symmetric. Therefore, strictly speaking, only
the upper triangular part of T0(x) in (III.4) is a sufficient statistics, T0

being symmetric.
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an inverse Λ̂ = Σ̂−1 which has zero elements exactly in the
positions where Λ in (II.7) is zero.

It is shown in [3] that this completion problem has a
unique solution. The only viable numerical scheme (to the
best of our knowledge) to compute the solution turns out still
to be Dempster’s original iterative algorithm. This algorithm,
starting from any (positive definite) estimate of Σ, converges
to the unique matrix Σ̂ which

• has Σ̂(0) and Σ̂(1) in positions (i, i) and (i, i − 1)
respectively

• the inverse Σ̂−1 = Λ̂ is of the form (II.7) where the n×
n blocks in position (1, 1) and (1, 2) are the maximum
likelihood estimators of M and −F respectively.

For the purpose of exposition we report a simple (scalar,
i.e. n = 1) example where N = 15, T = 30, M = 1.25
F = −0.25. The process has been generated taking T
independent samples from a Gaussian random vector with
covariance matrix Σ = Λ−1. In figure 1 we report a view of
the likelihood as a function of B and Q and in figure 2 the
values of the estimated parameters M̂i and F̂i estimated at
the i-th iteration of the algorithm. As predicted the solutions
converge to the maximum likelihood estimates (dotted line,
MML and FML).

Fig. 1. Likelihood Function

Unfortunately, Dempster’s iterative algorithm used above
is computationally intensive; in particular it requires repeated
inversion of matrices of size O(N ∗ n). It does not seem to
be useful for real size images.

We may therefore have to resort to approximations. To this
purpose, it should be stressed that the length of the interval
N is a parameter playing and essential role in the modeling
problem we are addressing. Note in fact, that for fixed M
and F , the corresponding Σ(0), Σ(1) vary with N . It is re-
markable (but not surprising) that this dependence generally
decreases (and vanishes asymptotically) as N increases. In

2 4 6 8 10 12 14 16 18 20
−1

−0.5

0

0.5

1

1.5

2

Iteration number i

Estimated parameters M
i
, F

i
 vs. iteration i

F
i

F
ML

M
ML

M
i

Fig. 2.

figure 3 we show, for the same values of M and F chosen in
the previous example, how Σ(0) and Σ(1) vary as a function
of N . It is apparent that as N increases their values converge.

4 6 8 10 12 14 16 18
−1

−0.5

0

0.5

1

1.5

2

Time horizon N

Covariances vs. N

Σ(0)
Σ(1)

Fig. 3. Covariance matrices Σ(0) and Σ(1) for fixed values of
M = 1.25, F = −0.5, as N ranges in the interval [4, 18].

We can describe this fact by saying that enlarging the time
horizon N , the effect of the boundary condition vanishes. For
this reason, provided N is large enough, one may hope that
an approximate, but yet accurate estimate of M and F , could
be found by just resorting to algebraic techniques which
use the asymptotic values Σ̂(0) and Σ̂(1) corresponding
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to “large” N . In fact it will be argued in the following
section that in the limit N → ∞ the map relating (M, F )
and (Σ(0), Σ(1)) does not depend on N . We shall take
advantage of this fact to obtain a simple algorithm which
yields (approximate) maximum likelihood estimators M̂, F̂ .

IV. THE STATIONARY INFINITE-INTERVAL

APPROXIMATION

As shown in [7], (stationary) reciprocal processes defined
on the whole time axis Z (i.e. N = ∞) are (stationary)
Markov. This means that the model parameters of a recip-
rocal process defined on the whole line are in one-to-one
correspondence with the parameters A and R = V ar{v} of
a standard stationary Markov model

x(t + 1) = Ax(t) + v(t) (IV.1)

of the same process. This should not be surprising since, also
for Markov processes there is a one to one correspondence
between the pair (A,R) and the two covariances Σ(0), Σ(1)
given by:

A = Σ(1)Σ(0)−1

R = Σ(0) − AΣ(0)A� = Σ(0) − Σ(1)Σ(0)−1Σ(−1)
(IV.2)

Hence by using using equation (IV.2) and the one-to-one
map attaching (M, F ) to (A,R), it is in principle easy
to determine the (asymptotic) estimators (M̂, F̂ ) from the
covariance estimates Σ̂(0), Σ̂(1).

For reasons of space we shall not enter into the derivation
of these maps; for our purposes suffices it to say that there
exist functions ΨM and ΨF by which, the model parameters
M and F of a reciprocal process on the line, can be
computed as

M = ΨM (Σ(0),Σ(1)) F = ΨF (Σ(0), Σ(1)); (IV.3)

explicit expressions for ΨM and ΨF may be found in the
Appendix.

As discussed at the end of the previous Section, when N
is“large” 2 one may hope that

M̂a = ΨM (Σ̂(0), Σ̂(1)) F̂a = ΨF (Σ̂(0), Σ̂(1)); (IV.4)

produce approximate estimators M̂a, F̂a which are close to
being maximum likelihood.

Further work is needed to explore the properties of M̂a,
F̂a. We shall just illustrate how this approximation behaves
for a fixed time horizon N as a function of the roots of
(M − F�z−1 − Fz) with a simple example.

We shall consider a scalar reciprocal process defined on
the interval [0, 10] and vary the parameters so that the stable
root of (M −F�z−1−Fz) ranges in the interval [0.1, 0.95].
We plot in Figure 4 the “true ” parameters M and F (solid
lines) and the corresponding parameters obtained from Σ(0)
and Σ(1) (which correspond to having N = ∞) obtained
through equations (IV.3). As expected the approximation
becomes worse as the pole becomes closer to the unit circle.

2Here “large” should be compared with process dynamics, i.e. the stable
roots of M − F�z−1 − Fz.

Note that here N is rather small (N = 10) as compared to
the number of rows of a typical image (N = 170 in the
example of Figure 5).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.2

1.4

1.6

1.8

2
M

Stable pole of the spectrum

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0
F

Stable pole of the spectrum

Fig. 4. True parameters M and F (solid lines) vs. their approxima-
tions obtained assuming N “large” (dotted lines) as a function of
the spectrum pole. The approximation becomes worst as the pole
becomes closer to the unit circle.

Fig. 5. Comparison between original (bottom) and synthesized (top)
texture (River sequence).

V. EXPERIMENTS

We have tested the approximate technique proposed in this
paper on a real texture; the data used for identification is the
“river” sequence which can be downloaded from the web
site ftp://whitechapel.media.mit.edu/pub/szummer/temporal-
texture/.
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We have first identified the parameters M and F using the
algorithm described in Section IV, as if the image sequence
was formed by i.i.d. samples. Then we have synthesized a
new image which matches the second order statistics of a
reciprocal process described by the identified parameters M̂
and F̂ . Figure 5 shows a synthesized image (top) compared
to an image from the data sequence (bottom).

VI. TEXTURE SMOOTHING

Besides data compression, synthesis and recognition, the
reciprocal models (II.13) are extremely useful for data
smoothing (i.e. acausal filtering). The acausal filtering prob-
lem consists in extracting a minimum error variance estimate
of the image signal Cx(k) from observations affected by
additive white noise {w(k)},

Mx(k) = F�x(k − 1) + Fx(k + 1) + e(k) (VI.1)

y(k) = Cx(k) + w(k) (VI.2)

where E {w(k)e(h)�} = 0 for all k, h ∈ T. The estimate
x̂(k) = E [x(k) | y ] can be computed efficiently by either
Double sweep algorithms of the Rauch-Tung-Striebel type
or by causal-anticausal decomposition filters. No Riccati
equation is required to be solved for computing the filters.
We refer to [9, Sect. VI] for details.

VII. CONCLUSIONS AND FURTHER WORK

In this paper we have just touched upon a simple instance
of the problem of modeling and identification of stationary
processes admitting a reciprocal realization. Much remains
to be done both at a general theoretical level to cover the
(general) case where y is itself not reciprocal and also at the
practical level of assessing the usefulness of the procedures
delineated in this paper for Texture analysis and synthesis.

APPENDIX

In this appendix we report the expressions of the maps
ΨM and ΨF in (IV.3). For ease of exposition we first recall
that the reciprocal model (II.3) can be also written in the
form

x(t) = F−x(t − 1) + F+x(t + 1) + d(t)

where the matrices F− and F+ and the noise sequence d(t)
are related to M , F and e(t) by the relations

F− = M−1F�

F+ = M−1F
d(t) = M−1e(t)

(A.1)

Hence the noise d(t) is still a first order MA process with
variance V ar{d(t)} = M−1.

Defining, for ease of notation, P := Σ(0)−1, the matrices
F− and F+ can be computed from A := Σ(1)Σ(0)−1 =
Σ(1)P as

F− =
(
P − A�PA

)
A

(
P − A�A�PAA

)−1

F+ =
(
P − APA�)

A� (
P − AAPA�A�)−1

and the noise variance

V ar{d(t)} = P − F−A� − F+A

from which

M =
(
P − F−A� − F+A

)−1
.

The matrix F consequently can be computed inverting
(A.1)

F = MF+

=
(
P − F−A� − F+A

)−1 ·
· (P − APA�)

A� (
P − AAPA�A�)−1
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