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Abstract— This paper addresses the problem of model
(in)validation of linear discrete–time (LTI) models subject to
unstructured LTI uncertainty, using frequency–domain data
corrupted by additive noise. Contrary to the case usually
considered in the (deterministic) invalidation literature, here
the input to the system has an unknown phase. This problem
arises naturally for instance in the context of validating systems
subject to unknown time–delays, or in cases where only the
spectral power density of the (in this case stochastic) input is
known. It can be shown that this leads to a generically NP
hard minimization problem. The main result of this paper is
an efficient, LMI based convex relaxation of the problem. These
results are illustrated with a non–trivial problem: classification
of textured images.

I. INTRODUCTION

This paper considers the problem of semi–blind
frequency–domain (in)validation of discrete–time, Linear
Time Invariant (LTI) models subject to unstructured LTI dy-
namic uncertainty entering the model in a Linear Fractional
Transformation (LFT) form. In general terms, this problem
can be formally stated as follows: Given (i) a priori infor-
mation consisting of a candidate model, and set descriptions
N , ∆ and U of the measurement noise, model uncertainty
and experimental inputs, and (ii) experimental data consisting
of frequency–domain measurements, corrupted by additive
noise, to an unknown input in U , find whether the a posteriori
experimental data is consistent with the a priori information,
that is whether the candidate model together with some
combination of admissible uncertainty, input and noise could
have generated this data. If the answer is negative, then
the model is said to be invalidated and should be rejected;
otherwise, is said to be not invalidated by the available
experimental evidence.

Model (in)validation of LTI systems in a Robust Control
setting has been extensively addressed in the past decade (see
for instance [10], [7], [2], [1], [5], [9], [17] and references
therein). The main result ([2], [1]) shows that in the case of
a completely known input and unstructured LTI uncertainty
entering the plant as an LFT, model (in)validation reduces
to a LMI feasibility problem that can be efficiently solved.
However, this framework cannot be directly applied here,
where only a set description of the input is available. This
situation arises in many practical cases. Examples are the
validation of plants subject to unknown time delays or when
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the only information available about the input is its spectral
power density.

As we will show in the paper, semi–blind (in)validation
leads to a (generically NP–hard) Bilinear Matrix Inequality
(BMI) minimization problem. However, an efficient convex
relaxation can be obtained by recasting the problem into a
structured invalidation form, with two uncertainty blocks.
While it has been shown in [16] that (in)validation with struc-
tured LTI blocks is NP–hard in the number of uncertainty
blocks, as we shown in the sequel, in the case of uncertainty
structures with two blocks, necessary and sufficient convex
LMI based invalidation conditions can be obtained. These
conditions are precisely the LTI counterpart of those recently
introduced in [14] for the case of slowly linear time varying
uncertainty. Our approach is also related to that in [10], [5],
in the sense that it recasts model (in)validation into a robust
performance form, albeit in the H2 rather than L∞ sense.

II. PRELIMINARIES

Below we summarize the notation used in this paper:
Z, R, C set of integer, real and complex num-

bers respectively.
x, x∗ complex–valued column vector and its

conjugate transpose row vector.
‖x‖ euclidean norm of vector x ∈ Cm:

‖x‖ .= (x∗x)
1
2 .

A∗ conjugate transpose of matrix A.
σ (A) maximum singular value of matrix A.
A > 0
(A ≤ 0)

A = A∗ is positive definite (negative
semidefinite).

I, 0 identity and null matrices of compatible
dimensions (when omitted).

BX (γ) γ-ball in a normed space X : BX (γ) =
{x ∈ X : ‖x‖X ≤ γ}.

BX (closed) unit ball in X .
�m
2 Hilbert space of vector–valued se-

quences {xi}i∈Z, equipped with the
inner product:

〈x, y〉 .=
∑
i∈Z

x∗
i yi.

and norm ‖x‖2
.= 〈x, x〉 1

2
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Fig. 1. Model (In)Validation Set–up

L∞ Lebesgue space of complex–
valued matrix functions X(z)
essentially bounded on the unit
circle, equipped with the norm:
‖X‖∞ .= ess sup|z|=1 σ (X(z)).

H∞ subspace of functions in L∞ with
bounded analytic continuation inside
the unit disk, equipped with the norm:
‖X‖∞ .= ess sup|z|<1 σ (X(z)).

RL∞ (H∞) subspace of L∞ (H∞) of rational func-
tions.

Lm
2 Hilbert space of Lebesgue

square integrable vector functions
x(ω) equipped with the norm
||x||2 .=

∫ 2π

o
trace [x(ω)x(ω)∗] dω

2π .
x(ejω) Fourier transform of a real–

valued sequence in �m
2 : x(ejω) .=∑

i∈Z xie
−jωi.

X(z) Z-transform of a real–valued matrix se-
quence {Xi}i∈Z: X(z) =

∑
i∈Z

Xiz
−i.

M � ∆ Upper linear fractional transformation:

M�∆ = M21∆(I−M11∆)−1M12+M22.

III. PROBLEM STATEMENT

Consider the problem of invalidating a model of the form
shown in Fig. 1 on the left, consisting of the upper linear
fractional interconnection P � ∆ of a discrete–time, causal,
stable, LTI candidate model P :

q(ejω) = P11(ejω)p(ejω) + P12(ejω)u(ejω)

s(ejω) = P21(ejω)p(ejω) + P22(ejω)u(ejω) + z(ejω)
(1)

and an unstructured uncertainty block ∆ ∈ BH∞(γ)
The block P consists of a nominal model of the actual

system P22 and some description of how the uncertainty
affects the model, given by the blocks P11, P12 and P21.
Furthermore, we assume that model P has a rational transfer
function P (z) ∈ RH∞ and that ‖P11‖∞ < γ−1 so that
the interconnection P � ∆ is robustly �2 stable. The signals
u ∈ �2, s ∈ Rnz , z ∈ N .= B�nz

2 (ε), represent the input
to the plant, the measured output and measurement noise,
respectively. In the sequel we will assume that the only
information known about the signal u is the magnitude of
its Fourier transform, |u(jω)|, that is

u ∈ U .= {u ∈ �2 : |u(ejω)| given}. (2)

The goal is, given the measurements s(ejω) to determine
whether the candidate model P together with an admissible
triple (u, ∆, z) ∈ U × BH∞(γ) × N could have generated
this output pair, i.e. whether:

s = (P � ∆)u + z, for some (∆, z, u). (3)

If the answer is affirmative, then the model is said to be not
invalidated by the experimental evidence. On the contrary, if
no such triple (∆, z, u) exists, the model should be discarded.

Under the assumptions that both signals (u, s) are the
impulse responses of some discrete–time, causal, stable, LTI,
rational systems in RH∞, and since the magnitude of u(ejω)
is known, equations (1) can be rewritten as follows:

q(ejω) = M11(ejω)p(ejω) + M12(ejω)

z(ejω) = M21(ejω)p(ejω) + M22,

where

M11(ejω) .= γP11(ejω), M21(ejω) .= −γ

ε
P21(ejω), (4)

M12(ejω) .=P12(ejω)Su(ejω)ejθ(ω),

M22(ejω) .=
1
ε

(
s(ejω) − P22(ejω)Su(ejω)ejθ(ω)

)
Here Su is a stable transfer matrix such that |u|2 = S∗

uSu,
ejθ(ω) represents the unknown phase, and (z, ∆) have been
normalized so that z ∈ BL2, ∆ ∈ BH∞. In this framework,
the semi–blind model (in)validation problem can be precisely
stated as follows.

Problem 1: Given the output s(ejω) and the admissible
sets of inputs U and noise N , determine whether there exists
at least one pair z ∈ N , ∆ ∈ BH∞ and a scalar function
θ(ω) so that equation (1) holds; or equivalently, whether :

µ = min
∆,θ

‖M � ∆‖2 ≤ 1, (5)

where the system M is defined in (4), and we have used the
fact that the ‖.‖2 of a single input LTI system coincides with
the energy of its impulse response.

IV. MAIN RESULTS

In this section we propose a sufficient condition for
solving Problem 1, in terms of frequency–dependent Linear
Matrix Inequalities. A difficulty in solving (5) stems from
the fact that the problem is not jointly convex in θ, ∆.
Indeed, it can be shown using standard Nevanlinna–Pick and
Schur complement arguments that even the simple case of
multiplicative uncertainty leads to a BMI. The goal of this
section is to obtain a tight convex relaxation of the problem.

A. Problem Transformation

The first step in obtaining a convex relaxation of Problem
1, or equivalently, of the optimization problem (5) is to note
that:

‖(P � ∆)Suejθ(ω) − s‖2 = ‖(P � ∆)Su − se−jθ(ω)‖2

= ‖Maug � ∆aug‖2

(6)
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where

Maug
.=

⎡
⎣ 0 0 1

0 γP11(ejω) P12(ejω)Su(ejω)
1
ε s(ejω) −γ

ε P21(ejω) − 1
ε P22(ejω)Su(ejω)

⎤
⎦

∆aug
.=

[
e−jθ(ω) 0

0 ∆

]
(7)

In terms of these augmented structures, (5) can be restated
as a constrained optimization problem with structured uncer-
tainty:

µ = min
∆∈∆aug

‖Maug � ∆aug‖2

∆aug
.=

{[
δ1(ejω) 0

0 ∆2(ejω)

]
:

|δ1| = 1
∆2 ∈ BH∞

}
Note that the set ∆aug is not convex, due to the con-
straint |δ1| = 1. To address this difficulty and obtain a
tractable optimization problem, we will relax the constraint
to ‖δ1(ejω)‖∞ ≤ 1. This leads to the following model
(in)validation problem with 2–block LTI structured uncer-
tainty.

µst = min
∆∈∆st

‖Maug � ∆st‖2

∆st
.=

{[
∆1(ejω) 0

0 ∆2(ejω)

]
: ‖∆i‖∞ ≤ 1

} (8)

Next, we present a necessary and sufficient condition
equivalent to µst > 1.

Theorem 1: Consider a system M(z) ∈ RH∞ and
2-block structured uncertainty ∆ ∈ ∆st = {diag(∆1, ∆2) :
‖∆‖∞ ≤ 1}. Then the following conditions are equivalent:

(i) inf∆∈∆st ‖M � ∆‖2
2 > 1.

(ii) There exists a Hermitian matrix X(ω) ≥ 0 and a real
transfer function y(ω) ≥ 0, such that ∀ω in [0, 2π) the
following inequalities hold:

M(ejω)∗
[
X(ω) 0

0 −1

]
M(ejω)−[

X(ω) 0
0 −y(ω)

]
≤ 0,

(9)

X(ω) = diag
(
x1(ω)I1, x2(ω)I2

)
and∫ 2π

0

y(ω)
dω

2π
> 1. (10)

Proof: The proof, given in the appendix, follows from
the losslessness of the S–procedure for up to 3 Hermitian
forms in a complex linear space.

B. A Convex Sufficient Condition for Semi-Blind Invalidation

Next, we use the results from the previous section to obtain
a sufficient condition for semi-blind identification. To this
effect, note that, since ∆aug ⊂ ∆st, then µ > µst. Thus, if
µst > 1, then the model is invalidated by the experimental
data. This leads to the following algorithm:

Algorithm 1: Given a candidate model P , the experimen-
tal data s(ejω) and candidate input, noise and uncertainty
sets

{
U ,N ,BH∞(γ)

}
:

1) Form the system Maug defined in (7).
2) Evaluate at each frequency

ŷ(ω) .= sup
{
y : conditions (9) hold

}
(11)

and compute the integral I(ŷ) .=
∫ 2π

0
ŷ(ω)dω

2π .
3) If I(ŷ) > 1 then the model is invalidated by the

experimental data.
Note that in this case, the condition is no longer necessary,

since even if µst ≤ 1 for some ∆̃ = diag{∆̃1, ∆̃2} ∈ ∆st,
∆̃1 may not satisfy the constraint |∆̃1| = 1. However, as we
argue next, solutions of (5) with minimal norm of ‖∆‖2 will
tend to have |∆̃1| ∼ 1. Thus, conservatism can be reduced
by searching over γ to minimize ‖∆‖2, subject to µst ≤ 1.

Consider first the case where indeed the nominal model
P22Su matches the actual plant up to an unknown phase
shift, e.g. P22Su = sejθ. In this case it is easy to see
that solutions to (8) with ‖∆2‖ = 0 indeed satisfy the
constraint |∆1(ejω)| = 1, ∀ω. Next, we consider a more
general scenario where P22Su and s do not match exactly.
For simplicity, we will assume multiplicative uncertainty, that
is, P11 = 0, P12 = I, P21Su = P22Su = P , and that all the
transfer functions involved are scalar. In this case it is not
hard to show that, in order for the model not to be invalidated
by the experimental data, the following condition must hold
frequency by frequency1:

|∆2(ejω)| ≥ 1 − 1
|P (ejω)| −

|s(ejω)|
|P (ejω)| |∆1(ejω)| (12)

Thus, assuming that |s| ∼ |P22Su| then, in order to minimize
‖∆2‖∞, |∆1(ejω)| should be close to its maximum at all
frequencies. Hence replacing the condition µ > 1 by µst >
1, should not entail too much conservatism. This observation
has been experimentally substantiated.

Note that in principle applying the test above requires
having experimental data at all frequencies. However, due to
the continuity of M(ejω), which in turns implies continuity
of X(ω) and y(ω), the integral (10) can be approximated
with arbitrary precision by a sum and thus the (in)validation
test requires only a finite (albeit possibly large) number of
experimental data points.

V. APPLICATION:TEXTURE CLASSIFICATION

S��u �zk

� ∆
��+ �Rk

�
w

Fig. 2. The Texture Recognition Set-up

In this section we illustrate the use of the proposed
framework by applying it to the problem of texture clas-
sification. This problem has been the subject of intense

1If this condition fails, then |P | − |P∆2| − |s∆1| > 1 which implies
|P (1+∆2)−s∆1| > 1 for all ω. Note also that |P | > 1, for the problem
to be non-trivial, since otherwise the data is validated by ∆1 = 0.
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research in the computer vision and image processing com-
munities, with application ranging from medical diagnosis
to object recognition and image database retrieval. Most
texture recognition schemes are stochastic in nature, relying
on representations in terms of statistics of the responses to
a collection of filters [3], [12]. In this paper we propose a
different approach, based upon recasting the problem into a
robust model (in)validation form. To this effect, motivated by
the work in [11] (for dynamic texture) and [15] (for static
images), we will postulate that all images corresponding
to realizations of a given texture T are realizations of a
second order stationary random process. Thus, they can be
obtained as the output of a linear shift invariant operator
S to white noise, or, in a deterministic setting, to a signal
u(ejω) ∈ �2, |u(ejω)| = 12. This leads to the set-up shown
in Figure 2, where S� represents a nominal model of a
particular texture, zk and Rk denote the rows of the ideal
and actual images, respectively, and where the (unknown)
operator ∆ ∈ ∆ describes the mismatch between these two
images, i.e.:

Rk =
[
(∆ + I)S�u

]
k

+ w

In this framework, the texture recognition problem can be
solved as follows. Given an unknown image R with n rows
Ri and a set of nominal models {S�}:

• Find for each S� an input u, |u(ejω)| = 1 and an
admissible uncertainty operator ∆ of minimum size
γ�
opt:

γ�
opt

.= min
∆∈∆,u

{‖∆‖∗ : Rk =
[
(∆ + I)S�u

]
k

+ ωk}.
(13)

where ‖.‖∗ denotes some norm of interest.
• Let j

.= arg min� γ�
opt. Assign the image R to the

texture represented by model Sj .

Depending on the choice of the admissible uncertainty set
∆, one gets different conditions that solve (13). In the
case of texture recognition, it can be argued from physical
considerations that the operator ∆ should not be causal (to
account for interactions amongst all pixels of the image).
On the other hand, linearity should be retained, to preserve
invariance with respect to input scaling. Finally, we are
interested in quantifying the difference between images in
terms of the (relative) sum of the squared pixel errors,
i.e. (Rk − Zk)T (Rk − Zk)/(ZT

k Zk). Thus, ∆ should be
characterized in terms of its induced �2 norm. Based on
these considerations, in the sequel we will assume that
∆ ∈ BH∞(γ), and search for the smallest value of γ so that
the interconnection (S, ∆) can reproduce the given image.
This can be accomplished by simply performing a sequence
of (in)validation tests using Algorithm 1 for increasing values
of γ, until the model becomes not invalidated by the data,
i.e., until the value of I(ŷ) falls below 1.

The above approach was tested on slices taken from the
textures shown in Figure 3. The nominal models S� where

2This can be assumed without loss of generality, by absorbing, if
necessary, the spectral characteristics of the input in the model.

Text. 1 Text. 2 Text. 10 Text. 11

Fig. 3. Sample textures used for recognition.

Image, (x0, y0) γ1
opt γ2

opt γ10
opt γ11

opt

1, (1, 4) 0.01† 0.6 0.5 0.5
2, (1, 3) 0.7 0.01† 0.7 0.4

10, (1, 2) 0.7 0.3 0.01† 0.3
11, (1, 2) 0.7 0.3 0.4 0.01†

TABLE I

TEXTURE RECOGNITION RESULTS

obtained applying the identification procedure outlined in
[15] to the 64 × 64 pixels upper left sub–image of each
512 × 512 image. The experimental frequency-domain data
was obtained by applying the Discrete Fourier Transform to
displaced 64 × 64 sub-images3, corrupted by additive noise
w ∈ B�2(ε), where ε represents a 5% of the energy of each
nominal image. Note that an unknown spatial displacement
translates to an unknown phase shift in the frequency do-
main, leading precisely to the type of semi-blind problems
addressed in section IV.

A sample4 of the results obtained is shown in Table V.
The first column displays information on the slices used for
classification purposes, namely the corresponding (known)
texture and the position of their upper left corner within the
original larger image (x0, y0)5. The second, third and fourth
columns display the minimum size –in the H∞ norm– of the
LTI uncertainty operator, γ�

opt, that is required for each model
� = 1, 2, 10, 11 to reproduce the given image. As shown
there, assigning each sample to the category corresponding
to the minimum uncertainty value {γ�

opt}, (indicated by the
† symbol), leads to a correct classification.

VI. CONCLUSIONS AND FURTHER RESEARCH

Many problems of practical interest require validating
models in the presence of only partially known inputs. Exam-
ples of these situations include systems subject to unknown
shifts (either spatial or temporal), or cases where only the
power spectral density of the input is known. Unfortunately,
these situations lead to non-convex, generically NP-hard
optimization problems.

In this paper, we propose a tractable convex relaxation,
based upon the idea of including the (unknown) input phase
θ(ω) into an augmented uncertainty structure and relaxing
the constraint |θ(ω)| = 1 to ‖θ‖∞ ≤ 1. As we argue
in the paper, the conservativeness of this relaxation can

3The one dimensional DFT, i.e., applied to the sequence of rows Rk .
4Further details and the complete dataset can be obtained by contacting

the authors.
5y0 > 0 indicates a displacement from top to bottom; x0 > 0 indicates

a displacement from left to right.

6068



be minimized by seeking minimum norm solutions to the
resulting (convex) optimization problem.

In the case of unstructured uncertainty, the relaxation
above leads to an invalidation problem with structured, 2-
block, LTI uncertainty. As an intermediate result, in this
paper we obtained an LMI based necessary and sufficient
condition for these structures to be (in)validated by the
experimental data. As expected these conditions are exactly
the LTI counterpart of those recently introduced in [14] for
the case of slowly time varying uncertainty.

These results were illustrated in the problem of texture
classification. The main idea here is to represent all images
corresponding to a given texture as the output of a LTI
system to an input with unity magnitude and unknown phase,
recasting the problem into a semi–blind validation form.

Efforts are currently underway to generalize the results
here to cases involving time varying and slowly time varying
uncertainty structures. This will require developing necessary
and sufficient invalidation conditions for mixed LTI/LTV and
LTI/SLTV structures.

APPENDIX

Proof: [Sufficiency] Assume conditions (9) and (10)
hold, i.e., for all ω ∈ [0, 2π), there exist X(ω) = X(ω)∗ ≥ 0
and a positive transfer function y(ω) so that:

M(ejω)∗
[
X(ω) 0

0 −I

]
M(ejω)−[

X(ω) 0
0 −y(ω)

]
≤ 0 (14)

and
∫ 2π

0
y(ω)dω

2π > 1. Factor X(ω) = D(ejω)∗D(ejω).
Multiplying (14) from the left and from the right by

r(ejω)∗ = [p(ejω)∗ 1]∗, and r(ejω) respectively, rearranging
terms and integrating over [0, 2π] yields:

[
‖Dq‖2

2 − ‖Dp‖2
2

]
+

∫ 2π

0

y(ω)
dω

2π
≤ ‖z‖2

2. (15)

Since by construction X(ejω) commutes with the uncertainty
∆ and ‖∆‖∞ ≤ 1, the term between brackets on the left hand
side of the above equation is non–negative. Hence,

1 <

∫ 2π

0

y(ω)
dω

2π
≤ ‖z‖2

2 = ‖(M � ∆)‖2
2,

for any ∆ ∈ BH∞.
Before proceeding with the necessity part of the proof, we

need the following preliminary result:
Lemma 1: If the following LMI:

M∗
[
X 0
0 −I

]
M −

[
X 0
0 −1

]
< 0 (16)

does not have a positive semi-definite solution X , then there
exist signals r = [p∗ v]∗ and s = [q∗ z∗]∗ such that:

s = Mr, ‖qk‖2 ≥ ‖pk‖2 k = 1, 2, ‖z‖2 ≤ |v|2. (17)

Proof: Define the following Hermitian forms:

σo(r) = |v|2 − ‖z‖2

σ1(r) = ‖q1‖2 − ‖p1‖2

σ2(r) = ‖q2‖2 − ‖p2‖2

(18)

If (17) fails, then for all r, ‖r‖ ≤ 1 such that σ1(r) ≥ 0 and
σ2(r) ≥ 0, we must have σo(r) ≤ 0. Since the S–procedure
is lossless for the case of 3 Hermitian forms in a complex
space [4], this implies that there exist x1 ≥ 0, x2 ≥ 0 such
that:

0 ≥ σo(r) + x1σ1(r) + x2σ2(r), ∀‖r‖ ≤ 1 ⇒

0 ≥ r∗
[
M∗

[
X 0
0 −I

]
M −

[
X 0
0 −1

]]
r

X
.=

[
x1I1 0

0 x2I2

]
, ∀‖r‖ ≤ 1 ⇒

0 ≥ M∗
[
X 0
0 −I

]
M −

[
X 0
0 −1

]
(19)

which contradicts the hypothesis that the LMI (16) did not
admit a solution X ≥ 0.

Remark 1: From robust stability of the interconnection
(M11, ∆), it follows that in the proof above v �= 0. Thus, r
can be scaled to have its last component equal to 1.

Proof: [Necessity] Following [13], define at each fre-
quency ω:

ŷ(ω) .= sup
{
y : conditions (9) hold

}
Note that since y ≤ M∗

22M22, ŷ is well defined. Moreover,
note that if (X(ω), y(ω)) solve the LMI (9), then so do
Xα(ω) .= αX(ω) and yα(ω) .= αy(ω) for any α ∈ (0, 1) 6.
Thus, it follows that ŷ(ω) ≥ 0. Assume that condition (10)
fails, i.e.

∫ 2π

0
ŷ(ω)dω

2π ≤ 1 and define frequency by frequency
the system:

M̂(ejω) .= M(ejω)

[
I 0
0 1√

ŷ(ejω)+ε

]

where ε > 0 is arbitrary. By assumption the following LMI:[
I 0
0 1√

ŷ(ejω)+ε

] (
M(ejω)∗

[
X(ejω) 0

0 −I

]
M(ejω)−

[
X(w) 0

0 −(ŷ(ejω) + ε)

]) [
I 0
0 1√

ŷ(ejω)+ε

]

= M̂(ejω)∗
[
X(ejω) 0

0 −I

]
M̂(ejω) −

[
X(ejω) 0

0 −1

]
< 0

is not feasible. Applying Lemma 1, there exist an in-
put/output pair, r(ejω) = [(p(ejω))∗ 1]∗ and s(ejω) =

6This follows from noting that ∀(p, q, v, z) and α ∈ (0, 1):

0 ≥ |X(ω)
1
2 q(ejω)|2 − |X(ω)

1
2 p(ejω)|2 + y(ω)|v(ejω)|2

− |z(ejω)|2 > |X(ω)
1
2 q(ejω)|2 − |X(ω)

1
2 p(ejω)|2

+ y(ω)|v(ejω)|2 − 1

α
|z(ejω)|2.
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[(q(ejω))∗ (z(ejω))∗]∗, so that:

s(ejω) = M(ejω)r(ejω)

‖q(ejω)i‖2 ≥ ‖p(ejω)i‖2, i = 1, 2

‖z(ejω)‖2 ≤ (y(ejω) + ε).

(20)

Thus [8], there exists a LTI operator ∆o(ε) =
diag{∆1, ∆2} ∈ BH∞ such that pi = ∆iqi, i = 1, 2.
Closing the LFT with this operator and applying the input
v = 1, yields an output z such that ‖z‖2

2 ≤ 1 + ε. Define
now (frequency by frequency) the operator:

∆̃(ejω) .= lim
ε→0

∆o(ejω, ε).

Note that ∆̃ is well defined, since for each fixed fre-
quency, ∆o(ejω, ε) is a sequence of matrices in the (finite–
dimensional) compact set σ̄(∆) ≤ 1 and hence it contains a
convergent subsequence. For this operator we have:

‖M � ∆̃‖2 ≤ lim
ε→0

1 + ε = 1
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