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Abstract— The robust stability of uncertain systems in poly-
topic domains is investigated by means of homogeneous poly-
nomially parameter-dependent Lyapunov (HPPDL) functions
which are quadratic with respect to the state variables. A
systematic procedure to construct linear matrix inequality
(LMI) conditions whose solutions assure the existence of HP-
PDL functions of increasing degree is given. For each degree,
a sequence of relaxations based on real algebraic methods
provides sufficient LMI conditions of increasing precision for
the existence of an HPPDL function which tend asymptotically
to the necessity. As a result, families of LMI conditions
parametrized on the degree of the HPPDL functions and on
the relaxation level provide efficient numerical tests of different
complexities to assess the robust stability of both continuous and
discrete-time uncertain systems.

I. INTRODUCTION

Undoubtedly, an important point in the development of
robust control theory was the quadratic stability, that allowed
many robust control and stability analysis problems to be cast
as linear matrix inequality (LMI) optimization problems [1].
LMI conditions are simple to be implemented and can be
solved by efficient semi-definite programming algorithms [2,
3].

As a first attempt to reduce the conservatism provided
by the quadratic stability, i.e., x′Px with a fixed P =
P ′ > 0 matrix, parameter-dependent LMI conditions based
on quadratic Lyapunov functions x′P (α)x with P (α) being
a Lyapunov matrix that depends affinely on the uncertain pa-
rameters have appeared in [4–10]. In this context, it is worth
to mention the contribution presented in [5] (continuous-time
case) and [6] (discrete-time case), where additional variables
allowed the decoupling between the Lyapunov matrices and
the system matrices. Another interesting idea was presented
in [9] (continuous-time case) and [8] (discrete-time case),
where the stability analysis conditions are treated from a
algebraic point of view in terms of the uncertain parameter α.
These two methods were combined and generalized to cope
with any convex region in the complex plane (D-stability) in
[10], providing less conservative results for robust stability
of time-invariant uncertain systems in polytopic domains.
However, an exact characterization of the robust stability of
linear uncertain systems based on affine parameter-dependent
Lyapunov functions is not known.

To reduce the conservativeness, robust stability analysis
methods based on polynomially parameter-dependent Lya-
punov functions appeared quite naturally as the next step in
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the characterization of robust stability domains. In [11], LMI
conditions for robust stability analysis of affine uncertain
continuous-time systems based on a quadratic Lyapunov
function whose Lyapunov matrix depends polynomially on
the uncertain parameter were given. The conditions are
necessary and sufficient in the sense that, as the degree of the
polynomial increases, the characterization of robust stability
becomes more precise and, if the system is robustly stable,
a finite degree exists for which the LMIs provide a feasible
solution. The main drawback is the computational burden
demanded as the complexity (number of states, uncertain
parameters and degree of the polynomial) grows.

Another approach based on homogeneous Lyapunov func-
tions, polynomially dependent of arbitrary degree on the
parameters, appeared in [12] where the robust stability
conditions were expressed through a complete square ma-
trix representation of homogeneous matrix forms, that are
linear on the uncertain parameters, thus providing families
of sufficient LMI conditions of increasing precision as the
degree of the Lyapunov function grows.

Concerning robust stability conditions not directly based
on the Lyapunov approach, it is worth to mention some
recent results based on the optimization of positive poly-
nomials over compact sets [13]. Necessary and sufficient
conditions for stability of linear affine uncertain systems
are presented in [14], where a family of LMI conditions
of increasing precision were given, but the global conver-
gence is not assured. A similar approach appeared in [15]
transforming the robust stability test into the minimization
of a multivariate polynomial over a compact set by means
of an associate Hermite matrix. The conditions are given
in terms of a sequence of LMI relaxations with guaranteed
convergence. The two methods above were formulated for
affine uncertain systems (nominal system affinely affected
by uncertain parameters) and can deal with both continuous
and discrete-time stability.

The aim of this paper is to investigate the robust stability
of uncertain systems in polytopic domains (more general
representation than affine uncertainty). Robust stability LMI
conditions based on parameter-dependent Lyapunov func-
tions which are quadratic with respect to the state variables
and homogeneous polynomially dependent of arbitrary de-
gree on the uncertain parameters are proposed. A systematic
procedure to construct LMI conditions that assure the ex-
istence of HPPDL functions of increasing degree is given.
For each degree, real algebraic geometry properties [16] are
used to construct a sequence of relaxations that converges
asymptotically, assuring the existence of an HPPDL function
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that guarantees robust stability. These relaxations are based
on Pólya’s Theorem [16] and have already been used in
[17] in the context of multiplier approximations, copositive
programming [18] (see also [19]). As a result, families of
LMI conditions parametrized on the degree of the HPPDL
function and on the relaxation level provide efficient numeri-
cal tests of different complexities to assess the robust stability
of both continuous and discrete-time uncertain systems.

II. NOTATION

The symbol (′) indicates transpose; P > 0 (≥ 0) means
that P is symmetric positive (semi) definite. λmax(P ) means
the maximum and λmin(P ) the minimum eigenvalue of
matrix P . IR represents the set of real numbers, Z+ the set of
nonnegative integers {0, 1, 2, . . .} and M ! denotes factorial.
N is used to denote the number of vertices of a polytope
and also the dimension of vector α associated to a generic
matrix inside the polytope.

III. PRELIMINARIES

Consider the uncertain linear time-invariant system

δ[x(t)] = A(α)x(t), (1)

where x ∈ IRn is the state vector, δ[·] denotes the time
derivative operator for continuous-time and the shift operator
for discrete-time systems. Matrix A(α) ∈ IRn×n is not
precisely known, but belongs to a convex bounded (polytope
type) uncertain domain A given by

A =
{
A(α) : A(α) =

N∑
i=1

αiAi, α ∈ ∆N

}
;

∆N =
{
α ∈ IRN ,

N∑
i=1

αi = 1;αi ≥ 0
}

(2)

Any uncertain matrix A(α) ∈ A can be written as a convex
combination of the vertices Ai, i = 1, . . . , N of the polytope.

The problem addressed here is to determine if A is
Hurwitz stable (i.e. all matrices A ∈ A have eigenvalues with
negative real part) for the continuous-time case and if A is
Schur stable (i.e. all matrices A ∈ A have eigenvalues with
absolute value less than one) for the discrete-time case. The
following lemmas give equivalent necessary and sufficient
conditions for the Hurwitz (Schur) stability of A.

Lemma 1: The set A is Hurwitz stable if and only
if there exists a symmetric positive definite parameter-
dependent matrix P (α) ∈ IRn×n such that one of the
following equivalent conditions holds ∀ α ∈ ∆N :

(a) Γ(α) � A(α)′P (α) + P (α)A(α) < 0
(b) Γd(α) � (α1 +α2 + . . .+αN )dΓ(α) < 0; ∀ d ∈ Z+

Condition (a) is straightforwardly obtained through the use
of v(x) = x′P (α)x as a Lyapunov function associated to
the differential equation ẋ = A(α)x. For any fixed α ∈ ∆N

and for all d ∈ Z+, the equivalence between (a) and (b)
is immediate since α ∈ ∆N implies (

∑N
i=1 αi)d = 1 for

all d ∈ Z+. Note that P (α) in Lemma 1 does not have a
special structure and the verification of stability is based on

the existence of a positive definite Lyapunov matrix for any
choice of α ∈ ∆N , which is a well known result.

The aim here is to investigate necessary and sufficient
conditions for the existence of the quadratic Lyapunov func-
tion v(x) = x′P (α)x which depends polynomially on the
uncertain parameters α, more precisely, the matrix P (α) is a
homogeneous polynomial matrix valued function of arbitrary
degree on α. The algebraic properties of condition (b) of
Lemma 1, which defines a family of polynomials whose
number of monomials is parametrized on d ∈ Z+, will be
used to provide a complete characterization of the existence
of P (α) given by (2) assuring the Hurwitz stability of A in
terms of LMIs formulated only at the vertices of A.

Lemma 2: The set A is Schur stable if and only if there
exists a symmetric positive definite parameter-dependent ma-
trix P (α) ∈ IRn×n such that one of the following equivalent
conditions holds ∀ α ∈ ∆N :

(a) Υ(α) � A(α)′P (α)A(α) − P (α) < 0

(b) Υd(α) � (α1+α2+. . .+αN )dΥ(α) < 0; ∀ d ∈ Z+

The same remarks about the equivalence between (a) and
(b) of Lemma 1 also apply to Lemma 2.

Before presenting the main results, some definitions and
preliminaries are needed. Define K(g) as the set of N -tuples
obtained as all possible combinations of k1k2 · · · kN , ki ∈
Z+, i = 1, . . . , N such that k1 + k2 + · · · + kN = g. The
number of N -tuples in K(g) is given by J(g) = (N + g −
1)!/(g!(N − 1)!). The element K�(g) is the �-th N -tuple of
K(g), which is lexically ordered, � = 1, . . . , J(g). As an
example, consider N = 2, g = 5, which yields J(5) =
6 and K(5) = {05, 14, 23, 32, 41, 50}, with K1(5) = 05,
K2(5) = 14 etc. Sum and subtraction between two N -tuples
Ki(g) and Kj(g) are done element-wise, e.g. K4(5)+K3(5)
= 32+23 = 55. Each element K�(g) defines a set G obtained
from the following operation: For a given d ∈ Z+, G =
K�(g) −Kr(d), r = 1, . . . , J(d). Clearly, when d = 0, G =
K�(g). The N -tuples Gr, r = 1, . . . , J(d) with non-negative
ki’s are used to generate the LMIs in the theorems proposed
in the sequel (the N -tuples with negative ki’s are discarded).
Associated to the N -tuple Gr, define: 1) the set Ir with
elements given by subsets of i, i ∈ {1, 2, . . . , N}, with ki’s
nonzero. 2) Gi

r as being equal to Gr but with ki > 0 replaced
by ki − 1. Note that Gi

r computed from G = K�(g + d +
1) − Kr(d), r = 1, . . . , J(d) produces N -tuples belonging
to K(g), as used in the proposed theorems. 3) the coefficient
Cr given by d!/(k1!k2! · · · kN !) with k1k2 · · · kN = Kr(d).

Considering K(5) given above and d = 2, one has J(2) =
3, K(2) = {02, 11, 20}. For � = 1 (the first N -tuple of
K(5)), one has K1(5) − Kr(2), r = 1, . . . , 3, which yields
G = {05} − {02, 11, 20} = {03,♦4,♦5}, where ♦ means
a negative integer. The N -tuples associated with r = 2, 3
are ignored when generating the LMIs. The set I1 is {2},
G2

1 = {02} and C1 = 2!/(0!2!) = 1. Now, consider � = 4
(forth N -tuple), K4(5) − Kr(2), r = 1, . . . , 3 which yields
G = {32}−{02, 11, 20} = {30, 21, 12}. The associated sets
are I1 = {1}, I2 = {1, 2}, I3 = {1, 2}, the elements of
G are G1

1 = {20}, G1
2 = {11}, G2

2 = {20}, G1
3 = {02},
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G2
3 = {11}, and C1 = 2!/(0!2!) = 1, C2 = 2!/(1!1!) = 2,

C3 = 2!/(2!0!) = 1. The other N -tuples K�(g) are handled
similarly.

The elements of the each N -tuple K�(g) define subscripts
k1k2 · · · kN of the Lyapunov constant symmetric matrices
Pk1k2···kN

� PK�(g), � = 1, . . . , J(g) to construct a HPPDL
function Pg(α) given by

Pg(α) =
J(g)∑
�=1

αk1
1 · · ·αkN

N PK�(g); k1 · · · kN = K�(g) (3)

In what follows, a sufficient condition that tends asymptot-
ically to the necessity as d increases assuring the existence
of Pg(α) > 0 of arbitrary degree given by (3) such that
condition (b) of Lemma 1 holds is given.

IV. MAIN RESULTS

Theorem 1: An HPPDL matrix of arbitrary degree
Pg(α) given by (3) assures the Hurwitz stability of A if
and only if there exist symmetric matrices PKj(g) ∈ IRn×n,
Kj(g) ∈ K(g), j = 1, . . . , J(g), and a sufficiently large
d ∈ Z+ such that the following LMIs hold

T� =
J(d)∑
r=1

( ∑
i∈Ir

Cr

(
A′

iPGi
r

+ PGi
r
Ai

))
< 0 ;

G = K�(g + d + 1) −Kr(d), r = 1, . . . , J(d),
� = 1, . . . , J(g + d + 1) (4)

Rp =
J(d)∑
r=1

(
CrPGr

)
> 0 ;G = Kp(g + d) −Kr(d),

r = 1, . . . , J(d), p = 1, . . . , J(g + d) (5)

Moreover, for a fixed d, if the LMIs (4)-(5) are fulfilled for a
given degree ĝ, then the LMIs corresponding to any degree
g > ĝ are also satisfied. Similarly, for a given g, if the LMIs
(4)-(5) provide a feasible solution for d̂, then the LMIs for
d > d̂ also have feasible solutions.
Proof: Sufficiency. Since Γd(α) with Pg(α) given by (3) can
be written as

Γd(α) =
( J(d)∑

r=1

( ∑
i∈Ir

Cr

(
A′

iPGi
r

+ PGi
r
Ai

) ))
αk1

1 · · ·αkN

N ;

G = K�(g + d + 1) −Kr(d), r = 1, . . . , J(d),
� = 1, . . . , J(g + d + 1), k1 · · · kN = K�(g + d + 1) (6)

it is straightforward to show that, if there exist symmetric
matrices PKj(g), Kj(g) ∈ K(g), j = 1, . . . , J(g) and d ∈ Z+

such that (4) holds for � = 1, . . . , J(g +d+1) and (5) holds
for p = 1, . . . , J(g + d) then, from (6), one can conclude
that the conditions of Lemma 1 are verified for all α ∈ ∆N .

Necessity: Defining

L � max
�=1,...,J(g+d+1)

λmax(−T�); κ � min
α∈∆N

λmin(−Γ(α))

it is clear that for any vector w such that w′w = 1 one has

L ≥ max
�=1,...,J(g+d+1)

w′(−T�)w; min
α∈∆N

w′(−Γ(α))w ≥ κ

The choice of d ∈ Z+ such that d ≥ g(g + 1)L/2κ − g,
[20, Theorem 1] assures that all coefficients w′(−T�)w, � =
1, . . . , J(g + d + 1) of the polynomial w′(−Γd(α))w are
positive. Since w is arbitrary, the conclusion is that all LMIs
T�, � = 1, . . . , J(g + d + 1) are negative definite. A similar
analysis can be applied to the constraints Rp > 0.

Suppose the LMIs of (4)-(5) are fulfilled for a fixed d
and a certain ĝ, that is, there exist J(ĝ) symmetric matrices
PKj(ĝ), j = 1, . . . , J(ĝ) such that (4)-(5) holds, i.e., Pĝ(α)
is an HPPDL positive definite matrix assuring the robust
stability of the system. Then, the terms of the polynomial
matrix Pĝ+1(α) = (α1 + · · · + αN )Pĝ(α) satisfy the LMIs
of Theorem 1 corresponding to the degree ĝ + 1, which can
be obtained in this case by linear combination of the LMIs
of Theorem 1 for ĝ. As the LMIs of (4)-(5) for a given d̂ > 0
are linear combinations of the LMIs of (4)-(5) for d̂−1 (fixed
g) it is straightforward to show that if the LMIs of (4)-(5)
are feasible for a given d̂, then the LMIs for d > d̂ are also
feasible (combination of terms with same sign).

The LMIs (5) in Theorem 1 assure that Pg(α) given
by (3) is positive definite for all α ∈ ∆N . Note that for
g = 0 (Pg(α) = P , i.e. quadratic stability) and for g = 1
(Pg(α) affine on α), condition (5) is also necessary to ensure
Pg(α) > 0 (stability of the vertices of the polytope) and there
is no need to use d > 0 in (5). For g > 1, the relaxations
must be applied in both (4) and (5) to produce asymptotically
necessary conditions. See [21] for details concerning Pólya’s
Theorem applied to robust stability conditions based on affine
parameter-dependent Lyapunov matrices.

Theorem 2: An HPPDL matrix of arbitrary degree
Pg(α) given by (3) assures the Schur stability of A if and
only if there exist symmetric matrices PKj(g) ∈ IRn×n,
Kj(g) ∈ K(g), j = 1, . . . , J(g), and a sufficiently large
d such that the LMIs (5) and the following LMIs hold

J(d)∑
r=1

(∑
i∈Ir

Cr

[ −PGi
r

PGi
r
Ai

� −PGi
r

])
< 0;

G = K�(g + d + 1) −Kr(d), r = 1, . . . , J(d),
� = 1, . . . , J(g + d + 1) (7)

Moreover, for a fixed d, if the LMIs (5) and (7) are fulfilled
for a given degree ĝ, then the LMIs corresponding to any
degree g > ĝ are also satisfied. Similarly, for a given g, if
the LMIs (5) and (7) provide a feasible solution for d̂, then
the LMIs for d > d̂ also have feasible solutions.
Proof: Similar to the proof of Theorem 1.

Theorem 2 exploits the Schur complement form of the
discrete-time Lyapunov inequality presented in Lemma 2
for sake of compactness, to use the same notation and sets
defined for the continuous-time case. Similar results could
be obtained directly from the inequality A(α)′P (α)A(α) −
P (α) < 0 but the triple product A(α)′P (α)A(α) would
generate different sets and new coefficients.
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LMI conditions which are equivalent to the conditions of
Lemmas 1 (Hurwitz case) and 2 (Schur case) but present
a larger number of decision variables can be formulated
through the use of the Finsler’s Lemma [22].

Lemma 3: The set A is Hurwitz (Schur) stable if and
only if there exists a symmetric positive definite parameter-
dependent matrix P (α) ∈ IRn×n and parameter-dependent
matrices X (α) ∈ IR2n×n such that one of the following
equivalent conditions holds ∀ α ∈ ∆N :

(a) Θ(α) � Q(α) + X (α)B(α) + B(α)′X (α)′ < 0
(b) Θd(α) = (α1+α2+. . .+αN )dΘ(α) < 0; ∀ d ∈ Z+

with B(α) =
[

A(α) −I
]

and Q(α) given by

QH(α) =
[

0 P (α)
P (α) 0

]
; QS(α) =

[−P (α) 0
0 P (α)

]
for the Hurwitz and Schur cases, respectively.

The equivalence between (a) and (b) is straightforward.
For a fixed α, the equivalence between Lemma 3 and
Lemmas 1 and 2 can be proved by using the Finsler’s Lemma
[22]. If a special structure of P (α) is considered, as for
instance an HPPDL matrix as in (3), from the conditions
of Lemma 3 less conservative LMI tests for evaluating the
Hurwitz (Schur) stability of A can be obtained as follows.

Theorem 3: An HPPDL matrix of arbitrary degree
Pg(α) given by (3) assures the Hurwitz (Schur) stability of A
if and only if there exist symmetric matrices PKj(g) ∈ IRn×n,
Kj(g) ∈ K(g), j = 1, . . . , J(g), matrices XKj(g) ∈ IR2n×n,
Kj(g) ∈ K(g), j = 1, . . . , J(g), and a sufficiently large d
such that the LMIs (5) and the following LMIs hold

J(d)∑
r=1

( ∑
i∈Ir

Cr

(
QGi

r
+ XGi

r
Bi + B′

iX
′
Gi

r

) )
< 0 ;

G = K�(g + d + 1) −Kr(d), r = 1, . . . , J(d),
� = 1, . . . , J(g + d + 1) (8)

where QGi
r

are respectively given, for Hurwitz and Schur
cases, by

QH
Gi

r
=

[
0 PGi

r

PGi
r

0

]
; QS

Gi
r

=
[ −PGi

r
0

0 PGi
r

]

and Bi = [Ai − I]. Moreover, for a fixed d, if the LMIs
of (5) and (8) are fulfilled for a given degree ĝ, then the
LMIs corresponding to any degree g > ĝ are also satisfied.
Similarly, for a given g, if the LMIs (5) and (8) provide a
feasible solution for d̂, then the LMIs for d > d̂ also have
feasible solutions.
Proof: The proof is very similar to the proof of Theorem 1.
With Pg(α) > 0 given by (3), Xg(α) given by

Xg(α) =
J(g)∑
j=1

αk1
1 αk2

2 · · ·αkN

N XKj(g); k1k2 · · · kN = Kj(g)

and A(α) ∈ A as in (2), Θd(α) in Lemma 3 (b) can be
written as a homogeneous polynomially form of degree g +
d + 1 with matrix valued coefficients given by (8). Again,

for a fixed d, if the conditions (5) and (8) are fulfilled for
a given ĝ, then Pĝ+1(α) = (

∑N
i=1 αi)Pĝ(α), Xĝ+1(α) =

(
∑N

i=1 αi)Xĝ(α) are a feasible solution to the LMIs (5) and
(8) for g = ĝ + 1. If a feasible solution exists for d̂ then
there are also feasible solutions for d > d̂.

The extra matrix variables XKj(g), j = 1, . . . , J(g) in
Theorem 3 provide less conservative results than the ones
obtained from Theorems 1 and 2 for fixed values of d and
g. For a detailed discussion about this aspect with d = 0
and g = 1, see [10]. Moreover, these extra variables allows
a faster convergence (as d grows) towards the necessary
condition for the existence of an HPPDL matrix of a given
degree g, as illustrated by means of numerical experiments.

Finally, note that the conditions of Theorem 3 can be easily
extended to cope with any convex region in the complex
plane following the lines depicted in [7, 10].

V. STUDY OF CASE N = 2

Consider the conditions of Theorem 1 with g = 2 applied
to a polytope A with N = 2 vertices. In this case, R1 = P20,
R2 = P11, R3 = P02,

T1 = A′
1P20 + P20A1; T2 = A′

2P02 + P02A2

T3 = A′
1P02 + P02A1 + A′

2P11 + P11A2

T4 = A′
2P20 + P20A2 + A′

1P11 + P11A1

Then, for d = 0, the number of LMIs is J(3) + J(2) = 7,
K(3) = {03, 12, 21, 30}, and the LMIs are

T1 < 0; T2 < 0; R1 > 0; R3 > 0 (9)

which are necessary conditions (stability of the vertices) and

T3 < 0; T4 < 0; R2 > 0 (10)

For d = 1, there are J(4) + J(3) = 9 LMIs, K(4) =
{04, 13, 22, 31, 40}, K(1) = {01, 10}. The LMIs are (9) and

T1 + T4 < 0; T3 + T4 < 0; T2 + T3 < 0
R1 + R2 > 0; R2 + R3 > 0 (11)

Note that a feasible solution to (9)-(10) is also feasible to
(9)-(11), but the converse is not true, since the constraint
(10) is more restrictive than (11). Note also that, differently
from (10), the LMIs (11) do not impose R2 = P11 > 0. For
d = 2, the number of LMIs is J(5) + J(4) = 11, K(5) =
{05, 14, 23, 32, 41, 50}, K(2) = {02, 11, 20} and the LMIs
are (9) and

2T1 + T4 < 0; T1 + T3 + 2T4 < 0; T2 + 2T3 + T4 < 0
2T2 + T3 < 0; 2R1 + R2 > 0; R1 + 2R2 + R3 > 0

R2 + 2R3 > 0

As d increases, the new LMIs become easier to be fulfilled
and, if an HPPDL function assuring the Hurwitz stability
exists, the necessity is attained asymptotically.
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TABLE I

NUMBER OF SCALAR VARIABLES K AND NUMBER OF LMI ROWS L IN

THEOREMS 1 (T1), 2 (T2) AND 3 (T3).

Method K L
T1 n(n + 1)J(g)/2 n(J(g + d) + J(g + d + 1))
T2 n(n + 1)J(g)/2 nJ(g + d) + 2nJ(g + d + 1)
T3 n(5n + 1)J(g)/2 nJ(g + d) + 2nJ(g + d + 1)

VI. COMPLEXITY ISSUES

The complexity of an LMI optimization problem can be
estimated from the number of scalar variables K and the
number of LMI rows L. Table I shows the complexities
associated to Theorems 1 (T1), 2 (T2) and 3 (T3).

As it can be seen, K and L grow polynomially with
d and g for all theorems. Note also that the number of
scalar variables does not depend on d, showing that the
sequence of relaxations is less costly than the increase of
the degree g. If an LMI solver based on interior point
methods is used, as for instance the LMI Control Toolbox
[2], the complexity can be estimated as being proportional to
K3L whereas the solver SeDuMi [3] yields K2L2.5 + L3.5.
The surface depicted in Figure 1 illustrates the complexity
associated to the conditions of Theorem 1 using log10(K3L)
for d ∈ [0, 20], g ∈ [1, 15] and considering a continuous-time
uncertain system with n = 3, N = 3.

0
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15
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lo
g
1
0
(K

3
L

)

Fig. 1. Complexity associated to the conditions of Theorem 1 using
log10(K3L) for d ∈ [0, 20], g ∈ [1, 15] and considering a continuous-
time uncertain system with n = 3, N = 3.

As expected, to increase g demands more computational
effort than to increase d. The best choices of g and d to
obtain accurate results with less computational burden are
analyzed in next section.

VII. NUMERICAL EXPERIMENTS

All numerical tests have been performed in a Pentium IV
2.6 GHz, 512 MB RAM, using the LMI Control Toolbox [2]
and SeDuMi [3] within the MatLab environment.
Example 1: This example illustrates how the relaxation
procedure evolves as d increases. Consider a continuous-time

uncertain system with n = 3 and N = 2, given by

A1 =

2
4 −0.1938 0.3961 −0.7104

0.0374 0.0988 −0.9082
0.4803 −0.2257 −0.4496

3
5

A2 =

2
4 −0.6343 0.1343 −0.9079

−0.7179 −0.6443 −0.2978
0.3733 −0.4191 0.3495

3
5

Choosing g = 1, i.e. an affine parameter-dependent
Lyapunov function, Theorem 1 provides the sequence of
relaxations for d = {0, 1, 2, 3, 4, 5} shown in Table II.

TABLE II

EVOLUTION OF THE MAXIMUM EIGENVALUES OF THE LMIS GIVEN BY

(4), � = 1, . . . , J(d + 1 + 1), FOR d = {0, 1, 2, 3, 4, 5} IN THE

STABILITY ANALYSIS OF EXAMPLE 1.

λmax(T�)
� d = 0 d = 1 d = 2 d = 3 d = 4 d = 5
1 -0.039 -0.039 -0.039 -0.039 -0.039 -0.039
2 1908.58 1024.06 273.88 92.67 27.81 -0.03
3 -0.004 823.43 511.81 258.75 53.84 -21.06
4 -0.004 198.02 222.42 62.54 -64.22
5 -0.004 63.65 41.83 -57.69
6 -0.004 18.48 -15.95
7 -0.004 -0.19
8 -0.004

The convergence is attained for d = 5, assuring that an
affine parameter-dependent Lyapunov function is necessary
and sufficient to check the robust stability of this uncertain
system (K = 12 scalar variables and L = 30 LMI rows have
been used in Theorem 1 for d = 5).
Example 2: Consider the continuous-time uncertain system
given in [12, Example 2]. Table III shows the number of
scalar variables and LMI rows needed to attain the optimum
value of ρ̂, as well as the elapsed time required by LMI
Control Toolbox [2] and SeDuMi [3], for theorems 1, 3 and
for the methods proposed in [12] and [15].

TABLE III

COMPARISON OF THE RESULTS OF THEOREMS 1 AND 3 WITH [12] AND

[15] FOR THE SECOND EXAMPLE IN [12] (n = 3, N = 2 AND

ρ̂ = 3.551) IN TERMS OF COMPUTATIONAL BURDEN (K SCALAR

VARIABLES AND L LMI ROWS).

Method K L Time [2] Time [3]
[12]m=2 69 21 4.6 s 0.24 s
[15]k=4 44 65 – 0.71 s

T3g=2,d=0 72 33 0.13 s 0.60 s
T3g=2,d=1 72 42 0.21 s 0.45 s
T3g=2,d=2 72 51 0.30 s 0.39 s
T3g=2,d=3 72 60 0.38 s 0.25 s
T1g=2,d=12 18 93 0.64 s 0.47 s
T1g=3,d=1 24 33 0.06 s 0.19 s
T1g=4,d=0 30 33 0.04 s 0.16 s

Example 3: Consider a discrete-time uncertain system (n =
2, N = 4) given by

A1 =

» −0.468 0.845
0.272 −0.423

–
; A2 =

»
0.825 0.427
0.299 −0.346

–

A3 =

» −0.744 0.214
1.242 0.545

–
; A4 =

»
0.330 −1.140
−0.322 0.309

–
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Table IV shows a numerical comparison with the positive
polynomial approach from [15] and the results presented in
this paper. The best result (i.e. the one that demands less
computational burden) is provided by Theorem 3 with g = 1,
d = 0, assuring that an affine parameter-dependent Lyapunov
function is necessary and sufficient to guarantee the robust
stability.

TABLE IV

COMPARISON OF THE RESULTS OF THEOREMS 2 AND 3 WITH THE ONES

PRESENTED IN [15] FOR THE EXAMPLE 3 (n = 2, N = 4).

Method K L Time [2] Time [3]
[15]k=4 494 385 – 9.76 s

T3g=1,d=0 44 48 0.09 s 0.10 s
T2g=1,d=3 12 232 2.73 s 0.25 s
T2g=2,d=2 30 294 5.20 s 0.32 s
T2g=3,d=0 60 180 0.31 s 0.21 s

Example 4: Consider now a continuous-time uncertain sys-
tem of larger dimension (n = 3, N = 4) given by

A1 =

2
4 −0.789 −0.533 0.353

−0.469 −0.390 0.676
−0.970 −0.914 0.053

3
5

A2 =

2
4 −1.091 −0.349 0.498

0.498 −0.772 0.223
−0.113 0.640 −0.493

3
5

A3 =

2
4 −0.419 0.896 −0.854

−0.198 −0.417 0.592
0.574 0.113 −0.970

3
5

A4 =

2
4 −0.646 −0.875 −0.997

−0.732 −0.993 −0.126
0.707 0.289 0.019

3
5

Table V shows a numerical comparison of the results from
Theorems 1 and 3 with the ones presented in [12] and with
the polynomial approach from [15]. Clearly, Theorems 1 and
3 present the best results (significantly less computational
effort).

TABLE V

COMPARISON OF THE RESULTS OF THEOREMS 1 AND 3 WITH [12] AND

[15] FOR EXAMPLE 4 (n = 3, N = 4).

Method K L Time [2] Time [3]
[12]m=2 414 48 > 600 s 78.9 s
[15]k=4 494 385 – 19.07 s

T3g=2,d=0 240 150 3.99 s 0.61 s
T1g=2,d=3 60 420 5.82 s 0.99 s
T1g=3,d=1 120 273 2.01 s 0.50 s
T1g=4,d=0 210 273 1.35 s 0.65 s

VIII. CONCLUSION

A systematic procedure to construct families of LMI
conditions to check the existence of a HPPDL function
of arbitrary degree assuring robust stability of uncertain
time-invariant linear systems in polytopic domains was pre-
sented in this paper. Numerical experiments illustrate that
the proposed conditions provide a good trade-off between
the required computational burden and the accuracy of the

results when compared with other methods. The conditions
proposed can easily be extended to cope with other robust
analysis problems formulated in terms of LMIs.
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