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Abstract— This paper extends robust model predictive con-
trol to problems involving linear time-varying systems with
constraints and subject to persistent, unknown but bounded
disturbances. The new controller guarantees constraint satis-
faction and feasibility of the optimizations. Robust feasibility is
achieved by tightening the constraints in the online optimiza-
tion, with the advantage that the complexity of the optimization
is not changed. This method is applicable to the control of
constrained nonlinear systems by linearizing about a reference
trajectory. The uncertainty introduced by linearization error
can be accommodated in the disturbance model, and constraint
satisfaction for the nonlinear system is then guaranteed.

I. INTRODUCTION

This paper extends robust Model Predictive Con-

trol (MPC) [1] to accommodate constrained systems with

linear time-varying (LTV) dynamics. The new MPC guaran-

tees constraint satisfaction and feasibility despite the action

of unknown but bounded disturbances. This extends previous

work in which robust control of linear time-invariant systems

was achieved by tightening the constraints in the planning

optimization in a monotonic sequence [2]–[5]. The contribu-

tion of this paper is the extension of the constraint-tightening

method to LTV systems.

Linear time-varying systems are of interest because they

can capture the dynamics of nonlinear systems relative to

reference trajectories. For example, the motion of a space-

craft relative to a highly-elliptical reference orbit can be

expressed as an LTV system [6]. Previous work on MPC

for LTV systems includes nominal stability analysis by

Nevistic [7] and robustness results for randomly-varying

systems [8]–[13]. However, the latter results do not make use

of explicit knowledge of how the system varies as a function

of time, which is available in the case of linearization about

a known reference. The contribution of this paper is a con-

troller for systems whose dynamics are known, but subjected

to an affine, unknown but bounded, persistent disturbance.

This class of uncertainty can include the linearization error,

provided it can be analytically bounded [14], and the effects

of uncertain state knowledge [15].

The approach of this paper is to use constraint tighten-
ing [2]–[5], in which robustness is achieved by tightening

the constraints in a monotonic sequence. The key idea is to

retain a “margin” for future feedback action, which becomes

available to the MPC optimization as time progresses. Since

robustness follows only from the constraint modifications,

only nominal predictions are required, avoiding both the

large growth in problem size associated with incorporating

multivariable uncertainty in the prediction model and the

conservatism associated with worst case cost predictions, a

common alternative, e.g. [8], [16].

This paper considers only robust feasibility, that is the

guarantee that every optimization can be solved. Feasibility

implies constraint satisfaction, so this method is directly

applicable to problems where the primary objective is to

satisfy the constraints for all time. This paper does not

directly consider the problem of converging to a particular

target set, typically achieved by proving monotonicity of

the optimal cost. However, this can be achieved by suitable

choice of cost function within the MPC optimization [5].

Also, an example is shown in Section V in which time-

varying constraints are employed to enforce convergence to

a target.

Section II formally defines the problem statement. Sec-

tion III presents the MPC algorithm and proves its robust-

ness. Section IV shows how to apply the new MPC to the

control of constrained nonlinear systems. Section V presents

the results of simulations demonstrating the new controller

at work.

II. PROBLEM STATEMENT

The aim is to control a linear time-varying system with

discretized dynamics

x(k + 1) = A(k)x(k) + B(k)u(k) + w(k) (1)

where x(k) ∈ �Nx is the state vector, u(k) ∈ �Nu is the

input, w(k) ∈ �Nx is the disturbance vector. Assume the

systems (A(k),B(k)) are stabilizable for all k and the com-

plete state x is accessible. (See Ref. [15] for modifications to

this method to account for imperfect state information.) The

disturbance lies in a bounded set but is otherwise unknown

w(k) ∈ W(k) ⊂ �Nx , ∀k (2)

The control is required to keep an output y(k) ∈ �Ny within

a bounded set for all disturbances. The form of the output

constraints

y(k) = C(k)x(k) + D(k)u(k) (3)

y(k) ∈ Y(k) ⊂ �Ny , ∀k (4)
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can capture both input and state constraints, or mixtures

thereof, such as limited control magnitude or state error box

limits [17]. The matrices C(k) and D(k) and the sets Y(k)
are all chosen by the designer. The objective is to minimize

the cost function

J =
∞∑

k=0

� (u(k),x(k), k) (5)

where �(·) is a stage cost function. Typically, this would be a

quadratic function, resulting in a quadratic program solution,

or a convex piecewise linear function (e.g. |u|+ |x|) that can

be implemented with slack variables in a linear program [18].

The robust feasibility result requires no assumptions concern-

ing the nature of this cost.

III. MPC FORMULATION

The online optimization approximates the complete prob-

lem in Section II by solving it over a finite horizon of

N steps. The key features of the optimization are:

• predictions are made using the nominal system model,

i.e. (1) without the disturbance term;

• the embedded system dynamics model is time-varying;

• the applied constraints vary both with the time step to

which they apply and with the step at which planning

takes place.

Define the MPC optimization problem as P(k)

J∗(k) = min
u,x,y

N∑
j=0

� (u(k + j|k),x(k + j|k), k + j)

subject to ∀j ∈ {0 . . . N}
x(k + j + 1|k) = A(k + j)x(k + j|k) (6a)

+ B(k + j)u(k + j|k)

y(k + j|k) = C(k + j)x(k + j|k) (6b)

+ D(k + j)u(k + j|k)

x(k|k) = x(k) (6c)

x(k + N + 1|k) = 0 (6d)

y(k + j|k) ∈ Y(k + j|k) (6e)

where the double index (k+j|k) denotes a prediction j steps

ahead from time k. The constraint sets for the plan Y(k+j|k)
are tightened for robustness using the following recursions

Y(k|k) = Y(k) (7a)

Y(k + j|k) = Y(k + j|k + 1) (7b)

∼ [C(k + j) + D(k + j)K(k + j|k + 1)]L(k + j|k + 1)W(k)

where K(k + j|k) and L(k + j|k) are the controller and

state transition matrices, respectively, for a candidate con-

trol policy that renders the system nilpotent, i.e. the con-

trol u(k) = K(k|n)x(k), k ≥ n applied from any state x(n)
at time n would drive the nominal system to the origin in a

finite number of steps M . This policy is calculated using a

finite-horizon LQR method (10)–(14), where the nilpotency

horizon M < N − 1 and the weighting matrices Q and R
are chosen by the designer. In practice, the infinite terminal

cost in (10) is replaced by a very large terminal weighting,

orders of magnitude higher than the other weightings, and it

can be verified numerically that L(k + M |k) = 0 ∀k within

working tolerance.

The operator “∼” denotes the Pontryagin difference [17]

defined as

A ∼ B = {a | a + b ∈ A ∀b ∈ B} (8)

with the resulting useful property

c ∈ A ∼ B ⇒ c + b ∈ A ∀b ∈ B (9)

Under the reasonable assumption that 0 ∈ W(k), the

recursion (7b) implies Y(k + j|k) ⊆ Y(k + j|k + 1), where

Y(k+j|k) represents the constraints applied upon step k+j
in the plan at time k. This is the analog of the monotonic

sequence seen in other constraint tightening methods [3],

[4]. Intuitively, it means that there is some “margin” in the

constraints that is retained for future feedback action and

“returned” to the optimization as time progresses.

The terminal constraint (6d) here is for the trajectory

to end at the origin. A point constraint, as opposed to a

robust invariant set, is compatible with robustness since the

candidate control policy is forced to be nilpotent [4], [5] by

the penalty (10). In the case of a nonlinear system linearized

about a reference, the origin terminal constraint implies that

the plan for the nonlinear system terminates on the reference

trajectory. If the reference trajectory is optimized, this is a

good approximation to the infinite horizon problem.

P(k + M |k) = ∞I (10)

P(k + j|k) = Q + A(k + j)T P(k + j + 1|k)A(k + j) (11)

− A(k + j)T P(k + j + 1|k)B(k + j)
[
R + B(k + j)T P(k + j + 1|k)B(k + j)

]−1
B(k + j)T P(k + j + 1|k)A(k + j)

K(k + j|k) =

{
−

[
R + B(k + j)T P(k + j + 1|k)B(k + j)

]−1
B(k + j)T P(k + j + 1|k)A(k + j) 0 ≤ j < M

0 M ≤ j < N
(12)

L(k|k) = I (13)

L(k + j|k) = (A(k + j − 1) + B(k + j − 1)K(k + j − 1|k))L(k + j − 1|k) (14)
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The optimization P(k) is employed in the following algo-

rithm.

Algorithm 1 (Robustly Feasible MPC)
1) Solve problem P(k)
2) Apply control u(k) = u∗(k|k) from the optimal

sequence

3) Increment k. Go to Step 1

Theorem 1 (Robust Feasibility): If P(0) has a feasible so-

lution then the system (1) controlled by Algorithm 1 and

subjected to disturbances obeying (2) robustly satisfies the

constraints (4) and all subsequent optimizations P(k) are

feasible for all k > 0,

Proof: This is an extension of the results in

Refs. [4] and [5]. It is based on recursion, showing that

feasibility of P(k0) implies feasibility of P(k0 + 1) for any

k0 and w(k0) ∈ W(k0). Feasibility of P(k0 + 1) is proven

by showing feasibility of a particular candidate solution.

Assume that at some time step k0, the problem P(k0) is

feasible and has a solution with states x∗(k0 + j|k0), con-

trols u∗(k0 + j|k0) and outputs y∗(k0 + j|k0) satisfying (6).

Consider the following candidate solution, denoted by ·̂, for

problem P(k0 + 1)

û(k0 + j|k0 + 1) = u∗(k0 + j|k0) (15a)

+ K(k0 + j|k0 + 1)L(k0 + j|k0 + 1)w(k0)
∀j ∈ {1 . . . N}

û(k0 + N + 1|k0 + 1) = 0 (15b)

x̂(k0 + j|k0 + 1) = x∗(k0 + j|k0) (15c)

+ L(k0 + j|k0 + 1)w(k0)
∀j ∈ {1 . . . N + 1}

x̂(k0 + N + 2|k0 + 1) = Ax̂(k0 + N + 1|k0 + 1)(15d)

ŷ(k0 + j|k0 + 1) = Cx̂(k0 + j|k0 + 1) (15e)

+ Dû(k0 + j|k0 + 1)
∀j ∈ {1 . . . N + 1}

This solution is formed by shifting the previous solution by

one step, i.e. removing the first step, adding one step of zero

control at the end, and adding perturbations representing the

rejection of the disturbance by the candidate controller K
and the associated state transition matrices L.

To prove feasibility, it is necessary to show that the

candidate solution satisfies all of the constraints (6) for

time k0 + 1.

Dynamics constraints (6a) Feasibility at time k implies that

the original solution x∗(k0 + j|k0),u∗(k0 + j|k0) satisfies

the dynamics constraints. Since (14) defines L to be the state

transition matrix, the perturbation sequence L(k0 + j|k0 +
1)w(k0),K(k0 + j|k0 +1)L(k0 + j|k0 +1)w(k0) must also

satisfy the dynamics model. Therefore by superposition, the

summed sequences (15a) and (15c) satisfy the dynamics

constraints, and the final step (15b) and (15d) satisfy (6a)

by construction.

Output equality constraints (6b) are satisfied by construc-

tion from (15e).

Initial condition constraints (6c) The true state at k0 + 1
is found using the true system (1) giving

x(k0 + 1) = A(k0)x(k0) + B(k0)u(k0) + w(k0) (16)

Feasibility at time k0 implies x(k0 +1|k0) = A(k0)x(k0)+
B(k0)u(k0) and substituting into (15c) along with (13) gives

x̂(k0 + 1|k0 + 1) = Ax(k0) + Bu(k0) + w(k0) (17)

Comparing (16) and (17) shows that x(k0 + 1) = x̂(k0 +
1|k0 + 1), satisfying the constraint (6c).

Terminal constraints (6d) Since the candidate solution is

forced to be nilpotent by (10), then L(k0 + j|k0 + 1) = 0
for j > M . Therefore, (15c) implies x̂(k0 + N + 1|k0 +
1) = x(k0 + N + 1|k0). Feasibility at time k0 implies that

x(k0+N+1|k0) = 0 thus implying x̂(k0+N+1|k0+1) = 0.

Therefore, using the final step of the candidate solution (15d)

gives x̂(k0 +N +2|k0 +1) = 0 which satisfies the terminal

constraint (6d).

Output constraints (6e) First consider steps j = 1 . . . N of

the output sequence (15e). Substituting (15a), (15c) and (6b)

with k = k0 into (15e) gives

ŷ(k0 + j|k0 + 1) = y(k0 + j|k0)
+ [C(k0 + j) + D(k0 + j)K(k0 + j|k0 + 1)]L(k0 + j|k0 + 1)w(k0)

Substituing this relationship and the constraint tightening

recursion (7b) into the property (9) of the Pontryagin dif-

ference shows that if y(k0 + j|k0) ∈ Y(k0 + j|k0), which

follows from feasibility at time k0, then ŷ(k0 + j|k0 +1) ∈
Y(k0+j|k0+1), satisfying the constraints (6e) at time k0+1.

The final step j = N+1 is trivial as ŷ(k0+N+1|k0+1) = 0.

In summary, under the assumption that a feasible solution

is found at time k0 for problem P(k0), then a solution can be

constructed for time k0+1 that is feasible for problem P(k0+
1) for any k0 and disturbance w(k0) obeying (2). Hence

feasibility at k0 implies feasibility at k0 +1, and the theorem

is proven by recursion.

Remark 1 (Feasibility and Optimality): Theorem 1 does

not assume that an optimal solution is found at each step.

The result holds as long as a feasible solution is found.

Furthermore, since the method relies on a known candidate

solution being feasible, that solution can be constructed and

used to initialize a search procedure, and if no better solution

is found in the time available, the candidate solution can be

employed for control. This means that the optimization can

be run with an arbitrary computation time limit.

Remark 2 (Computation): The calculation of the candi-

date policies (10)–(14) and the constraint sets Y(k + j|k)
using (7) can be performed offline. Tools for computing the

Pontryagin difference for polytopes are available [19]. The

only online computation is the solution of P(k), an optimiza-

tion problem of the same size as its nominal counterpart but

with modified constraints (6e).

Remark 3 (Set Approximation): Since the result of The-

orem 1 depended on the property (9) of the Pontryagin

difference, and not its definition, any sequence of sets for
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which the property (9) holds can be used for the constraints.

(By definition, the Pontryagin difference (8) is the largest

set for which (9) holds.) For example, a constant sequence

of constraint sets can be employed Y(k + j|k) = Ỹ(j) ∀k
given by

Ỹ(0) =
⋂
k

Y(k)

Ỹ(j) =
⋂
k

{
Ỹ(j − 1)

∼ [C(k + j) + D(k + j)K(k + j|k + 1)]L(k + j|k + 1)W(k)
}

If the system is periodic, the intersection only need consider

one period of repetition. The resulting MPC optimization has

time-invariant constraints, reducing the computation over-

head, but retains the time-varying prediction model, hence

it still uses knowledge of system variation. This would be a

good approximation for a time-varying system with constant

constraints.

IV. CONTROL OF CONSTRAINED NONLINEAR SYSTEMS

This section describes how to apply the method in Sec-

tion III for the control of a nonlinear system.

A. Problem Statement for Nonlinear Case
The aim is to control a nonlinear system with discrete-time

dynamics

z(k + 1) = f(z(k),v(k), k) (18)

where z(k) is the state of the system and v(k) is the control

input. The system is subject to state and input constraints

z(k) ∈ Z(k) (19a)

v(k) ∈ V(k) (19b)

Assume that the system (18) is twice differentiable and that

the sets in (19) are compact. Also assume that a reference

trajectory consisting of states z̃(k) and inputs ṽ(k) is known,

satisfying (18) and (19).

B. MPC for Nonlinear Case
This section presents the conversion of the problem state-

ment in Section IV-A to the LTV form in Section II. The

method is based on a familiar linearization process, and

also includes transformations of the constraints. This section

then develops a guarantee of constraint satisfaction for the

nonlinear system despite the linearization error introduced.

The system (18) is linearized by taking perturbations

around the reference trajectory, giving the state and control

of the representative linear system

x(k) = z(k) − z̃(k) (20a)

u(k) = v(k) − ṽ(k) (20b)

Then the evolution of state x under control u is governed

by an LTV system of the form of (1) with matrices

A(k) =
∂f(z,v, k)

∂z

∣∣∣∣
z=z̃(k),v=ṽ(k)

(21a)

B(k) =
∂f(z,v, k)

∂v

∣∣∣∣
z=z̃(k),v=ṽ(k)

(21b)

The equivalent constraints to (19) acting on the perturba-

tions (20) can be expressed as a Pontryagin difference and

represent a simple shift of the sets Z(k) and V(k), easily

performed if these sets are polytopes

X (k) = Z(k) ∼ {z̃(k)} (22a)

U(k) = V(k) ∼ {ṽ(k)} (22b)

which can then be written in the form of (4) using

C(k) =
[

INx

0Nu×Nx

]
(23a)

D(k) =
[

0Nx×Nu

INu

]
(23b)

Y(k) = X (k) × U(k) (23c)

The effect of the linearization error on the LTV system is

captured in the affine disturbance w(k) in (1). Under the

assumption that the system (18) is twice differentiable and

that the sets in (19) are compact, then the linearization error

theorem [14] says that for every k, a set W(k) can be found

that bounds the linearization error

w(k) = f(z(k),v(k), k) − f(z̃(k), ṽ(k), k) (24)

− A(k)(z(k) − z̃(k)) − B(k)(v(k) − ṽ(k))

∈ W(k), ∀z(k) ∈ Z(k),v(k) ∈ V(k) (25)

These sets W(k) should be used for the constraint

tightening in (7). This completes the derivation

of the representative LTV system parameters

A(k),B(k),C(k),D(k),Y(k) and W(k). The method

in Section III can be applied to construct the MPC

optimization, which is employed in the following algorithm.

Algorithm 2 (MPC for Nonlinear System)
1) Find deviation from reference x(k) = z(k) − z̃(k)
2) Solve linearized problem P(k)
3) Apply control v(k) = u∗(k|k) + ṽ(k)
4) Increment k. Go to Step 1

Theorem 2 (Robust Feasibility for Nonlinear System):
If P(0) has a feasible solution then the system (18)

controlled by Algorithm 2 satisfies the constraints (19) and

all subsequent optimizations P(k) are feasible for all k > 0,

Proof: Begin by assuming that the constraints (19) are

always satisfied. This assumption must be verified as part of

the proof. Now find the dynamics of the state perturbation x

x(k + 1) = z(k + 1) − z̃(k + 1)
= f(z(k),v(k), k) − f(z̃(k), ṽ(k), k)

Then substituting from (24) gives an LTV system of the same

form as (1), including the affine disturbance w(k). Under the

assumption made at the start of the proof, the bound on w(k)
from (25) holds. Therefore, the result of Theorem 1 can be

applied, guaranteeing that all optimizations are feasible and

the constraints (6) on the LTV system are satisfied. Using

the constraint construction in (23), this implies x(k) ∈ X (k)
and u(k) ∈ U(k). Then using the construction of these

sets (22) and the property (9) of the Pontryagin difference,

this implies satisfaction of the constraints on the nonlinear
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system (19). Finally, this verifies the assumption made at the

start of the proof, completing the result.

V. EXAMPLES

A. Linear System with Time-Varying Constraints

This section demonstrates the method from Section III

applied to the control of a system with constant dynamics

but time-varying constraints. The system is a simple point

mass model

A(k) =
[

1 1
0 1

]
, B(k) =

[
0.5
1

]
∀k

subjected to a norm-bounded disturbance W = {w ∈
�2 : ‖w‖∞ ≤ 0.2}. The control is constrained to have

unit magnitude |u| ≤ 1 and the position has a sinusoidal

limit |x1| ≤ 0.8 + 0.2 sin(0.2k), hence

C(k) =
[ 1

(0.8+0.2 sin 0.2k) 0
0 0

]
, D(k) =

[
0
1

]
∀k

and the output set Y(k) = {y ∈ �2 : ‖y‖∞ ≤ 1} ∀k.

The cost function was weighted towards control �(u,x, k) =
1000u2+xT x. The problem used a horizon of N = 15 steps

and a candidate controller with M = 2 steps.

Figure 1(a) shows the results of 100 simulations of the

system, controlled using Algorithm 1 from Section III, each

run with different randomly-generated disturbances. The plot

shows the position x1, constrained to remain inside the

shaded area. It is clear that the constraints were satisfied

throughout. Also notice that the position frequently gets

close to the constraint boundaries. Since the cost function

penalized control effort more heavily than state deviation,

this shows that the controller was using all the available

position “space” in order to conserve control.

B. Response Shape Constraints

Figure 1(b) shows 100 simulation results for an example

in which the constraints define a convergence envelope.

The envelope is defined in terms of common step response

characteristics: rise time, settling time, and peak overshoot.

The system used in this example is the same as in

the previous section, except for the disturbance level and

constraints. The new disturbance set is W = {w ∈ �2 :
‖w‖∞ ≤ 0.02}. The modified constraints enforce a reduced

control magnitude and the output limits shown by the shaded

region in Figure 1(b). The output matrices are

C(k) =

⎡
⎢⎢⎣

1
ymax(k) 0

−1
ymin(k) 0

0 0
0 0

⎤
⎥⎥⎦ , D(k) =

⎡
⎢⎢⎣

0
0

−1
1

⎤
⎥⎥⎦ ∀k

and the constraint set is Y(k) = {y ≤ 1} ∀k where

the inequality holds for all elements. The convergence lim-

its ymax(k) and ymin(k) are defined as

ymax(k) =
{

ep, 0 ≤ k ≤ ks

es, ks < k

0 20 40 60 80 100 120 140 160 180 200
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time

P
os

iti
on

(a) Sinusoidally Varying Constraints

0 50 100 150 200
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

Time

O
ut

pu
t

(b) Convergence Constraints

Fig. 1. Plots of Position vs Time from 100 Simulations of Linear System
with Time-Varying Constraints. The constraints require the position to
remain within the shaded region.

ymin(k) =

⎧⎪⎨
⎪⎩

(
kr−k

kr

)
em +

(
k
kr

)
ep, 0 ≤ k ≤ kr

ep, kr < k ≤ ks

es, ks < k

where kr is the rise time, ks is the settling time, em is the

maximum step size, ep is the peak overshoot limit and es is

the settling limit.

Figure 1(b) shows 100 simulation results with randomly-

generated disturbances. Each example had an initial con-

dition x(0) = [−4 0]T . The step envelope settings were

kr = 20, ks = 60, em = 5, ep = 0.8 and es = 0.4. The

corresponding response envelope is shown by the shaded

region in Figure 1(b) and all 100 responses satisfy those

constraints.
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Fig. 2. Plots of angle error (top) and applied torque (bottom) from
500 simulations of nonlinear system. The constraints require the angle error
to remain within the shaded region.

C. Nonlinear System

This section demonstrates the application of the method

in Section IV to the control of a nonlinear system. A simple

pendulum is required to rotate about a horizontal axis at a

steady rate Ω = 1
50π. The pendulum is acted upon by gravity

and a driving torque at the pivot. The dynamics are nonlinear,

θ̈ + λ cos θ = τ + τD, where θ is the angle of displacement

from vertically down, λ = 0.2 is a constant combining the

mass, length and gravitational acceleration, τ is the driving

torque and τD ∈ [−0.05, 0.05] is a random disturbance

torque. Linearizing this system about the nominal trajectory

gives a time-varying linear system

ẋ =
[

0 1
−λ sin Ωt 0

]
x(t) +

[
0
1

]
u(t)

where x(t) = (θ(t) − Ωt, θ̇(t) − Ω)T and u(t) = τ(t) −
λ cos Ωt. This system was discretized with a time step of

1.0 s to generate a system of the form (1). The constraints

were |x1| ≤ 1
6 , |u| ≤ 1. The horizon N = 15 and

cost function were identical to that in the previous example.

The uncertainty sets W(k) were identified by experimental

simulation, similar to the adaptive method in Ref. [15].

Figure 2 shows the angle tracking error x1 and the applied

control torque τ from 500 simulations of the pendulum

system controlled by Algorithm 2 from Section IV. The

simulations used the nonlinear system model, controlled

using the linearized and discretized model within MPC.

The angle error always remains inside the shaded region,

indicating satisfaction of the constraints, but deviates within

that region, showing again that the control allows movement

within the constraint limits to reduce control effort.

VI. CONCLUSION

A formulation for Model Predictive Control has been pre-

sented for linear time-varying systems subject to persistent

disturbances. Under the assumption that the disturbance is

bounded, all optimizations are guaranteed to be feasible

and the constraints will be satisfied at all times. The new

controller is applicable to robust trajectory tracking for

nonlinear systems, by linearizing those systems about a

reference trajectory. The uncertainty model within the MPC

can incorporate the effect of linearization error. Simulation

results have demonstrated the controller applied to examples

with time-varying constraints and another example with time-

varying dynamics.
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