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Abstract— An extremum controller based on parameter
adaptive control is investigated in this contribution. The ob-
jective function to be minimized is parameterized using a
simple nonlinear model, and the control is based on real-
time estimation of the parameters of this model. Asymptotic
analysis of the extremum controller gives insight concerning the
compromise between two contradicting goals, namely accurate
control and accurate estimation. This is similar in spirit to
stochastic dual control. One motivation of this study is an
application to automotive engine control, which is briefly
described.

I. INTRODUCTION

In many applications it is of interest to minimize (or

maximize) a measurable quantity by manipulating a control

input. This gives rise to a somewhat different control problem

than is usually considered, and the term extremum control
has been used for this class of control problems for many

years. The extremum control problem does not lend itself

to a straightforward application of ordinary feedback control

— trying e.g. to convert it to a standard regulator problem

will immediately reveal a fundamental difficulty, namely the

change of sign of the process gain around the optimum.

Classical approaches to extremum control go back to the

1950s and 1960s. A couple of useful references from this

early development are [1] and [2]. A later overview with

an adaptive control perspective is [3]. The recent book [4]

contains many references and in addition presents stability

results for some of the classical perturbation based tech-

niques.

This paper is motivated by an application to combustion

engine control. In an ordinary spark ignited engine, the

engine efficiency (or net work) depends on the timing of

ignition. This is illustrated in Fig. 1, which is based on

experimental data from an engine rig. The figure shows the

net work from the engine as a function of TR50, a measure

of the combustion phasing, measured in crank angle degrees

(TR stands for Torque Ratio; TR50 as defined in [5] is calcu-

lated from a torque sensor signal). The optimal combustion

phasing depends on external variables like engine load and

angular speed. The state-of-the-art solution is to store this

dependence in the form of maps in the engine control system,

based on exhaustive calibration. In an on-going project, the

goal is to obtain a more accurate control by measuring the

crankshaft torque and using an on-line extremum controller.

The structure of the control system is depicted in Fig. 2. The
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Fig. 1. Net work of an engine as a function of ignition angle (left) and
combustion phasing, measured as TR50 (right, see text). CAD means Crank
Angle Degrees.

extremum controller adjusts the setpoint for TR50, which in

turn is controlled by an inner control loop, manipulating the

spark advance. See [5] for further details on this application.

The extremum controller applied to the application de-

scribed above is investigated in this contribution. The ap-

proach taken is to apply a very simple, static polynomial

model to the extremum control problem,

y(t) = ax2(t) + bx(t) + c, (1)

where y(t) is the measured quantity to be minimized, x(t) is

the manipulated control variable, and a, b, and c are model

parameters. If we have confidence in the model, it would be

natural to apply the control input

x(t) = − b

2a
(2)

which is obtained by minimizing y(t) with respect to x(t).
Using the idea of certainty equivalence (see e.g. [6]), it is
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Fig. 2. The control system investigated (W is estimated work, T is
measured torque, and α is the spark advance).
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then straightforward to replace the unknown model parame-

ters by their estimates, obtained from e.g. a recursive least

squares estimator.

The simple description above hides several difficult and

important issues. In practice, the extremum controller needs

to deal with modelling errors and disturbances. In addition,

the parameters of the model often vary in time (implying

e.g. that the optimal control x(t) varies), and the process

may have dynamics combined with the nonlinear static

characteristics. This gives rise to questions such as stability,

parameter identifiability and convergence, noise rejection and

tracking properties. Some of these issues will be considered

in this paper.

A method, similar to the one described above, has been

used in [7] for exactly the same application as considered

here. The algorithm investigated in [7] differs from the one

used here in two ways. Firstly, a model in incremental form

is used, i.e. the data used is ∆y(t) = y(t) − y(t − 1) and

∆x(t) = x(t) − x(t − 1). Secondly, the algorithm used and

analyzed estimates the curvature of the model nonlinearity,

a procedure we have found less suitable, for reasons we will

explain later on.

The next section gives a more detailed description of the

extremum controller. An asymptotic analysis is carried out

in section III, and conclusions are drawn concerning the

convergence properties. The role of probing in the control

law is analyzed in section IV. Simulations illustrating the

performance of the extremum controller are provided in

section V, and conclusions end the paper.

II. AN EXTREMUM CONTROLLER

As outlined in the introduction, our extremum controller

is based on the static model

y(t) = ax2(t) + bx(t) + c, (3)

where we assume from now on that a > 0, i.e. we are dealing

with a minimization problem. The reason for choosing this

model is primarily its simplicity; in addition, it can be

argued that many objective functions can, at least locally, be

approximated by a second order polynomial. The parameter

adaptive approach we are adopting is based on a combination

of parameter estimation and control, using the certainty

equivalence principle. We will treat these two parts in the

following sections.

A. Real-time Parameter Estimation

It is straightforward to formulate a linear regression prob-

lem based on the model (3), and to estimate the three

parameters a, b, and c. However, it turns out that this gives

a control signal with an extremely erratic behavior. One

way to explain this is that with standard assumptions, the

parameter estimates are described by Gaussian distributions.

The quotient of two such estimates – as suggested by the

control law (2) – has a Cauchy distribution, which does not

have a finite variance. Hence, such a control signal is not

suitable. As has been described in [7] for a similar problem,

this can to some degree be circumvented by introducing

limitations of the parameter estimates, e.g. avoiding estimates

of a becoming too close to zero; however, we will choose

another route here.

As a remedy of the problem mentioned, the parameter a
in the model is fixed to an a priori estimate of the curvature

of the true system’s objective function. Thus, the resulting

model becomes

y(t) = ax2(t) + bx(t) + c = ax2(t) + θT ϕ(t), (4)

where θT = [b c] contains the parameters to be estimated

and ϕT (t) = [x(t) 1] contains the regressors.

The recursive least-squares (RLS) algorithm is used to

update the parameter estimates θ̂:

θ̂(t) = θ̂(t − 1) + P (t)ϕ(t)ε(t)

ε(t) = y(t) − ax2(t) − θ̂T (t − 1)ϕ(t) (5)

P (t) =
1
λ

(P (t − 1) − P (t − 1)ϕ(t)ϕT (t)P (t − 1)
λ + ϕT (t)P (t − 1)ϕ(t)

)

Here, 0 < λ ≤ 1 is the forgetting factor, and ε is the

prediction error. The matrix P (t) can, in the case λ = 1,

be interpreted as the estimated covariance matrix of the

parameter estimates.

B. Control Law

Assuming that the vector of parameter estimates θ̂T (t) =
[b̂(t) ĉ(t)] are obtained by the RLS algorithm, the following

control law is used:

x(t + 1) = − b̂(t)
2a

+ f(t + 1) (6)

This is basically the certainty equivalence control law corre-

sponding to (2), i.e. the unknown parameter b is replaced by

its most recent estimate b̂(t). We note that there is a delay

of one sampling interval in the controller, since the plant

model (3) has no delay; note also that the estimate ĉ(t) does

not affect the control law. The additional term f(t) is an

extra probing signal. It is motivated by the risk of losing

identifiability when the excitation becomes weak (as would

be the case for an almost constant estimate b̂). The argument

will be substantiated in the analysis to follow, and guidelines

will be provided for the choice of f(t). Let it suffice here to

say that it is assumed that f(t) is periodic with period Tf

and that the following relations hold:

Tf−1∑
t=1

f(t) =
Tf−1∑
t=1

f3(t) = 0 (7)

1
Tf

Tf−1∑
t=1

f2(t) = ρ2
f (8)

The conditions (7) are fulfilled if f(t) is symmetric around

zero, as is the case for e.g. a sinusoid or a square wave. The

parameter ρf can be seen as the RMS value of f .
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C. The Extremum Control Algorithm

The final extremum control algorithm is obtained by

combining, in the classical way, identification and control.

The algorithm is as follows:

1) Record the latest control input x(t) and system output

y(t).
2) Update the parameter estimates according to (5), re-

sulting in estimates θ̂T (t) = [b̂(t) ĉ(t)].
3) Apply the control signal (6) to the process.

4) Update the time index t → t + 1 and go to 1.

The state (“memory”) for this algorithm is comprised of

(θ̂(t), P (t), x(t)).

III. ASYMPTOTIC ANALYSIS

A. Method of Analysis

The asymptotic properties of the extremum controller

described in the previous section will now be analyzed using

Ljung’s ODE analysis, similarly to the analysis in [7]. In [8]

it is shown that the asymptotic properties of many recursive,

stochastic algorithms, like the one given by (5) and (6), can

be analyzed in terms of an associated ordinary differential

equation (ODE). In our case, the ODE is given by

d

dτ
θ(τ) = R−1(τ)E{ϕ(t, θ)ε(t, θ)} (9)

d

dτ
R(τ) = E{ϕ(t, θ)ϕT (t, θ)} − R(τ) (10)

The operator E is defined by

E(·) = lim
N→∞

1
N

N∑
t=1

E(·), (11)

where E denotes expectation with respect to the stochastic

disturbance e(t). The variables ϕ(t, θ) and ε(t, θ) are the

stationary processes, obtained by “freezing” the parameter

estimates at a constant value θ in the relations defining ϕ and

ε, respectively. The matrix variable R corresponds to P−1,

normalized by time. The significance of this ODE is that

its solutions predict the asymptotic behavior of the solution

to the original recursive algorithm, assuming no forgetting

of old data, i.e. λ = 1. In practice, the ODE gives useful

indications of algorithm properties even when λ < 1.

In [8], it is shown that under quite general assumptions,

the ODE can be used to conclude the following:

• Possible convergence points of the original algorithm

are stable stationary points of the ODE (9), (10).

• If the variables of the original algorithm belong to the

domain of attraction of a stable stationary point (θ∗, R∗)
of the ODE infinitely often w.p.1, then (θ̂(t), 1

t P
−1(t))

will converge w.p.1 to this stationary point as t tends

to infinity.

B. Assumptions on the True System

In order to apply the results of the previous section, we

need to make certain assumptions about the actual system

and the data it generates. We assume that the true system

admits a description, which is compatible with the model

(4). The system output is thus given by

y(t) = a0x
2(t) + b0x(t) + c0 + e(t)

= a0x
2(t) + θT

0 ϕ(t) + e(t),
(12)

where {e(t)} is a sequence of independent, identically dis-

tributed random variables with zero mean and variance σ2.

We will assume that the model curvature a in (4) and the

system’s curvature a0 have the same sign; without loss of

generality it is assumed to be positive in the sequel.

C. Stationary Points and Local Stability Analysis

Going back to the analysis of the adaptive optimizer using

the ODE approach, the quantities used in (9) and (10) have

to be computed. For easy reference, define

g(θ) = E{ϕ(t, θ)ε(t, θ)} (13)

G(θ) = E{ϕ(t, θ)ϕT (t, θ)} (14)

From the definition of ϕ(t) in (4) we get

G(θ) = E

[
x2(t) x(t)
x(t) 1

]
=

[
( b
2a )2 + ρ2

f − b
2a

− b
2a 1

]
(15)

where the definition (6) of x(t) and the properties (7) and (8)

of f(t) have been used. Using (5) and the system description

(12), we obtain

g(θ) = E ϕ(t, θ)[(a0 − a)x2(t) + (θ0 − θ)T ϕ(t, θ) + e(t)]

= (a0 − a)
[
Ex3(t)
Ex2(t)

]
+ G(θ)(θ0 − θ)

= (a0 − a)
[−( b

2a )3 − 3b
2aρ2

f

( b
2a )2 + ρ2

f

]
+ G(θ)(θ0 − θ)

(16)

The immediate impression from (16) is that correct esti-

mates of θ0 can be expected only when the a priori estimate

of the curvature is correct, i.e. a = a0. However, a further

look at the condition for a stationary point of (9), i.e. g(θ) =
0, reveals a more encouraging result — setting g(θ) = 0 in

(16) and solving for (θ − θ0) gives:

θ − θ0 = (a0 − a)G−1(θ)
[
Ex3(t)
Ex2(t)

]

=
a0 − a

ρ2
f

[
1 −Ex(t)

−Ex(t) Ex2(t)

] [
Ex3(t)
Ex2(t)

]

= (a0 − a)
[ − b

a

ρ2
f − ( b

2a )2

]
,

(17)

which finally gives the following parameters at the stationary

point: ⎧⎪⎨
⎪⎩

b∗ =
a

a0
b0

c∗ = c0 + (a0 − a)(ρ2
f − (

b0

2a0
)2)

(18)

Note that b∗/a = b0/a0 at the stationary point, so that

the latter corresponds to a correct estimation of the position

of the optimum, in spite of a possibly erroneous a priori
estimation of the curvature a0. The computations carried
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out above implicitly assume that the probing signal is non-

vanishing, i.e. ρ2
f > 0. Without the probing signal, G(θ)

would become singular and the set of stationary points

becomes a one-dimensional manifold in the parameter space.

The ODE analysis requires stationary points to be stable

in order for these to be possible convergence points for

the original algorithm. This condition is fulfilled for our

algorithm; a linearization of (9) and (10) at the stationary

point θ∗, defined by (18), results in a block triangular system.

The eigenvalues associated with the R part are all −1 and

the θ part is characterized by the “system matrix”

G−1(θ∗)
∂g(θ)
∂θ

∣∣∣∣
θ=θ∗

=
1
ρ2

f

[
1 b0

2a0
b0
2a0

( b0
2a0

)2 + ρ2
f

][
−( b0

2a0
)2 − a0

a ρ2
f

b0
2a0

b0
2a0

−1

]

=
[ −a0

a 0
(1 − a0

a ) b0
2a0

−1

]
(19)

This matrix is asymptotically stable as long as the sign of

a is the same as the sign of a0 — certainly a reasonable

assumption. The analysis can now be summarized as

Result 1: The adaptive optimizer (5), (6) is applied to

the system (12), assuming the a priori estimate a and the

corresponding system parameter a0 have equal sign. Then

there is one possible convergence point (θ∗, R∗), defined by

(18) and R∗ = G(θ∗). The corresponding control signal,

averaged over the period of the probing signal, is optimal.

This result is obtained using stochastic averaging by the

ODE method. Alternatively, very similar stability results

could be obtained in a deterministic setting using con-

ventional averaging techniques along the same lines as in

e.g. [4].

D. Global Stability Analysis

The convergence analysis made so far has only been

local. As stated in the beginning of this section, further

analysis of the associated ODE can give stronger results. The

standard tool to deduce stability properties of the differential

equation is then to use Lyapunov functions. However, the

differential equation for our problem is not easy to analyze

— it is strongly non-linear and of 5th order (taking into

account the fact that P is symmetric). To give an idea of the

character of the dynamics of the ODE, a few trajectories of

θ(τ) are shown in Fig. 3. In the same figure, level curves

of the criterion to be minimized by the RLS algorithm,

V (θ) = Eε2(θ) are depicted. From the figure, it can be

seen how the trajectories converge to the optimum position,

located at the bottom of a curved “valley”.

Simulations of the ODE indicate that the stationary point

has a large domain of attraction, and it may even be globally

stable in many cases. However, so far we have not been able

to prove this theoretically. It should also be pointed out that,

in order to guarantee convergence of the original algorithm

using the ODE method, a separate boundedness condition

b

c
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Fig. 3. Parameter trajectories (θ(τ)) of the associated ODE for different
initial conditions. Level curves of the function V (θ) = Eε2(t, θ) are also
shown. The trace with dots represents one run with the extremum controller.

needs to be fulfilled. It seems from simulations that this can

not be expected for large enough initial parameter errors.

IV. THE TRADE-OFF BETWEEN ESTIMATION

AND CONTROL

In the convergence analysis it was assumed that the

probing signal f(t) is non-vanishing, i.e. ρ2
f > 0. Even

though this entered as a technical condition in the analysis,

it is also intuitively clear that a probing signal is needed in

order to avoid identifiability issues. However, it is equally

clear that there is a penalty involved in making the probing

signal too large — it will eventually drive the control signal

too far away from the optimum position. This leads to

the important question how the probing signal should be

designed, a question which we will now address. An early

contribution dealing with a similar problem can be found

in [9].

A. Analysis of Variance

We assume in the subsequent analysis that the parameters

θ̂(t) converge asymptotically to the stationary point θ∗, given

by (18), and we will analyze the stochastic variations around

the limit. This is an idealized case, which e.g. assumes that

λ = 1, but the results give useful information also about the

case λ < 1.

We will base our analysis of variance on the result given

in [10], Theorem 9.1, for a class of prediction error methods.

There, it is shown that under a set of fairly weak conditions,

the parameter estimates are asymptotically normal distributed

with mean θ∗ and covariance

cov θ̂(t) =
σ2

t
E{ψ(t, θ∗)ψT (t, θ∗)}−1, (20)

where ψ(t, θ) = ∂
∂θ ε(t, θ).

Remark 1: Care should be taken when applying this result

to our problem. First, the derivation of this result uses the fact

that the prediction errors ε(t, θ∗) corresponding to the “true”

parameters are independent stochastic variables; in our case

ε(t, θ∗) = (a0−a)(f2(t)−ρ2
f )+e(t), so that this is no longer
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true if a �= a0. However, it turns out that the derivation is

still valid with small modifications. The second issue to point

out is that the data is generated in closed loop, where the

control action is dependent on current parameter estimates.

This makes it nontrivial to verify basic assumptions on the

quasi-stationary behavior of input and output data. We will

carry out the analysis disregarding this fact, and return to

this question later on.

From the expression for ε as used in (16), the following

is obtained:

ψ(t, θ∗) =
[

1
2a (b − b0 + a0

a b) − a0
a f(t)

−1

]
b=b∗

=
[

b0
2a0

− a0
a f(t)

−1

] (21)

from which we get

E{ψ(t, θ∗)ψT (t, θ∗)} =

[
( b0
2a0

)2 + (a0
a )2ρ2

f − b0
2a0

− b0
2a0

1

]
(22)

Let us define the average output over one period of the

probing signal as follows:

Ef{y(t)} =
1
Tf

t+Tf−1∑
k=t

Ey(k) (23)

Using the system description (12) and the control law (6),

the following is obtained (neglecting the time argument for

the estimates):

Ef{y(t)}

= Ef

{
a0(f(t) − b̂

2a
)2 + b0(f(t) − b̂

2a
) + c0 + e(t)

}
= Ef

{
a0(

b0

2a0
− b̂

2a
)2 − b2

0

4a0
+ (b0 − a0

a
b̂)f(t)

+ a0f
2(t) + c0 + e(t)

}
= yopt +

a0

4a2
cov b̂ + a0ρ

2
f

(24)

where yopt is the output value at the optimum. From the

last term in this expression, it can be seen that a large

probing signal deteriorates the performance. However, since

the covariance of the estimate b̂ depends on ρ2
f , there is a

trade-off in the choice of probing signal power — using (20)

and (22) in (24), it follows that

Ef{y(t)} − yopt =
1

4a0

σ2

t

1
ρ2

f

+ a0ρ
2
f (25)

The right hand side of (25) shows how much the perfor-

mance deteriorates relative to the theoretical optimum. The

first term is the result of parameter estimate variance, which

of course decreases with increasing ρ2
f , whereas the second

term is the result of adding the probing component to the

certainty equivalence control law — this term improves with

a decreasing ρ2
f . By differentiating the right hand side of

(25) with respect to the design variable ρ2
f , we get

∂

∂ρ2
f

[Ef{y(t)} − yopt] = a0(1 − σ2/t

4a2
0(ρ

2
f )2

) (26)

and by equating this to zero, the optimal probing power and

the corresponding output is given by

ρ2
f =

σ/(2a0)√
t

⇒ Ef{y(t)} − yopt =
σ√
t

(27)

The analysis has been carried out for the case λ = 1,

i.e. without any discounting of old data in the estimation.

In practice, we would like to use the algorithm with λ < 1.

A rule of thumb often used is that the “effective” number

of data (or the memory length) used for estimation when

λ < 1 is roughly 1/(1 − λ), see e.g. [10]. Based on this

rule of thumb, we would expect the results above to hold,

at least approximately. If so, the optimal probing power and

the corresponding output would be given by

ρ2
f =

σ
√

1 − λ

2a0
⇒ Ef{y(t)} − yopt ≈ σ

√
1 − λ (28)

Result 2: The probing signal f(t) for the adaptive opti-

mizer (5), (6), applied to the system (12) (assuming a and

a0 have equal sign), asymptotically affects the total system

performance in two conflicting ways; estimation is improved

and control is impaired, see (25). The optimal trade-off for

the case with discounting of old data is given by (28).

This result resembles the classical trade-off between esti-

mation and control in dual control problems, see e.g. [11],

[6]. A distinction is that we have assumed a stationary

probing signal and an asymptotic analysis, so that the only

remaining task is to determine the power of the probing

signal; other characteristics of the probing signal, e.g. the

frequency, has no effect in the asymptotic analysis.

V. SIMULATION RESULTS

The proposed extremum controller has been applied to a

simulated process, described by

y(t) = a0x
2(t) + b0x(t) + c0 + e(t), (29)

with a0 = 1, b0 = 2, c0 = 1, and the noise variance σ2 =
0.1. Thus, the optimal control input is xopt = −1 and the

corresponding output is yopt = 0.

The extremum controller is applied to this system, using an

a priori curvature estimate a = 2, i.e. a factor of 2 larger than

the true value. The value of the forgetting factor λ = 0.99.

A sinusoidal probing signal with frequency 0.1 rad/s and

amplitude A is used (implying ρ2
f = A2

2 ).

Fig. 4 gives an illustration of the role of the probing

signal. The average value of the output is depicted as a

function of the probing signal amplitude A. As can be seen

from the figure, there is a close correspondence between

the theoretical expression (24) and actual algorithm results

for a range of different perturbation amplitudes from the

optimal value and above. However, for smaller perturbation

amplitudes the extremum controller performs better than
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Fig. 5. Parameter estimate b̂(t) for two different perturbation amplitudes
A. Solid, irregular curve: A = 0.03. Dashed curve: A = 0.5.

what theory predicts. The reason seems to be exactly what

was discussed in the previous section — the very small

perturbation levels give parameter estimates that behave very

irregularly, i.e. far from the quasi-stationarity on which the

analysis is based. This can clearly be seen in Fig. 5, where

the parameter estimates b̂(t) for two different perturbation

levels are shown. Despite the fact that the strongly varying

parameter estimates give excitation enough in order for the

controller to work quite satisfactorily, the recipe (28) for the

probing level seems as a good design rule, since this leads

to more regular and well behaved estimates.

The system input and output for the same example are

depicted in Fig. 6. In this case, the perturbation level has

been selected according to (28).

VI. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

Motivated by an automotive engine application, an ex-

tremum controller has been proposed in this contribution.

The controller is based on real-time identification of a simple

polynomial, static model, combined with a certainty equiv-

alence controller. The asymptotic convergence properties

deduced from a theoretical analysis are encouraging. An
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Fig. 6. System input and output for a medium perturbation level.

asymptotic analysis of variance of the parameter estimates

has given guidelines for the design of a probing signal, which

has to be added in order for the algorithm to be able to track

a time-varying system.

B. Future Works

The extremum controller presented and analyzed in this

contribution will be used in the near future in experiments

on a 5-cylinder passenger car engine. The objective of these

experiments is to optimize the net work of the engine by

manipulating the setpoint of an inner feedback loop. Further

details of this application can be found in [5].

There are several important theoretical issues to consider

further. The stability and convergence analysis needs to be

extended, and the algorithm’s ability to handle dynamics

should be investigated. It would also be of interest to

compare the properties of the algorithm with other schemes

suggested in the literature, e.g. the ones described and

analyzed in [4].
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