
A Case Study in Scheduling Reentrant Manufacturing Lines: Optimal
and Simulation-Based Approaches

José A. Ramírez-Hernández and Emmanuel Fernandez

Abstract— This paper presents initial results of a research
study in the optimal scheduling (i.e., job sequencing) in Reen-
trant Manufacturing Lines (RML), motivated by applications
in semiconductor manufacturing. In particular, a simple bench-
mark RML is utilized, and the optimal scheduling policy
is analyzed for an infinite horizon discounted cost problem
formulation. The optimality equation and condition are derived,
and optimal policy results are obtained for general non-negative
one-stage cost functions (in the buffer size). Computational
experiments are also performed using the Modified Policy
Iteration algorithm. Preliminary experiments on the application
of a Neuro-Dynamic Programming (NDP) method (i.e., Q-
learning) to approximate the optimal scheduling policy are then
presented, when linear and quadratic one-stage cost functions
are considered. These experiments show that the Q-learning
algorithm gradually approximates the optimal policy as the
number of iterations increases and longer simulation lengths
are utilized. However, the computational load required by the
algorithm increases exponentially with the number of states.
Results from this study represent an initial and exploratory
research in the application of NDP methods to large-scale RML
systems. More extensive research in both exact optimal results
and efficient NDP schemes is in progress.

I. INTRODUCTION

For the last two decades, the rapid development and eco-
nomic impact of the semiconductor manufacturing industry
has substantially increased the amount of research conducted
on the analysis, modeling, and control of Reentrant Manufac-
turing Lines (RML) [1], [2], [3], [4], [5]. RML are systems
in which the parts being fabricated return to one or more
work stations (e.g., group of tools) on a repeated basis.
This body of research has been justified by the complexity
associated with these systems. For instance, in the fabrication
of Very Large Scale Integration (VLSI) electronic circuits,
the number of processing steps required to obtain a finished
device can be easily counted in the hundreds [6]. In terms of
modeling, analysis, and control, such complexities are rep-
resented by large state spaces and intractable mathematical
models, and, therefore, the difficulties to design optimal or
near to optimal control policies are increased [7].

The main control problem in RML, and its application
to semiconductor manufacturing systems (SMS), is known
as Floor Shop Control (FSC) [8]. It focuses on scheduling
problems [5], which are also categorized as: job sequencing
and input regulation. In the former task, decisions are made
to select which lot of material will be served next when two
or more lots are waiting, and a tool or machine is available
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to receive work. In the latter, the decisions are either release
or not a new lot into the system at a given time. Different
approaches have been studied for FSC in SMS [8], [1], [9],
most of them based on heuristics, control theory, and artificial
intelligence.

The control of some RMLs is a difficult task because of
the complexity of such systems. For instance, realistic RML
models for SMS are composed of dozens of queues and
hundreds of steps in the manufacturing process [5]. Thus, an-
alytical model complexity leads to intractable exact optimal
control solutions, except for simple benchmark problems.
However, it is a widespread practice in the semiconductor
manufacturing industry to develop and maintain sophisti-
cated simulation models to assess the impact of operations
in overall performance. This may facilitate the successful
application of simulation-based optimization methods such
as Neuro-Dynamic Programming (NDP) [10].

The purpose of this paper is then to address both analytical
and simulation-based approaches in the optimization of RML
scheduling and its possible application to SMS. The work
presented here is motivated in part by previous research in
optimal scheduling and capacity allocation in semiconductor
manufacturing conducted by the authors and others [11],
[12], [13]. The first objective of this paper is to present
the optimality equations and condition for the scheduling
(i.e., job sequencing) of a simple benchmark RML, under
an infinite horizon discounted cost (DC) formulation [14],
[15] and under general non-negative one-stage cost functions
(in the buffer size). In this paper, the DC criterion was
selected considering the current dynamics in the semiconduc-
tor industry, where costs and benefits in the short-term are
important (e.g., during ramp-up of new products [16]) given
the short life-cycle of semiconductor devices [17]. Although
the RML model presented in this paper is quite simple, the
results obtained from this exercise are valuable to study and
understand the basic difficulties associated with the synthesis
of optimal (or near to optimal) scheduling policies in RML
for SMS.

The second objective is to present initial results of our
exploratory research in the application of the NDP methods
for the approximation of optimal RML scheduling policies,
specifically, by using the Q-learning algorithm [10], [18],
[19], [20]. In this case, our objective was to assess the
feasibility of applying NDP by utilizing a benchmark model
with a known optimal policy, and later on study its scalability
to more complex models for which optimal solutions may
not be known. Therefore, we present results of the effect
of varying the parameters of Q-learning on the performance
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obtained by policies derived by utilizing this algorithm.
This paper is organized as follows: in section II, we present

the general model for the benchmark RML. The optimization
model using an infinite horizon discounted cost is presented
in section III. The main analytical results are presented in
section IV, followed by the numerical examples of optimal
policies obtained through the MPI algorithm in section
V. The application of Q-learning to approximate optimal
scheduling policies is discussed in section VI. Conclusions
are presented in section VII.

II. BENCHMARK REENTRANT
MANUFACTURING LINE MODEL

The model of the benchmark RML discussed in this
paper has been previously presented in e.g., [21], [5],
[22]. As shown in Figure 1, the RML model consists of
a manufacturing line with three buffers and two machines.

Machine 1 Machine 2  
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l 
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1µ 2µ
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λ
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Buffer 1 

Buffer 3 

Buffer 2 

Fig. 1. Benchmark Reentrant Manufacturing Line.

The state of the system is represented as the tuple s(t) ≡
(i(t), j(t), l(t)) corresponding to the buffer levels at time t,
with s(t) ∈ S, and S := {(i, j, l)|i, j, l ∈ Z

∗} as the state
space. For this system, control decisions deal with in job
scheduling in the manufacturing line. In other words, the
control system needs to select between Buffer 1 or Buffer 3
to be served next in Machine 1. Therefore, the set of control
actions is defined by U := {0, 1}, where u = 1 when the
action is serve Buffer 1, and u = 0 when the control is serve
Buffer 3. Thus, the system corresponds to a Semi-Markov
Decision Process (SMDP) with a continuous-time Markov
chain where the state is given by the tuple s(t).

This system has a simple production sequence: new part
arrival→Buffer 1, Machine 1→Buffer 2, Machine 2→Buffer
3, Machine 1→Exit. The processing times at each machine
are exponentially distributed with means 1

µ1
, 1

µ2
, and 1

µ3
=

1
µ1

, respectively. The arrival of lots of material are also
exponentially distributed with mean 1

λ .

III. OPTIMIZATION MODEL: INFINITE HORIZON
DISCOUNTED COST

The optimization model considers the minimization of an
infinite horizon discounted cost as follows:

lim
N→∞

E

{∫ tN

0

e−βtg (s(t), u(t)) dt

}
, (1)

where β is a positive scalar, and g (s(t), u(t)) is a
continuous-time cost which is a function of the state s(t) and
the control action u(t) ∈ U at time t. In order to obtain a

discrete-time optimization model, a discrete, and statistically
equivalent, version of the continuous-time Markov chain
of the system presented in section 2 is obtained through
the procedure of uniformization [23], [15]. The resulting
Bellman’s equation has the following form:

J(s) = min
u∈U(s)

E {g̃ (s, u) + αJ(f(s, u))} , (2)

where g̃ (s, u) is the one-stage cost, and α is a discount
factor, with 0 < α < 1. The next state function is given
by f(s, u), with s ∈ S, and u ∈ U . For the discrete-time
system, the discount factor and the one-stage cost are defined
as follows [15]:

α =
ν

β + ν
, (3)

g̃ (s, u) =
g (s, u)
β + ν

, (4)

where ν is the uniform transition rate, with ν ≥ νs(u) for
all s ∈ S, u ∈ U ; and νs(u) is the transition rate at the state
s given the control u. For the benchmark RML system, ν is
defined as follows:

ν = λ + µ1 + µ2 + µ3. (5)

We follow the state transition equations representation pre-
sented in [5], which are based on the uniformization pro-
cedure. Thus, let {τn} a sequence of times where the
continuous-time Markov chain is sampled with τ0 = 0.
Each time instant where the system change its state is
considered a sample time in the uniformized version. It is
also assumed that the control policy does not change during
the interval [τn, τn+1). These type of policies are defined as
non-interruptive [5]. Similarly, the control design is limited
to non-idling policies [5], [22] where a tool or machine is
not permitted to remain idle if at least one buffer has one or
more lots to be processed. Finally, if s(τn) = (i, j, l), then
the state transition equations are as follows [5]:

s(τn+1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i + 1, j, l) w.p λ
ν

((i − 1)+, j + I(i), l) w.p. µ1
ν

if u = 1

(i, (j − 1)+, l + I(j)) w.p. µ2
ν

if u = 1 or 0

(i, j, (l − 1)+) w.p. µ3
ν

if u = 0

(i, j, l) otherwise,

(6)

where (•)+ = max(0, •), and I(δ) =
{

1 if δ > 0
0 if δ ≤ 0

.

Thus, the Bellman’s equation can be expressed in the fol-
lowing way:

J(s) =
1

β + ν
min

u∈U(s)
[g (s, u) + ν

∑
s′

p̃(u)ss′J(f(s, u))],

(7)
where s, s′ ∈ S, and s′ represents the next state, with
s′ = s(τn+1) = f(s, u), and p̃(u)ss′ = P{s′|s, u} is the
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Fig. 2. State transitions diagram for the benchmark RML system.

conditional transition probability for the uniform version of
the continuous-time Markov chain. Figure 2 depicts the state
transition diagram of the benchmark RML.

IV. OPTIMAL SCHEDULING POLICY

This section presents the main result of this paper, which
is an optimal scheduling (i.e., job sequecing) solution for
the benchmark Reentrant Manufacturing Line (RML). This
RML was also utilized by Suk and Cassandras [21] to derive
an optimal solution in the case of buffers with finite capacity
and for a non-linear one-stage cost. Here we present the case
of infinite capacity and general non-negative one-state cost
functions. Before presenting the results, however, we provide
several assumptions, definitions, and some notation.

A. Assumptions, definitions, and notation

The following assumptions are made for the scheduling
problem of the benchmark RML.

Assumption 1: The one-stage cost function g(s,u) is as-
sumed to depend only on the state s ∈ S. Then g(s,u) ≡
g(s).

Definition 1: The componentwise partial order on S,
denoted "≤cw", is defined as follows: for any v =
(v1, v2, v3), w = (w1, w2, w3)∈S, we say that w ≤cw v
iff wq ≤ vq for q=1, 2, 3; and for all w, v ∈ S.

Consider h : S → R, such that h(s) ≥ 0 ∀ s ∈ S. If
h(w) ≤cw h(v) for any w, v ∈ S, w ≤cw v, then h(·) is said
to be non-negative and monotonically nondecreasing with
respect to the componentwise partial order "≤cw".

Assumption 2: The one-stage cost function g(s) is a non-
negative function and monotonically nondecreasing with
respect to the usual componentwise partial order "≤cw" for
all s ∈ S.

Assumption 2 is natural for the scheduling problem in
the benchmark RML; that is, it is expected to obtain higher
costs as the work in process is increased at each buffer of
the system. We also assume that work starvation is avoided
in the benchmark RML; therefore, there is a set of states
for which a non-idling stationary policy is applied. For the
benchmark RML system, this policy is defined as follows:

Definition 2: In the benchmark RML, a stationary
scheduling policy πNI = {u, u, u, ...}, where u(s) : S →

U , is non-idling if
u = 1 for all i > 0, l = 0, and j ≥ 0 ,
u = 0 for all l > 0, i = 0, and j ≥ 0, and
u = 0 for all i = 0, l = 0, and j ≥ 0.
In addition, the set of states for which the non-idling condi-
tions are applied is defined as SNI . Therefore, the subset
of states for which a decision has to be made from the
Bellman’s optimality equation is defined as

SNI := {(i, i, j) ∈ S|i > 0, j ≥ 0, l > 0}, SNI ⊆ S. (8)

The following notation is utilized throughout this paper: let
J(i, j, l) ≡ J(s) and g(i, j, l) ≡ g(s), where the system’s
state is represented by the tuple (i, j, l). The Bellman’s
optimality equation for the scheduling problem of the RML
can then be rewritten as follows:

J(i, j, l) = 1
β+ν

[g(i, j, l) + λ J(i + 1, j, l)+

µ2J(i, (j − 1)+, l + I(j)) + µ3 J(i, j, (l − 1)+)+

µ1J(i, j, l) + µ1minu {u · ∆(i, j, l)}] ,

∀ (i, j, l) ∈ S,

(9)

where,

∆(i, j, l) = J((i − 1)+, j + I(i), l) − J(i, j, (l − 1)+)

∀ (i, j, l) ∈ S.
(10)

Finally, the following definition will be utilized in the pre-
sentation of several results in the next subsections.

Definition 3: Let (i, j, l), (i′, j′, l′) ∈ S, where i′ ≥ i,
j ≥ j′, and l ≥ l′; with corresponding costs J(i, j, l) and
J(i′, j′, l′). Then

∆′(i, j, l, i′, j′, l′) ≡ J(i, j, l) − J(i′, j′, l′). (11)

B. Results

From the previous subsection and (9), the general opti-
mality condition below follows immediately.

Theorem 1: For the scheduling problem of the benchmark
RML, if (i, j, l) ∈ S, then it is optimal to serve buffer 3 iff
the state (i, j, l) ∈ S3 ⊆ S, where

S3 = { (i, j, l) ∈ S|∆(i, j, l) ≥ 0} .

Otherwise, it is optimal to serve buffer 1.
Lemma 1: For the scheduling problem of the bechmark

RML, let (i, j, l), (i′, j′, l′) ∈ S, where i′ ≥ i, j ≥ j′,
l ≥ l′, and let ∆′(i, j, l, i′, j′, l′) given in Definition 3. Then,
∆′(i, j, l, i′, j′, l′) ≥ 0 ∀ (i, j, l), (i′, j′, l′) ∈ S if

g(i, j, l) − g(i′, j′, l′) ≥ 0, (12)

otherwise ∆′(i, j, l, i′, j′, l′) < 0.
Proof: The proof is given by induction and value

iteration. Due to space restrictions is not included here,
see [24].

Theorem 2: For the scheduling problem of the benchmark
RML it is optimal to serve buffer 3 if

g((i − 1)+, j + I(i), l) − g(i, j, (l − 1)+) ≥ 0, (i, j, l) ∈ S,
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otherwise it is optimal to serve buffer 1.
Proof: By considering that

∆(i, j, l) = ∆′((i − 1)+, j + I(i), l, i, j, (l − 1)+),

the proof of Theorem 2 follows immediately from Theorem
1 and Lemma 1.

Intuitively, we can interpret the results in Theorem 2 as
follows: at each state transition in the benchmark RML it is
optimal to serve the buffer that generates the next state with
the smaller one-stage cost, i.e., the optimal policy exhibits a
myopic behavior.

Corollary 1: Let (i, j, l) ∈ SNI ⊆ S, then it is optimal to
serve buffer 3 if

g(i − 1, j + 1, l) − g(i, j, l − 1) ≥ 0,

otherwise it is optimal to serve buffer 1.

C. Examples

The following are two simple examples where a linear and
a quadratic one-stage are utilized.

Example 1: Let g(i, j, l) = i + j + l and the state is in
SNI . Thus, by applying Theorem 2 and Corollary 1, it is
optimal to serve buffer 3 ∀ s ∈ SNI since

g(i − 1, j + 1, l) − g(i, j, l − 1) = 1 > 0.

This policy is identical to the so-called Shortest Processing
Time (SPT) policy [1], [9] where the parts or lots with
smaller processing times ahead receive a higher priority to
being served.

Example 2: Let g(i, j, l) = i2 +j2 + l2, and the state is in
SNI . Thus, from Theorem 2 and Corollary 1, it is optimal
to serve buffer 3 if and only if

j + l +
1
2
≥ i ⇔ j + l ≥ i, with i, j, l ∈ Z

∗. (13)

Numerical solutions for examples 1 and 2 are described in the
next section, where the MPI algorithm is utilized to compute
the optimal policy.

V. NUMERICAL SOLUTION BY APPLYING THE
MODIFIED POLICY ITERATION ALGORITHM

This section presents the numerical solution for the op-
timal scheduling policy when a linear and a quadratic one-
stage cost are utilized. Our objective was to verify the result
from Theorem 2 by utilizing the MPI algorithm [14], [15]
to approximate the optimal scheduling policy. This algorithm
was implemented in Matlab 6.5.

The MPI algorithm was applied to the optimization model
of the benchmark RML system by using the two one-stage
cost functions presented in the examples 1 and 2: g1 (s) =

i + j + l, and g2 (s) = i2 + j2 + l2.

The following are the general conditions utilized to com-
pute the scheduling policy by using the MPI algorithm:

• The system parameters were selected as presented by
Chen & Meyn in [22]: µ1 = µ3 = 0.3492, µ2 = 0.1587,
and λ = 0.1429.

• For the parameters selected, the system is stable under
any non-idling policy [4], [22], [5].

• Cost parameter: β = 0.7⇒ α=0.588.
• Buffer sizes are arbitrarily limited to 80 lots in buffers

1 and 2, and 50 lots in buffer 3; therefore, the resulting
space state has 80x80x50=320000 different states.

• The initial cost vector for the MPI algorithm was set to
zero, and the initial policy was Serve Buffer 1, for all
s ∈ S.

The policy resulting from applying the MPI algorithm
when the quadratic one-stage cost was utilized is depicted
in Figure 3. When a linear cost was considered, the optimal
policy converged to the policy presented in example 1.
The MPI algorithm required a minimum of 10 iterations to
converge when the discount factor was β=0.7.

u =1 u =0(b)(a)

j j 

i i 

Optimal Policy 

Fig. 3. Scheduling policy obtained with the MPI algorithm for the quadratic
one-stage cost function g2 (s) and β = 0.7, with i, j ≥ 0 and: (a) l = 1,
(b) l = 20. Dashed line represents the optimal policy given in (13).

As expected, the optimal policies resulting from applying
the MPI algorithm verified the result from Theorem 2 and
examples 1 and 2 in section IV.

VI. NEURO-DYNAMIC APPROACH TO
APPROXIMATE THE OPTIMAL SCHEDULING

POLICY

In this section we present the results of both numerical
and simulations experiments of the application of a NDP
method [10], [18], [19] in the approximation of the optimal
scheduling policy for the benchmark RML. Our objective
was therefore to assess the feasibility of the application of
NDP to scheduling in RML, with the objective of subse-
quently exploring the scalability of these methods to more
complex models for which optimal solutions may not be
known.

In the experiments presented in this section, we used
the Q-learning algorithm [20]. Although Q-learning can be
considered one of the most basic, but well known methods
of NDP, this method was selected because it was easily im-
plementable and solid convergence results are available [10].

An approximation to the optimal policy π∗ is then obtained
with the Q-learning algorithm by computing the Q-factors
Q(s, u) [10], [18], [20], by using a simulation model, and
by utilizing the following iterative equation:

Qt+1(s, u) = (1 − γt(s, u))Qt(s, u)+
γt(s, u) (g(s, u, s′) + α minv Qt(s′, v)) ,

(14)
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where s′ is the next state and γt(s, u) is a non-negative
step-size that is reduced to zero as t→∞ in order to obtain
convergence to the optimal Q-factors Q∗(s, u) [10].

A. Numerical example: learning an optimal policy with NDP

For this numerical example we considered the quadratic
one-stage cost function from example 2 in section IV. The
implementation of the Q-learning algorithm was performed
with the simulation software ARENA version 7.01 [25], and
by coding the algorithm in Visual Basic. The following are
some of the general conditions considered in the experiment:

• The parameters for the benchmark RML were the same
as those utilized in the numerical example of section V.

• In order to update the Q-factors, multiple replications
were performed.

• To avoid overhead in the simulator, the maximum
number of lots allowed in the system was set to 100 lots
maximum per buffer. Thus, the implementation required
a lookup table of 1003× 2 = 2 million entries.

• During the learning phase, exploration [10], [18] was
included in the selection of the control action by using
the so-called ε-greedy policy [18]. As suggested in
previous numerical experiments presented in [18], we
selected ε = 0.1.

• The discount factor was set to β = 0.7=⇒ α=0.588 to
provide a relatively faster convergence of the algorithm.
In addition, all Q-factors are initialized at zero.

Figures 4(a)-(f) illustrate how the optimal scheduling
policy is gradually approximated by the Q-learning algorithm
as the number of iterations was increased (i.e., number of
state-control visits is increased). However, the approximated
policy remains far from the optimal policy depicted in Figure
3. This can be attributed to the large number of Q-factors
(2 million) that slow-down the convergence to the optimal
policy due to the increased computational load (and memory)
required during the learning process.

B. Simulation experiments: performance evaluation of near
to optimal policies obtained by NDP

In this subsection we present simulation experiments that
were utilized to evaluate the performance (i.e., discounted
cost) of different scheduling policies for the benchmark RML
obtained through the Q-learning algorithm. With these exper-
iments we also compared the effect in the performance of the
approximated policy by varying the different parameters in
the Q-learning algorithm: number of simulation replications
N utilized to approximate the optimal policy; simulation
length L of each replication; and exploration rate ε ∈ [0, 1]
utilized by the ε-greedy policy to select the control action
during the learning process.

Each experiment consisted of two parts: first, an approx-
imation to the optimal policy was performed by using Q-
learning; and second, the approximated policy was evaluated
using the simulation model and by computing an estimation
of the expected discounted cost Jπ(s) (i.e., performance
index) under such policy. These statistics were computed
by simulation with 400 replications of 300 time units. The

1                             10                         19

(a)

Optimal Policy 

Optimal Policy 

Optimal Policy 

(b)

(c) (d)

(e) (f)

u=1 u=0 

u=1 u=0 

u=1 u=0 

1                             10                        19

1                             20                          39

Fig. 4. Optimal scheduling policy approximation by Q-learning with a
quadratic one-stage cost function and for i ≥ 0, j ≥ 0, l = 1: (a)-(d) 100
and 32000 iterations simulated for 5000 units of time, respectively; and (e)-
(f) 33000 iterations simulated for 60000 units of time. While the figures on
the left show the policy approximation, those on the right show the number
of state-control visits mt(s, u) during the experiment.

discount factor β was set to 0.1 to provide a slower rate
of convergence. However, notice from Theorem 2 that the
optimal policy does not depends on β.

As a reference to compare the performance of the approx-
imations to the optimal policies, we evaluated the optimal
policies obtained in examples 1 and 2 in the simulation
model. Table I shows these results with the corresponding
95% half-length confidence intervals (CI).

TABLE I

COMPUTED OPTIMAL DISCOUNTED COST FOR LINEAR AND

QUADRATIC ONE-STAGE COST FUNCTIONS

Policy Jπ(s)
πLC 18.23±0.65
πQC 36.15±2.67

πLC , πQC : optimal policies when a linear

and quadratic one-stage cost is considered, respectively.

Figure 5 shows the performance obtained by the ap-
proximations to the optimal policy given by the Q-learning
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algorithm under different combinations of parameters in the
learning algorithm. On the one hand, when a linear one-stage
cost function was considered (Figures 5(a)-(b)), and given
that the Q-factors were initialized in zero, the Q-learning
algorithm started with an initial policy that is the optimal (see
example 1). Therefore the performance obtained remained
close to the optimal. On the other hand, when a quadratic
one-stage cost was utilized and the Q-factors were initialized
at zero, the initial policy was not the optimal. Thus, in this
case it seems that there is a tendency to better approximate
the optimal performance as the number of replications N
is increased and longer simulation lengths are utilized (see
Figures 5(c)-(d)). However, the confidence intervals are not
statistically different except for N = 1 in Figures 5(c)-(d).

∈∈∈∈=0
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50 t.u.
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300 t.u.

18.2
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18.21
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18.24
18.245
18.25
18.255

N=1

∈∈∈∈=0.01

Average Discounted Cost

L
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∈∈∈∈=0

∈∈∈∈=0.1

∈∈∈∈=0.01

Average Discounted Cost

L

N=5000

N=1N=10N=100
N=1000

N=5000

36

36.5

37

37.5

38

38.5

39

39.5

∈∈∈∈ = 0.1 Average Discounted Cost

L

N 
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N=1N=10
N=100N=1000

N=5000
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38.5
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L 100 t.u.

300 t.u.

50 t.u.
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N=100N=1000
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37.5
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38.5
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N 

L 100 t.u.
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Fig. 5. Performance of approximations to the optimal policy for different
combinations of number of replications N , simulation length L (time units),
and exploration rate ε during the learning process: (a)-(b) approximation to
πLC (95% CI: ±0.65), (c)-(d) approximation to πQC (95% CI: ±2.67).

VII. CONCLUSION

This paper presented initial results of a research study on
analytical and simulation-based optimization (i.e., NDP) of
job sequencing of RML. A simple benchmark RML was
utilized to obtain an optimal scheduling policy for the infinite
horizon discounted cost problem and for a general non-
negative one-stage cost function. In addition, we presented
preliminary experiments on the application of the NDP
method Q-learning to approximate the optimal scheduling
policy for two different one-stage cost functions: linear and
quadratic. These experiments showed that the Q-learning
algorithm can gradually approximate the optimal policy.
However, the computational load required by the algorithm
increases exponentially with the number of states; therefore,
this could result restrictive if realistic RML are considered.
Thus, our current research is focused on the study of other
NDP methods based on compact state and action spaces
representations.
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