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Abstract— This paper presents an approach to compute
conservative approximations to the set of reachable states and
outputs for affine systems using ε-decomposition techniques.
Instead of performing reachability analysis on the full-order
system model, the method presented in this paper first applies
ε-decomposition to obtain a number of ε-coupled subsystem
models, and then performs reachability analysis on the subsys-
tems, thus avoiding the complexity involved in computing reach
sets for high-order system models. The approach is illustrated
with numerical examples.

I. INTRODUCTION

Recently there has been considerable interest in apply-

ing formal verification techniques to continuous and hybrid

dynamical systems [1], [2]. The main obstacle in applying

verification techniques to engineering applications is the

complexity of reachability analysis, that is, the representation

and computation of the sets of reachable states for models of

continuous dynamic systems. Current verification tools can

handle systems with only a few (less than 10) continuous

state variables, which limits the value of their use for many

real systems [3]. As a result, the verification of continuous

and hybrid systems needs to be performed on reduced-order

models [4], [5], or on subsystems of the full model [6], [7].

This paper presents an approach to compute the reach sets for

affine dynamic systems based on the analysis of ε-coupled

subsystems [8].

ε-decomposition, which has been used in connective sta-

bility analysis [9] and near-optimal controller synthesis [10],

makes it possible to extend current methods of reachability

analysis to larger system models. The full-order system

model is decomposed into ε-coupled subsystems and reach-

ability analysis is performed for the decoupled subsystems

corresponding to ε = 0. These reach sets are then aug-

mented to account for the approximation error introduced

by neglecting the ε-coupling, leading to conservative over-

approximations of the reach sets for the full-order system

model. To reduce the approximation error, we present a

method to compute the reach set based on an asymptotic

expansion of the system trajectories with respect to the de-

coupling factor ε [11]. We show that under certain conditions

the approximation error can be made arbitrarily small.

II. PRELIMINARIES

A linear time-invariant system is described by

ẋ = Ax + Bu, y = Cx. (1)
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where A ∈ R
n×n, B ∈ R

n×p, C ∈ R
m×n, x(t) ∈ R

n is

a vector of state variables, u(t) ∈ R
p is a vector of input

variables, and y(t) ∈ R
m is a vector of output variables.

The norm ‖ · ‖ of vectors denotes the infinity norm, i.e.,

‖x‖ = max1≤i≤n |xi|. L∞[t0, tf ] denotes the normed space

consisting of Lebesgue measurable functions x(t) defined

on interval [t0, tf ] ⊆ R with the L∞ norm given by

‖x(·)‖L∞[t0,tf ] ≡ supt∈[t0,tf ] ‖x(t)‖ < ∞.

Theorem 1 ([12]): For LTI system (1), with x(t0) = 0,

the L∞[t0, tf ] induced norm of the system for the time

interval [t0, tf ], where t0 ≤ tf , is given by

G∞(A, B, C) ≡ sup
u∈L∞

‖y‖L∞

‖u‖L∞

=

∫
t−t0

0

‖CeAτ B‖dτ (2)

This paper concerns reachability analysis of affine dy-

namic systems of the form

S(A, b, C) :
ẋ(t) = Ax(t) + b
y(t) = Cx(t)

(3)

For a given initial condition (X0, t0), where X0 ⊆ R
n is a

closed set of initial states and t0 ∈ R is the initial time, the

reach set of an affine system (3) at time t is defined as

Reach(S, X0, t0, t) = {x(t)|x(t) =

eA(t−t0)x0 +
∫ t

t0
eA(t−τ)bdτ, x(t0) ∈ X0}.

The reach set of system S with initial condition (X0, t0)
over a time interval [ts, tf ] is defined as

Reach(o)(S, X0, t0, [ts, tf ]) =
⋃

t∈[ts,tf ]

Reach(o)(S, X0, t0, t)

where t0 ≤ ts ≤ tf < ∞.

The affine transformation of a set X ⊂ R
n determined by

a given matrix A ∈ R
n′×n and vector b ∈ R

n′

is denoted by

AX+b ≡ {x′|x′ = Ax+b, x ∈ X} ⊆ R
n′

. Thus, the output
reach set of a system is given by Reacho(S, X0, t0, t) =
CReach(S, X0, t0, t).

The reach set Reach(S, X0, t0, [t0, tf ]) can be represented

approximately using a finite number of convex polytopes

[13]. The procedure is outlined as follows. First the time in-

terval [t0, tf ] is divided into N equally spaced time segments,

[t0, t1],[t1, t2],. . . ,[tN−1, tN ]. Polytopic approximation of the

reach set Reach(S, X0, t0, [tk−1, tk]) is computed for each

time segment k, which is denoted by R̂k. The computed

polytopes are over-approximations of the reach sets for each

of the time segments, i.e., Reach(S, X0, t0, [tk−1, tk]) ⊆
R̂k. The complete reach set for [t0, tf ] is thus the union of N
segments R̂ =

⋃
k=1,...,N R̂k. For affine dynamic systems,

the computation of the reach set segments consists of the

following three steps [13]:
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1) (Time Discretization) Let ∆ = (tf − t0)/N be the

length of the time segments. Compute state tran-

sition matrix Φ = eA∆ and displacement Γ =

eA∆
∫ ∆

0 e−Aτbdτ .

2) (Initial Segment Computation) Compute R̂1,

an over-approximation of the reach set

Reach(S, X0, t0, [t0, t0 + ∆]) for the first time

segment.

3) (Segments Evolution) Compute all the remaining

segments iteratively using the discrete-time formula

R̂k+1 = ΦR̂k + Γ, k = 1, . . . , N − 1.

The over-approximation of the initial segment is repre-

sented using a convex polytope of the form P(Π, d) =
{x|Πx ≤ d} ⊂ R

n where Π ∈ R
p×n and d ∈ R

p. The

remaining reach set segments are computed as affine trans-

formations of the initial segment. In this paper, each segment

is represented by an affine representation AP(T, v, P ) ⊂ R
n

of the set {x|x = Ty + v, y ∈ P = P(Π, d) ⊂ R
n}, where

T ∈ R
n×n is a linear transformation matrix, v ∈ R

n is a

displacement vector and P ⊆ R
n is a polytope. An affine

transformation of the set can be computed using T and v
only, by which explicit operations on P are avoided [14].

The affine representation was introduced in the context of

affine arithmetic to preserve the linear correlations between

uncertain variables in the computation of intervals [15]. If for

a given polytope P , a set X is represented by AP(T, v, P ),
then the affine transformation AX + b can be represented by

AP(AT, Av + b, P ).
Next we introduce the ε-decomposition for affine systems.

Suppose that for some ε > 0, the system matrix A can be

written as

A = AD + εAC where AC ∈ R
n×n

and AD =

⎡
⎢⎣

AD1

. . .

ADM

⎤
⎥⎦ is block diagonal.

(4)

The system SD(AD, b, C) with state vector xD ∈ R
n is said

to be an ε-decomposition of S. Analysis of the original full-

order system S(A, b, C) can be performed on its decomposed

approximation S(AD , b, C) under some assumptions on ε
[8], [9].

The state variables of the ε-coupled affine systems are

divided into M subsystems according to the block partition

of AD, with the variables of the subsystems denoted as

xD1, . . . , xDM . The dynamics of the isolated subsystem i
is given as

SDi : ẋDi(t) = ADixDi(t) + bi (5)

i = 1, . . . , M . The system is thus decomposed into M iso-

lated subsystem models, which have lower-order state spaces

than the original full-order system model. The approximation

error is defined as zD(t) ≡ x(t) − xD(t), ∀t ∈ [t0, tf ].

III. REACHABILITY ANALYSIS USING DECOMPOSITION

The proposed decomposition-based reachability analysis

procedure for affine dynamic systems is shown in Fig.

1. The procedure starts by decomposing the system using

the ε−decomposition technique. Reachability computation is

then performed for each isolated subsystem. The results of all

isolated subsystems are combined to estimate the approxima-

tion error zD. The error bound is incorporated in the results

to obtain conservative over-approximations of the reach sets

for the full-order model. If the estimated error bound is too

large, the procedure continues to compute more accurate

reach sets using a higher-order asymptotic expansion of

the decomposed subsystem. The order of expansion, K , is

computed from estimation of bounds of the approximation

error. The bounds of approximation error are incorporated

into the final result to preserve conservativeness.

Fig. 1. Computation procedure.

This section discusses the first part of the procedure:

the conservative reach set computation using decomposition.

Observe that the isolated subsystems (5) are affine systems,

for which the three-step procedure for reachability analysis

presented in section II can be applied. The only remaining

question is to estimate the bound on the error zD caused by

ε-decomposition.

For the original affine system S(A, b, C), denote the

solution of system S for initial condition (x0, t0) by x(t) =
xD(t) + zD(t), t ∈ [t0, tf ], where zD ∈ R

n is the vector

of approximation error. The system dynamics equation (3) is

rewritten as [11]:

d

dt
(xD + zD) = (AD + εAC)(xD + zD) + b.

Expanding the two sides of the equation, we have the

differential algebraic equation involving both xD and zD:

ẋD + żD = ADxD + b + (AD + εAC)zD + εACxD

xD(t0) + zD(t0) = x0

(6)

where xD is the solution to the decomposed system

ẋD = ADxD + b xD(t0) = x0 (7)
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Subtracting (7) from (6), the resulting dynamic equation for

zD is written as

żD = (AD + εAC)zD + εACxD zD(t0) = 0 (8)

Equation (8) gives the unique solution to the approx-

imation error zD caused by the decomposition. The ini-

tial condition for zD is zero and the dynamics of zD

is driven by the input signal xD scaled by ε. Let the

reach set of the variables xD and zD be ReachxD
(t)

and ReachzD
(t), respectively. The output reach set of the

original system Reacho(t) = {y|y = CxD(t)+CzD(t), x ∈
ReachxD

(t) and zD ∈ ReachzD
(t)} satisfies Reacho(t) ⊆

CReachxD
(t) ⊕ CReachzD

(t), where ⊕ is the Minkowski

sum operator.

We over-approximate the reach set CReachzD
(t) by a

hyper-box BωD
= {y|‖y‖ ≤ ωD, y ∈ R

m}, where the radius

of the box is estimated from ‖CzD(t)‖. To estimate an upper-

bound on ‖CzD(t)‖, t ∈ [t0, tf ], let ye = CzD and u = εxD.

The dynamic equation (8) is rewritten as a linear dynamic

system

{
żD = AzD + ACu
ye = CzD

and zD(t0) = 0. The norm

of the outputs y can be estimated from the norm of the

inputs u and the induced norm of the linear dynamic system

G∞(A, AC , C) using Theorem 1. The induced L∞ norm of

the linear system can be computed from a simulation run of

its response CeAtAC . Although the original system might

be large in size for reachability analysis, efficient simulation

methods for large-scale linear systems have been studied

extensively and there are algorithms and efficient software

tools available to perform the simulation.

Since ‖CzD‖L∞[t0,tf ] ≤ εG∞(A, AC , C) ‖xD‖L∞[t0,tf ]

= ωD, the conservative over-approximation of reach set is

computed as

R̂k = CR̂k
D ⊕ BωD

(9)

for all the time segments k, where R̂k
D = R̂k

xD1
× R̂k

xD2
×

. . . × R̂k
xDM

is the cartesian product of the conservative

reach sets computed for the subsystems. To compute the

output reach set of subsystem i, Rk
xDi

is projected to the

output space as CiR
k
xDi

where Ci is a sub-matrix of C

corresponding to subsystem i. R̂k is then computed as

⊕M
i=1CiR

k
xDi

⊕BωD
. If exact computation of the Minkowski

sum is too complex, over-approximation methods such as the

ORH [16] or face-lifting [17] may be used to compute R̂k.

IV. COMPUTING REACH SETS FOR Kth-ORDER

EXPANSION

The previous section presents an approach based on ε-

decomposition to over-approximate reach sets for ε-coupled

affine systems. The reachability analysis result is the

Minkowski sum of CReachxD
and Bω. Since the error

bound estimate ω is proportional to ‖xD‖L∞[t0,tf ], the

approximation could be too conservative if ‖xD‖L∞[t0,tf ]

is not small. This section presents an approach to compute

the reach sets based on the asymptotic expansion of the state

trajectories with respect to ε. It is shown in the next section

that using an affine polytope computation, the approximate

reach set can be computed to be arbitrarily close to the reach

set of the full-order system.

The following proposition provides an iterative approach

to approximate the trajectory of an ε-coupled affine dynamic

system with the trajectories of systems generating the ap-

proximation errors.

Proposition 1 (Asymptotic Expansion): Consider the

affine dynamic system modeled by

ẋ = (AD + εAC)x + Bu, x(t0) = x0

where ε > 0. The solution of the linear dynamic system can

be written as

x(t) = x(0)(t) + x(1)(t) + · · · + x(K)(t) + zK(t)

where x(K) and zK satisfies

ẋ(0) = ADx(0) + b x(0)(t0) = x0

ẋ(1) = ADx(1) + εACx(0) x(1)(t0) = 0
...

...

ẋ(K) = ADx(K) + εACx(K−1) x(K)(t0) = 0
żK = (AD + εAC)zK + εACx(K) zK = 0

Proof: Let x(t) = x(0)(t) + x(1)(t) + . . . + x(K)(t) +
zK(t), t ∈ [t0, tf ], replace the x in the system equation (3).

The dynamic equations for x(0), . . . , x(K), zK are obtained

by inductively equating both sides of the equation. Since

the system is an affine system, the solution to the set of

differential equations exists and is unique.

Since x(0) = xD in (7), the zeroth-order approximation

is exactly the same as the isolated subsystems. Proposition

1 suggests a sequential way to compute approximations to

reach sets for x(1), . . ., x(K). For any l ≤ K , since x(l)

depends only on x(0), . . ., x(l−1), the reach set of x(l) can

be computed from the previous results on reach sets of x(0)

. . ., x(l−1). Proposition 1 also introduces a method to reduce

the approximation error zK by increasing the expansion order

K . Indeed, we have the following proposition.

Proposition 2 (Bounds for K th-Order Approximation):
For the Kth-order approximation system model, we have

‖CzK‖L∞[t0,tf ]
≤ εK+1GK

∞(AD, AC , I) G∞(A, AC , C)

‖xD‖L∞[t0,tf ]
, where In×n is the nth-order identity matrix.

Proof: Proof by induction on K . For K=0, the bound

is true since z0 = zD.

Assume the bound is valid for K − 1. For the

Kth expansion, the solution of x(K) is x(K)(t) =∫ t

τ=t0
eAD(t−τ) εACxK−1(τ)dτ , therefore ‖x(K)‖L∞[t0,tf ]

≤ εG∞(AD, AC , I)‖x(K−1)‖L∞[t0,tf ]. Then ‖CzK‖ ≤
εG∞(A, AC , C) ‖x(K)‖L∞[t0,tf ] ≤ εK+1GK

∞(AD, AC , I)
G∞(A, AC , C) ‖xD‖L∞[t0,tf ]

.

If ε < 1/G∞(AC , AD, I), we say that the ε-coupled

subsystems S1, . . ., SM are weakly-coupled. For reachability

analysis of a number of weakly-coupled subsystems, the

necessary approximation order K can be estimated before

the reach sets of x(1), . . ., x(K) are computed. Let ωtol

denote the selected tolerance for approximation error such

that ‖CzK‖ ≤ ωtol. From Proposition 2 the expansion order
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K is estimated as K = ceil( | log(ωtol/εG∞(A,AC ,C))
| log(εG∞(AC ,AD,I))| ). The

application context will determine an appropriate value for

ωtol.

To perform computation of the reach sets for the K th-

order expansion, suppose we have obtained conservative

results for Reachx(0)
. Let x̄(K) =

[
x(0) . . . x(k)

]T
be

the augmented vector of state variables of equation (1). The

Kth-order approximate model can be written as

˙̄x = Āx̄ + b̄, y = C̄x̄

The system matrix Ā for the augmented state has the

following special structure where only the diagonal and sub-

diagonal blocks are nonzero:

Ā(K+1)n×(K+1)n =

⎡
⎢⎢⎢⎢⎢⎣

AD 0 . . . . . . 0
εAC AD 0 . . . 0

0
. . .

. . .
. . .

0 0 εAC AD 0
0 0 . . . εAC AD

⎤
⎥⎥⎥⎥⎥⎦

b̄(K+1)n×1 =
[
bT 0 0 . . . 0

]T

C̄p×(K+1)n =
[
C C . . . C

]

The Kth-order approximation reach set for Reacho is

computed using the following procedure. We use the sub-

script (l) in parenthesis to denote the current step of ex-

pansion l and the subscript i to denote that the reach set is

computed for the ith decomposed subsystem.

1) (Time Discretization) Let ∆ = (tf − t0)/N be the

length of each time segment. Compute the state transi-

tion matrix Φ = eĀ∆. Notice that the system matrix Ā
is lower block-triangular, thus the discrete-time state

transition matrix is lower-block-triangular.

Φ̄(K) =

⎡
⎢⎢⎢⎣

ΦD

Φ(10) ΦD

...
...

. . .

Φ(K0) Φ(K1) . . . ΦD

⎤
⎥⎥⎥⎦

Since we are computing the reach set for the K th-

order expansion, only the K th row of matrix Φ is

required. Partition each block Φ(lj), 0 ≤ j < l ≤

K as

⎡
⎢⎣

Φ(lj)11 . . . Φ(lj)1M

...
...

...

Φ(lj)M1 . . . Φ(lj)MM

⎤
⎥⎦ according to the

decomposition of AD .

2) (Initial Segment Approximation) For i = 0, . . . , M and

l = 1, . . . , K , compute the reach set approximation

R̂1
(l)i for the initial segment [t0, t0 + ∆] and all

subsystems i in expansions l.
3) (Evolution) Evolve the reach sets for the subsystems

i for expansion l using the discrete-time dynamics

R̂k+1
(l)i = ΦDR̂k

(l)i +
∑l−1

j=0

∑M
q=1 Φ(lj)iqR̂

k
(j)q .

4) (Error Estimation) Compute ωK = ‖Czk‖L∞[t0,tf ]

using Proposition 2.

5) (Output Projection) Compute the K th-order approxi-

mate output reach set as R̂o =
∑K

l=0 CR̂(l) ⊕ BωK

For the lth expansion, the ith subsystem is under consid-

eration. The dynamic equation for x(l)i is

S(l)i :
ẋ(l)i = ADix(l)i + ACix(l−1)

x(l)i = 0

To compute the reach set for [t0, t0 + ∆], we com-

pute a polytopic over-approximation of Reach(S(l)i, 0,

w(·),[t0, t0 + ∆]) for uncertain input signal w(t) ∈ U =
R̂(l−1)1 × R̂(l−1)2 × . . . R̂(l−1)M , ∀t ∈ [t0, t0 + ∆], where

R̂(l−1)1, . . ., R̂(l−1)M are the reach sets for the subsystems

computed for the (l− 1)th expansion. The result is an over-

approximation of the reach set of the system. Let Πj ∈ R
n

be the unit vector denoting the outward direction of a facet

of a polytope. A polytopic over-approximation of the reach

set for [t0, t0+∆] with bounded uncertain input is computed

as the optimal solution to the following problem for all the

facets Πj of the polytope.

maxu,tΠ
T
j x̃i(t)

s.t. ˙̃xi(t) = ADix̃i(t) + ACiw(t), x̃i(t0) = 0
w(t) ∈ U and t ∈ [t0, t0 + ∆]

(10)

Notice that the solution to the linear system with zero initial

condition has closed-form x̃i(t) =
∫ t

0 eADi
(t−s)ACiu(s)dt.

For a fixed t, the optimal control input is [18]:

u(s) ∈ argmax{ΠT
j eADi(t−s)ACiu(s)|u(s) ∈ U}

and the optimal cost is

maxuΠT
j x̃i(t) =

∫ t

0

ΠT
j eADi(t−s)ACiu

∗(s)ds

=

∫ t

0

maxu∈UΠT
j eADi(t−s)ACiuds

=

∫ t

0

maxu∈UΠT
j eADiτACiudτ (11)

Let d∗j (t) = maxu ΠT
j x̃i(t) be the optimal solution to (11)

for any time t ∈ [t0, t0+∆]. The solution to (10) for the time

segment is then the maximum of dj = maxt∈[t0,t0+∆] d
∗
j (t).

For computation, we choose Π(l)i = Π(l−1)i. The computa-

tion of d∗
j can be carried out by solving the ODE (11) for

the trajectory and then dj is obtained from the peak value

of d∗j (t) such that Πj x̃i(t) ≤ dj , t ∈ [t0, t0 + ∆].
With the affine representation, the reach set segments are

evolved using affine transformations of the initial segments.

For the Kth-order expansion and the ith subsystem, notice

that the discrete-time system transition matrix Φ̄(K) is lower-

block triangular, the reach set for the subsystem i is an

affine transformation of the initial segments of zeroth to

(K − 1)th expansions of all subsystems and the initial

segment of the Kth expansion of the ith subsystem, i.e.,

P = R1
(0) × R1

(1) × . . . × R1
(K−1) × R1

(K)i. Therefore the

size of the transformation matrix T(K)i can be as large as

ni×(nK+ni). As the order of expansion K increases, com-

putational complexity increases polynomially for the affine

transformation step. Since the computation is performed on

subsystems, the representation and computation of reach sets

in the full-order state space is avoided.
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V. ERROR ANALYSIS

This section presents bounds on the over-approximation

error of the reach set computation. We neglect the error

caused by numerical computation and only consider the over-

approximation errors in the representation. Observe that Step

3 in the procedure applies the affine transformation only

to the initial segments, which does not introduce any extra

approximation errors using the affine representation. The

only sources of errors are from the initial segments and the

decomposition. We show that the error in terms of Hausdorff

distance between the actual reach set and the approximation

computed using decomposition can be made arbitrarily small.

The Hausdorff distance for two sets U ,V ⊆ R
n is defined

as dist(U ,V) = inf{ω|U ⊂ V ⊕ Bω and V ⊆ U ⊕ Bω}.

In the following discussion we consider the augmented

system S̄(Ā, b̄, C̄) for the Kth-order approximation. Further

we assume that the initial condition (X0, t0) is given as

X0 = X01 × X02 × . . . × X0M , i.e., the initial states of

the subsystems are given independently.

Proposition 3 (Errors in Initial Segments): For any ex-

pansion l and subsystem i, let R̂1
(l)i denote the over-

approximation of reach set in terms of x(l)i for the first

segment [t0, t0 + ∆] . For any given ω > 0 there exists a ∆
such that dist[R̂1

(l)i, Reachx(l)i
(S̄, X̄0, t0, [t0, t0+∆])] < ω.

Proof: Observe the fact that X̄(l)i(t0) ⊆
Reachx(l)i

(S̄D, X̄0, t0, [t0, t0 + ∆]). We prove the

proposition by proving that there exists a ∆ such that

dist(R̂1
(l)i(∆), X(l)i(t0)) < ω. For l = 0 the computation of

R̂1 is exactly the same as that of [13] since the X0i are given

individually. Thus the segment approximation can be made

arbitrarily close to X(0)i(t0), i.e., dist(R1
(0)i, X0i) < ω.

For l > 0 the initial state of x(l)i = 0. The objective then

is to prove the reach set can be bounded by a small hyper-box

Bω, that is equivalent to ‖R̂1
(l)i‖ ≡ supx(l)i∈R̂1

(l)i
||x(l)i|| <

ω.
Indeed, since each facet of R̂1

(l)i is computed by finding

the peak value of the optimal trajectory of (11), we have

max
t∈[t0,t0+∆]

max
u

ΠT
i x(l)i(t)

= max
t∈[t0,t0+∆]

∫ t

0

max
u∈U

ΠT
i eADiτACiudτ

≤ |Πi|

∫ ∆

0

e|ADi|τ |ACi|dτ sup
u∈U

|U |

≤ ∆|Πi|e
|ADi|τ |ACi| sup

u∈U
|U |

= ∆|Πi|M sup
u∈U

|U |

Since Πi is a unit vector, M depends only on the system

matrices AD and AC , and U = R̂1
(0) × R̂1

(1) × . . . R̂1
(l−1)

is bounded. For any expansion l, we can always choose a

small enough ∆ such that ‖R̂1
(l)i‖ ≤ ω.

A corollary of Proposition 3 is that the error of the reach

set computed for [t0, tf ] for the lth order approximate model

can be made arbitrarily small.

Corollary 1: For any expansion l and subsystem i, let

R̂(l)i =
⋃

k=1,...,N R̂k
(l)i denote the over-approximation of

reach set in terms of x(l)i for [t0, tf ] . For any given

ω > 0 there exists a ∆ such that dist[R̂(l)i, Reachx(l)i

(S̄, X̄0, t0, [t0, tf ])] < ω.

Proof: Apply Proposition 3 to ω′ = e−|Ā|(tf−t0)ω. The

proposition then follows from

dist[R̂(l)i, Reach(l)i(S̄, X̄0, t0, [t0, tf ])] ≤

e|Ā|(tf−t0)dist[R̂1
(l)i, Reachx(l)i

(S̄, X̄0, t0, [t0, t0 + ∆])] < ω

We conclude this section with the following proposition,

which claims that when ε is bounded, the reach set computed

using the iterative procedure can be made arbitrarily close to

the actual reach set of the full-order system model.

Proposition 4: Assume εG∞(AD, AC , I) < 1, let the

reach set computed using K th-order asymptotic expansion

be R̂Kth =
∑K

l=0 CR̂(l) ⊕CZK . Then for any ω > 0 there

exists a ∆ and K such that

dist[R̂Kth, Reacho(S, X0, t0, [t0, tf ])] < ω.

Proof: First consider the error caused by per-

turbation. Suppose supx0∈X0‖x0‖ < E for some

E > 0. Then from Proposition 2, ‖CzK‖ <
εK+1G∞(AD, AC , I)KG∞(A, AC , C)E. Choose K such

that ‖CzK‖ < ω/3. This implies

dist(Reacho(S, X0, t0, [t0, tf ]),
Reacho(S̄, X̄0, t0, [t0, tf ])) < ω/3

For the chosen expansion K , apply Corollary 1 using ω′ =
ω

3MK‖C‖ for all expansion l ≤ K , this implies

dist[CR̂(l)i, Reach(l)i(S̄, X̄0, t0, [t0, tf ])] <
ω

3MK
,

∀0 ≤ l ≤ K, 1 ≤ i ≤ M

The proposition follows from the sum of the above two

inequalities:

dist[

K∑
l=0

M∑
i=1

CR̂(l)i ⊕ CzK , Reacho(S, X0, t0, [t0, tf ])]

≤ dist[

K∑
l=0

M∑
i=1

CR̂(l)i, Reacho(S, X0, t0, [t0, tf ])] + ‖Czk‖

< MK
ω

3MK
+ dist[Reacho(S, X0, t0, [t0, tf ]),

Reacho(S̄, X̄0, t0, [t0, tf ])] + ‖CzK‖ < ω

VI. CASE STUDY

This section describes the application of the

decomposition-based reachability analysis approach to

two case studies: a two-room temperature system and a

multi-machine electric power system. The reachability

analysis procedure is implemented in MATLAB. All the

computations are performed on a Pentium 4 PC with 1G

RAM running Windows XP and MATLAB 7.0.1.
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A. Two-Room Temperature System

Consider two rooms heated by two heaters modeled as

constant inputs. Figure 2(a) shows the conceptual model

of the system, where heat transfer between rooms and the

ambient environment is designated by arrows. The R-C

circuit equivalent of the two-room temperature dynamics is

shown in Fig. 2(b) where the temperatures of the rooms are

equivalent to the voltages of the capacitors. The parameters

for reachability analysis are R1 = 1, R2 = 2, C1 = 1,

C2 = 3, R12 = 100 and u1 = u2 = 1.

(a) Temperature control
systems

(b) Equivalent R-C circuit model

Fig. 2. Dynamics of a two-room temperature control system.

Figure 3 shows the reach sets computed for the two-room

temperature control system using the zeroth-order approxi-

mation and the first-order approximation. The state variables

of the system are
[
uC1 uC2

]T
The error bound estimate

is 0.013 for the zeroth-order approximation and 0.000256
for the first-order approximation. Both the zeroth-order

and the first-order approximation results give good over-

approximations of the reach sets of the full-order system. The

first-order approximation is almost indistinguishable from the

result using the full-order model.

−0.2 0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x
1

x 2 Zeroth−Order

First−Order

Fig. 3. The reach sets of the two-room temperature control system.

B. Multi-Machine Power System

Consider the problem of computing reach sets for the load-

frequency dynamics of the three-bus electric power system

shown in Fig. 4. Two generators, both equipped with turbine

governors, are connected to two buses, and each bus has a

constant load. Both buses are connected to the environment

modeled by an infinite bus.

Consider the case where the loads increase instantaneously

at both buses and suppose we are interested in analyzing

the response of the generator at bus 1. The transient of

Fig. 4. A three-bus power system.

frequency is approximately modeled by an affine dynamic

system S(A, b, C):

A =

⎡
⎢⎢⎢⎢⎢⎣

0.0 1.0 0.0 0.0 0.0 0.0
−4.02 −2.0 2.0 0.02 0.0 0.0
0.0 1.0 −2.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 1.0 0.0
0.02 0.0 0.0 −2.02 −2.0 2.0
0.0 0.0 0.0 0.0 1.0 −2.0

⎤
⎥⎥⎥⎥⎥⎦

, b =

⎡
⎢⎢⎢⎢⎢⎣

0
−2
0
0
−2
0

⎤
⎥⎥⎥⎥⎥⎦

,

C =
[
I3 03×3

]
The state variables of the electric power system are

x =
[
δ1 ω1 tg1 δ2 ω2 tg2

]T
[19]. The reach set

is computed for the system. The results computed using

zeroth-order, first-order approximations and using the full-

order model are shown in Fig. 5. The computation time for

the three reach sets are 0.851, 2.053 and 10.304 seconds,

respectively. The error bounds ωK are estimated as 0.014817
for the zeroth-order approximation and 0.000583 for the first-

order approximation.

It can be observed that although the full-order computation

consumes as much as 5 times the computation time as

that using the first-order approximation, the reachability

analysis using the full-order model does not even give a

closer approximation than the first-order approximates for

this example. This is because the convex hull (CH) cannot

be used for the reach set in the full-order state space. The

use of oriented rectangular hull (ORH), which is computed

using more robust and efficient routines [16], introduces

additional over-approximation errors to the computation. The

zeroth-order approximation, which consumes only one tenth

of the computation time, gives a reasonable approximation

compared to the reach set computed using the full-order

model. As shown in Fig. 5(d), the first-order approxima-

tion using the ε-decomposition method is contained in the

reach set computed using the full-order model, which means

the approximation error caused by the ε-decomposition is

smaller than the error introduced in the ORH-based reach

set computation.

VII. DISCUSSION

This paper presents an approach for reachability analysis

for affine dynamic systems using ε-decomposition tech-

niques. The reach sets are computed using decomposed

subsystem models rather than using the full-order model.

An iterative method for reducing the approximation error

is presented. It is shown that the reach set computed using

the iterative computation can be made arbitrarily close to the

reach set of the full-order system. The approach is illustrated

by analyzing a temperature control system and an electric

power network. Extension of the method to verify hybrid

dynamic systems is currently under investigation.
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(a) Zeroth-order approxi-
mation

(b) First-order approximation

(c) Using full-order model (d) Comparison of results of first-
order approximation and using full
model

Fig. 5. Reach set computed using different order approximations.
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