
Analysis of Logic Controllers
by Transformation of SFC into Timed Automata

Olaf Stursberg, Sven Lohmann
Process Control Laboratory (BCI-AST)

University of Dortmund, 44221 Dortmund, Germany.
Email: olaf.stursberg@uni-dortmund.de

Abstract— This paper proposes an approach to connect Se-
quential Function Charts (SFC), an industrially recognized and
used description of logic controllers, to algorithmic verification.
Based on a rigorous syntactical and semantical definition
of SFC, the paper describes a formal scheme to generate
a corresponding model represented by synchronized Timed
Automata (TA). The latter model can be composed with a
plant model specified as timed or hybrid automata. In order
to verify safety properties for the controlled system, existing
algorithms for model checking can eventually be applied to the
composition.

Index Terms— Automata, discrete event systems, logic con-
trol, timed systems, verification.

I. INTRODUCTION

In industry, the typical means to describe and implement
logic controllers (ladder diagrams, function block diagrams,
sequential function charts, etc. [1]) are somewhat different
from the type of models (automata, transition systems, Petri
nets, etc.) used for verification techniques like model check-
ing [2]. In order to bridge this gap, and thus to make a rigor-
ous analysis of industrially relevant logic controllers possi-
ble, a number of groups have recently suggested approaches
to transform Sequential Function Charts (SFC), a popular
grahical description for logic controllers, into verifiable code.
While [3], [4], [5], [6] only consider SFC with untimed
actions, a concept which includes timed actions, i.e. control
actions that are limited to a certain period of time or are
applied after a delay, has first been suggested in [7], [8]. The

Requirements

Controller: SFC

Model: HAController: TA

Controlled Plant: HA

Analysis Result

SPEC VERIFIED

SPEC FALSIFIED

Design Modeling

Transformation

Composition

Modi-
fication

Safety /
Operability
Specification

CG-Verification

Plant

Fig. 1. Analysis scheme (SFC - Sequential Function Chart, TA - Timed
Automata, HA - Hybrid Automaton).

principle of this method is to transform the SFC into modular
Timed Automata (TA), to which model checking can be
applied. The complete scheme, in which this transformation
is embedded, is shown in Fig. 1: An initial controller design
considering the relevant requirements (control objectives)
leads to a controller given as SFC, which is subsequently
transformed into the modular TA representation. The latter
is composed with a plant model which is set up as timed or
hybrid automaton (HA), depending on an appropriate level
of detail. For the composed model, safety and operability
properties can be verified, e.g. by the techniques described
in [9] for TA, or counterexample-guided verification for HA
[10]. Safety and operability specifications refer to the proper-
ties that the controlled system does never reach unsafe plant
states, or does eventually reach desired states. If the analysis
reveals that the specification is falsified, the controller design
has to be modified on the SFC-level – otherwise the SFC can
be transferred to a programmable logic controller (PLC).

This paper focusses on the step of transforming SFC into
TA. While the concept of the transformation has already been
summarized in [7], [8], this paper provides the formal basis
which obviously is required within a verification approach.
In detail, this paper first introduces a formal definition of
SFC (Sec. II), which is not provided by the standard [1], or
in more detailed texts such as [11]. The formal definition
explicitly considers the graphical structure by introducing a
corresponding grammar. The grammar (and by that the ex-
plicit distinction of simultaneous and alternative executions)
distinguishes our definition from that in [12]. The grammar is
an essential component of the transformation into TA, since
it defines the interaction and the number of the synchronizing
automata on the TA-level. An important property of the
transformation described in Sec. III is that it conservatively
abstracts from the execution cycles of the PLC where this
simplification does not change the verification result.

II. A FORMAL DEFINITION
OF SEQUENTIAL FUNCTION CHARTS

As shown in Fig. 2 for an example, the building blocks
of an SFC are steps s with an attached action block b, tran-
sitions with an associated condition g, parallel executions
enclosed by double horizontal lines, and alternative execu-
tions marked be single horizontal lines. The vertical lines
represent the flow by which the blocks are processed from
top to down, with the exception of loops which point in the

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

ThC01.2

0-7803-9568-9/05/$20.00 ©2005 IEEE 7720

s0

g0

g1
g2

g8

g3

s3

s2

s4 s5

b0

b3

b2

b4 b5

s8

g7

step

transition open parallel
branching

open alternative
branching

close parallel
branching

close alternative
branching

open
loop

close
loop

g5
g6

s7 b7

b8

s1 b1

s6 b6

g4

Fig. 2. Example of an SFC.

opposite direction. The following grammar first specifies the
structures of an SFC which are deemed feasible throughout
this paper:

Definition 1: The grammar Γ = (Σ,Ψ, ψ,Φ) of an SFC
consists of the alphabet Σ = {�,⊥,�,�,�,�,�,�, [,]}, a
set of auxiliary variables Ψ = {ST, chain, loop, alt, par},
the start symbol ψ = ′ST ′, and the set Φ of production
rules as follows:

φ1 : ′ST ′ = {′�′, chain} (start rule)

φ2 : chain = {′⊥�
′, chain |′ �

′, alt,′ � �
′, chain |

′⊥�
′, par,′ �′, chain | loop, chain | ∅}

φ3 : loop = {′⊥��
′, chain,′ ⊥�

′}

φ4 : alt = {′[′, chain,′ ⊥]′, (′[′, chain,′ ⊥]′)∗,′ [′, chain,′ ⊥]′}

φ5 : par = {′[�′, chain,′]′, (′[�′, chain,′]′)∗,
′[�′, chain,′]′}. ♦

As an example, Γ produces the following string for the
SFC shown in Fig. 2: Υ := �⊥�[�⊥��⊥�⊥�][��

[⊥�⊥][⊥�⊥] � �]�⊥�.
Using the grammar, the syntax of SFC can now be defined

formally as follows. (Note that here we only refer to non-
hierarchical SFC in order to simplify the notation.)

Definition 2: A Sequential Function Chart is given by
MSFC = (S, s0, T,Γ, X,G,A, α,C) consisting of:
• the finite set of steps S = {s1, . . . , snS

}, nS ∈ N, with
an initial step s0 ∈ S.

• a finite set X = Xin ∪ Xout ∪ Xint with the pairwise
disjoint sets of input (Xin), output (Xout), and internal
variables (Xint); the evaluation of a variable is denoted
by v(x) ∈ Q.

• a finite set C of clocks which contains a clock c for each
non-empty time quantifier (see below), and the evaluation
of c is denoted by ω(c) ∈ Q.

• a finite set of transition conditions G, with g ∈ G as a
boolean combination of propositions v(x) ∼ d, ω(c) ∼ d
with ∼∈ {<,≤,=,≥, >}; x ∈ Xint ∪ Xin, d ∈ Q.

• a finite set of transitions T : 2S \ {∅} × G → 2S \ {∅}
such that T is restricted according to the grammar Γ as

follows (with {s, s′, s′′, s′′′} ⊂ S, {g, g′, g′′} ⊂ G, and
the assumption that the string Υ produced by Γ is finite):

1) �⊥�: two steps are connected by a transition t ∈
(s, g, s′).

2) �⊥��⊥ . . . �⊥��: the first step s′ ∈ S inside of the
loop is reached from the last one preceding the loop
(s) by t = (s, g, s′) and from last step in the loop (s′′)
by t = (s′′, g′, s′). The first step following the loop
(s′′′) is reached by t = (s′′, g′′, s′′′).

3) ��[⊥� . . .] . . . [⊥� . . .] �: a separate transition t =
(s, g, s′) ∈ T exists from the step preceding the alter-
native branching to each first step s′ of the alternative
branches. The set of transitions Tab ⊂ T associated
with the alternative branching is totally ordered, where
the order specifies which t ∈ Tab is taken if more than
one transition is enabled.

4) �[. . . �⊥] . . . [. . . �⊥] � �: one transition t = (s, g,
s′) ∈ T from each final step of an alternative branch
into the first step following the closure of the alterna-
tive branching exists; as in (3), a total order on these
transitions is assumed to be given.

5) �⊥�[� . . .] . . . [� . . .]�: the set of steps S′ ⊂ S
following a parallel branching is reached from the step
preceding the branching through t = (s, g, S′).

6) �[. . . �] . . . [. . . �]�⊥�: all steps preceding the clo-
sure of the parallel branching S′′ ⊂ S are left by
a single transition t = (S′′, g, s′′′), and the step s′′′

following the closure is reached.

• a finite set A of actions, each of which is a triple
a = (q, τ, o, f) consisting of an action qualifier q ∈
Q = {N,St1, R, P, P1, P0, L,D, SD,DS, SL}, a time
quantifier τ ∈ {∅, τv} with τv ∈ Q≥0, an operand o which
is either a variable x ∈ Xint ∪ Xout or a function of
variables x ∈ Xin ∪ Xint, and a boolean action control
flag f ∈ {0, 1} indicating if a has to be executed (f = 1),
or not (f = 0).

• a function α: S → 2A which assigns an action block
b = α(s) as an ordered subset of A to each s ∈ S. ♦

Feasible executions of MSFC are defined by the following
semantics:

Definition 3: A configuration of MSFC is given by γ =
(V, Sa, Aa, Af ,Ω), where V is the set of evaluations for all
x ∈ X , Sa ⊂ S is the set of active steps, Aa ⊆ A is the
set of active actions, Af ⊆ A the set of final actions, and Ω
the set of evaluations for all c ∈ C. A run of MSFC is a
sequence rSFC = ((γ0, χ0), (γ1, χ1), (γ2, χ2), . . .) of timed
configurations (γi, χi) where:

• χi ∈ R≥0 is the time at which γi is recorded. The update
of γi to γi+1 is time-triggered with a (possibly varying)
cycle time τc,i = χi+1 − χi with τc,i ∈ [τmin

c , τmax
c],

τmin
c ∈ Q, τmax

c ∈ Q.
• the initial timed configuration consists of χ0 = 0 and

γ0 = (V0, Sa,0, Aa,0, Af,0,Ω0) in which V0 contains

1The qualifier St replaces here the standard symbol S (store) to distin-
guish it from the set of steps.

7721

initial evaluations v0(x) for all x ∈ Xin (the sensor
readings) and v0(x) = 0 ∀x ∈ Xint ∪ Xout. The initial
set of active steps is Sa,0 = {s0}, and the action sets are
initialized to Aa,0 = b(s0), and Af,0 = ∅. The initial clock
evaluations Ω0 are given by ω(c)0 := 0 for all c ∈ C.

• the configurations γi+1 = (Vi+1, Sa,i+1, Aa,i+1, Af,i+1,
Ωi+1) for all i ∈ N≥0 result from γi by:

1) Vi+1 is updated for all x ∈ Xin;
2) Let εi : V → V denote a function that represents the

execution of all actions a ∈ Aa,i ∪ Af,i according to
a given total order of Aa,i ∪Af,i. Then, Vi+1 = ε(Vi)
is the update of v(x) for all x ∈ Xint ∪ Xout. Given
s ∈ S, α(s) = b ⊂ 2A, a = (q, τ, o, f), the execution
of a for the operand o depends on the qualifier q as
follows:

a) q = N (not stored): a is executed while s ∈ Sa,i.
b) q = St (stored): a is executed when s ∈ Sa,i,

and the result is stored in v(x) until another action
resets this operand by q = R.

c) q = R (reset): the action resets the operand to a
default value (0 in case of boolean variables), and
this result is stored until the operand is modified by
another action; R has always higher priority than
any other qualifier.

d) q = P (pulse): a is executed once when s is
reached, and once when it is left; for q = P1, a is
only executed when s is reached, and for q = P0
respectively, a is executed once when s is left.

e) q = L (limited): a is executed for the time τv , but
at most for the duration in which s ∈ Sa,i.

f) q = D (delayed): after the time τv , the action is
executed, but it is limited to the activity of s.

g) q = SD (stored delayed): a is executed after the
delay τv even if s becomes inactive before, and the
result is stored until a reset is applied to o.

h) q = DS (delayed stored): a is executed after the
delay τv if the step is still active, and the result is
stored until a reset is applied.

i) q = SL (stored limited): the action is executed for
the time τv even if s is left before.

If there exists a set Ao,i ⊂ Aa,i ∪Af,i of actions with
an equal operand and |A0,i| > 1, a total order on Ao,i

determines which action is executed (f = 1, otherwise:
f = 0).

3) Each clock c ∈ C is updated as follows to obtain Ωi+1:

a) ω(c) := 0 if an action a = (q, τ, o, f) has a time-
dependent qualifier (L, D, SD, DS, or SL), and
the step s ∈ Sa was reached in the current iteration
i.

b) else: ω(c) := ρ, where ρ ∈ R is the time elapsed
since c was last reset to zero.

4) The new set of active steps Sa,i+1 is obtained from
Sa,i by inserting s ∈ Sa,i into Sa,i+1 iff: ∃ t =
(S′, g, S′′) ∈ T with: g ∈ G evaluates to true, S′ ⊂
Sa,i, S′′ ⊂ (S \ Sa,i), and � t∗ ∈ T with t∗ ≺ t
according to the total order of T iff t∗ and t belong to

an alternative branching (case (3.) of the specification
of T in Def. 2).

5) The new sets of active and final actions are determined
according to Aa,i+1 = {a | s ∈ Sa,i+1 : a ∈ b =
α(s)} and Af,i+1 = {a | s ∈ (Sa,i \ Sa,i+1) : a ∈
b = α(s) : q = P ∨ q = P0}. ♦

For the example in Fig. 2, a possible run rSFC according
to Def. II corresponds to the following sequence of active
step sets: Sa,0 = {s0}, Sa,1 = {s1, s2}, Sa,2 = {s3, s2},
Sa,3 = {s6, s5}, Sa,4 = {s3, s7}, Sa,5 = {s6, s7}, and
Sa,6 = {s8}. The actual state sequence depends on the
evaluation of the transition conditions gi, which depend on
the variable evaluations, and thus on the actions a ∈ b(s), s ∈
Sa,i which are executed.

III. CONTROLLER TRANSFORMATION
IN TIMED AUTOMATA

A. Reduction of Runs

As pointed out in [13], the timescales for the PLC cycle
and the plant behavior are usually completely different for
many applications. In chemical processing systems, e.g., the
cycle time is chosen in the order of milliseconds, while
changes of v(x), x ∈ Xin (typically exceeding a limit value)
are often separated by minutes or hours. Those runs rSFC ,
which cover the period of time relevant for verifying safety
properties, consequently comprise high number of cycles -
the negative effect on the resources for verification (time and
memory) are obvious. The following definitions thus reduce
rSFC , in order to obtain a smaller number of configurations
that have to be considered for verification.

Definition 4: For two successive timed configurations
(γi, χi) and (γi+1, χi+1), the latter is called a redundant
timed configuration iff: Vi = Vi+1, Sa,i = Sa,i+1, Aa,i =
Aa,i+1, and Af,i = Af,i+1. Given a run rSFC , the corre-
sponding reduced run r̃SFC is obtained by eliminating all
redundant timed configurations from rSFC . ♦

Let σx = ((v0(x), χ0), (v1(x), χ1), . . .) denote the value
sequence of a variable x ∈ X with vi(x) ∈ Vi. Assume that
a function µx : R≥0 → R assigns a time trajectory to σx

according to: µx(ι) = vi(x) for ι ∈ [χi, χi+1[. For x ∈ Xin,
µx(ι) is called a sensor signal, and for x ∈ Xout, µx(ι)
defines a control signal.

Lemma 1: Given sensor signals µx(ι) for all x ∈ Xin, ι ∈
[0, χf], χf ∈ R>0, and a controller as MSFC according
to Def. 1-3, the control signals µx(ι) for all x ∈ Xout are
identical for the runs rSFC and r̃SFC . �

Proof of Lemma 1: For k > 1, let rSFC =
((γ0, χ0), . . . , (γi, χi), (γi+1, χi+1), . . . , (γi+k, χi+k), . . .)
and r̃SFC = ((γ0, χ0), . . . , (γj , χj), (γj+1, χj+1), . . .),
where: (γi, χi) = (γj , χj), (γi+k, χi+k) =
(γj+1, χj+1), and the redundant timed configurations
(γi+1, χi+1), . . . , (γi+k−1, χi+k−1) are eliminated from
r̃SFC . By the definition of reduced runs, it applies for
rSFC that Vi = Vi+1 = . . . = Vi+k−1, and for r̃SFC that
Vj = Vi. For any x ∈ Xout, the partial value sequence

7722

σx = ((vi(x), χi), . . . , (vi+k−1(x), χi+k−1)) corresponding
to rSFC has equal entries vi(x) = . . . = vi+k−1(x),
leading to a control signal µx(ι) = vi(x) for ι ∈ [χi, χi+k[.
For r̃SFC and the same x, the partial value sequence
σx = ((vj(x), χj), (vj+1, χj+1)) leads to the control signal:

µx(ι) = vj(x) for ι ∈ [χj , χj+1[with vj(x)
!
= vi(x) and

χj = χi, χj+1 = χi+k. Thus, for given sensor signals
µx(ι), ι ∈ R≥0, the runs rSFC and r̃SFC encode the same
control signals ∀ x ∈ Xout. �

Corollary 1: If MSFC is connected to a plant model, and
the behavior of the controlled plant has to be analyzed, it is
sufficient to consider r̃SFC instead of rSFC . �

As a consequence of the corollary, the following transfor-
mation of MSFC into timed automata considers r̃SFC .

B. Definition of Timed Automata

The following type of timed automaton is employed for
the transformation:

Definition 5: A timed automaton is defined as TA =
(Z, z0, Lab, V ar, C,E, inv) with:
• the finite set Z = {z1, . . . , znz

} of states with an initial
state z0 ∈ Z;

• the set Lab of synchronization labels including an empty
symbol ε;

• the finite set of variables V ar; the variables x ∈ V ar
have evaluations v(x) defined on N ∪ {0} or Q;

• the finite set C = {c1, . . . , cnc
} of clocks, and ξ ∈

(R≥0)
nc a vector of clock evaluations;

• a finite set E of transitions e = (z, z′, l, g, ρ, κ) ∈ E
in which z ∈ Z is the source state, z′ ∈ Z the target
state, l ∈ Lab a synchronization label, g a transition
guard, ρ a function updating a value assignment ξ ∈
Rn for all clocks in C, and κ a function updating the
evaluations v(x) ∀ x ∈ V ar; g is a boolean combination
of inequalities ξ(c) ∼ k with c ∈ C, and k ∈ Q, and
∼∈ {<,≤,=,≥, >};

• and a function inv : Z → 2P(C) that assigns a boolean
combination of propositions (the set of which is denoted
by P(C)) to each state z ∈ Z.
A run of TA is a sequence rTA = ((z0, V0, ξ0),

(z1, V1, ξ1), (z2, V2, ξ2) . . .) of timed states (zi, Vi, ξi) con-
sisting of a state zi, the set of evaluations Vi of all vari-
ables x ∈ V ar, and the clock evaluation vector ξi. The
initial timed state is (z0, V0, ξ0) with the initial state z0, a
given initial evaluation V0, and ξ0 := 0nc . A timed state
(zi+1, Vi+1, ξi+1) follows from (zi, Vi, ξi) for i ∈ N≥0 by:
1) executing e = (zi, zi+1, l, g, ξ′i, κ) ∈ E iff (a) g is enabled

for Vi and ξ′i with ξ′i = ξi + ν · 1n, ν ∈ R≥0, (b) for
l �= ε: if the label is denoted by l! (sending label),
e is taken independently of synchronizing transitions;
if l is a receiving label, denoted by l?, e is taken
only if a transition of another automaton labeled by l!
synchronizes; if l is not supplemented by ’!’ or ’?’, e
can only be taken if all enabled and identically labeled
transitions existing in another automaton synchronize; (c)
all ξ′′i with ξi ≤ ξ′′i ≤ ξ′i fulfill inv(zi);

2) ξi+1 results from ρ(ξ′i) by either resetting ξ(c) to zero or
leaving the evaluation unchanged;

3) Vi+1 follows from applying κ to vi(x) for all x ∈ V ar.

A state z ∈ Z is labelled as urgent and denoted zu, if it
has to be left immediately upon being reached. It applies
that inv(zu) is empty, as is the guard of the outgoing
transition(s). Furthermore, a transition e ∈ E can be labelled
as urgent meaning that it is taken immediately if its guard g
is enabled, and l = ε applies. ♦

C. Transformation of SFC in TA

The task is now to establish a scheme that transforms an
SFC with reduced runs r̃SFC into a set of timed automata.
The following definition is divided into three parts, the first of
which introduces an automaton that triggers the update of all
other controller automata if the evaluation of any variable has
changed. The second part describes how the sequential and
parallel executions are mapped into a set of timed automata,
and the third part defines the modeling of the actions.

Definition 6: Given MSFC according to Def. 2/3 with a
grammar Γ as introduced in Def. 1, a model consisting of
a set of timed automata according to Def. 5 is obtained as
follows:

Part I - Trigger Automaton: The cyclic update is realized
by a timed automaton TA[1] = (Z [1], z

[1]
0 , Lab[1], V ar[1],

C [1], E[1], inv[1]) with Z [1] = {z1, z2, z3}, z
[1]
0 := z1,

Lab[1] = {ζ, ε}, V ar[1] = {u}, u ∈ {0, 1}, C [1] = {c},
inv[1](z1) = ∅, and inv[1](z2) = inv[1](z3) = (ξ(c) ≤
τmax
c). The set of transitions E[1] = {e1, e2, e3} contains:

the urgent transition e1 = (z1, z2,−, g1, ρ1,−) with g1 =
(u = 1), and ρ1 = (ξ(c) := 0); e2 = (z2, z3, ζ!,−, ρ1,−);
e3 = (z3, z1, ε, g3,−, κ1) with g3 = (ξ(c) ≥ τmin

c) and a
function κu that assigns u := 1 if Vi �= Vi+1, and u := 0
otherwise (Vi, Vi+1 and i as in Def. 3); u is also updated by
a plant automaton if any x ∈ Xin changes its evaluation.

Part II - Structure of the Automata: The string Υ de-
scribing MSFC = (S, s0, T,Γ, X,G,A, α,C) according to
Def. 1 is parsed starting from the left, and a set ∆ =
{TA[1], TA[2], . . . , TA[k], . . . , TA[nA]} is generated by:

• for φ1: introduce TA[2] = (Z [2], z
[2]
0 , Lab[2], V ar[2], C [2],

E[2], inv[2]), insert a state z into Z [2] for the first ′�′ in
Υ and let z := z

[2]
0 . Initialize V ar[2] = C [2] = E[2] = ∅

and Lab[2] = {ζ, ε}.
• for any application of φ2, assuming that chain follows a

step �, for which a state z′ has been inserted into Z [k]

of automaton TA[k]:

– if chain =′ ⊥�′: add a new state z′′ into Z [k] of TA[k];
introduce a transition e = (z′, z′′, ζ?, g, ρ, κ) into E
which corresponds to t = (s′, g, s′′) ∈ T of MSFC ,
where g is identical in both transitions. (The functions
ρ and κ are specified in Part III).

– if chain =′ � . . . � �′ (rule φ3): for any transition t =
(s′, g, s′′) ∈ T associated with an alternative branching
according to (3.) in the definition of T in Def. 2, add a
new state z′′ into Z [k], and add e = (z′, z′′, ζ?, g, ρ, κ).

7723

The ordering of the transitions in Tab for MSFC is
conveyed into TA[k] correspondingly. Let the final step
of an alternative branch ′[. . . �⊥]′ enclosed by ′� . . . �

�′ be represented by state z′′ ∈ Z [k] (according to
rule φ2), and add a state z′′′ into Z [k] to represent
the step immediately following ′ �′. Insert a transition
e = (z′′, z′′′, ζ?, g, ρ, κ) into E[k] for each alternative
branch (corresponding to t = (s, g, s′) in (4.) of the
definition of T).

– if chain =′ ⊥� . . . �′ (rule φ4): add two states zu1

and z′′ into Z [k] and the following transitions in E[k]:
e = (z′, zu1, ζ?, g, ρ, κ), where g is the guard assigned
to the corresponding t = (s′, g, S′′) in (5.) of the
definition of T in Def. 2, and e = (zu1, z

′′, l1,−,−,−).
For chain =′ ⊥�′ following immediately the closure
of the parallel branching with t = (S′′, g, s′) according
to (6.) in the definition of T in Def. 2, let z′′′ ∈ Z [k]

denote the state introduced for the step ′�′. Introduce a
state zu2 into Z [k], as well as e = (z′′, zu2, ζ?, g, ρ, κ)
and e = (zu2, z

′′′, l2,−,−,−) into E[k] of TA[k]. The
synchronization labels l1 and l2 are added to Lab[k].
For each parallel branch ′[� . . .]′ enclosed by
′� . . . �′, a separate automaton TA[k+1] = (Z [k+1],

z
[k+1]
0 , Lab[k+1], V ar[k+1], C [k+1], E[k+1], inv[k+1]) is

introduced into ∆ with the following initialization:
Z [k+1] = {z

[k+1]
in , z[k+1]}, Lab[k+1] = {ζ, l1, l2},

V ar[k+1] = C [k+1] = E[k+1] = ∅. In Z [k+1], z
[k+1]
in =

z
[k+1]
0 denotes the inactivity of the parallel branch and

z[k+1] represents the first step of the latter. A transition
e = (z

[k+1]
in , z[k+1], l1,−,−,−) is added to E[k+1] and

associated with t = (s′, g, S′) of MSFC ; likewise,
e = (z∗, z

[k+1]
in , l2,−,−,−) is included in E. This

transition represents the transition t = (S′′, g, s′) in
MSFC by which the parallel branching is left, and it
leads from z∗ (representing the last step of the parallel
branch) into the state of inactivity z

[k+1]
in .

– if chain =′ loop′ (rule φ5), i.e. Υ contains
�⊥�� . . .⊥�⊥�⊥�: according to (2.) in the defi-
nition of T , insert a state z′ into Z [k] to represent the
first step inside the loop, and add e = (z, z′, ζ?, g, ρ, κ)
to E[k] where z′ corresponds to the step preceding
⊥�. Let z′′ denote the state introduced (via the case
chain =′ ⊥�′) as the last step inside the loop, and
let z′ be the first step inside of the loop, as well as
z′′′ the first step after the loop. Insert the following
two transitions into E: e = (z′′, z′, ζ?, g′′, ρ, κ), and
e = (z′′, z′′′, ζ?, g′′′, ρ, κ) with their respective guards
g′′ and g′′′ as in MSFC .

Part III - Actions: Depending on the actions a ∈ A of MSFC ,
the components V ar[k], C [k], and inv[k], as well as g, ρ, and
κ for each e ∈ E[k] are determined as follows:
• For TA[k] ∈ ∆: if for any z ∈ Z [k], there exists a

corresponding s ∈ S for MSFC with b = α(s): iff
a = (q, τ, o, f) ∈ b, where o is a variable x ∈ Xint∪Xout

or a function of x ∈ Xin ∪ Xint, then x is included in
V ar[k].

u c= 1, ():=0
urgent

�

z1 z2

z3

�!, �():=0c� �()c C

min
���u�

inv:
�()c �C

max
�

inv: �C

max
�()c �

Fig. 3. Trigger automaton TA[1] according to Def. 6, part I.

• For s ∈ S, a = (q, τ, o, f) ∈ b(s) with q ∈ {P, P1}, and
a corresponding state z ∈ Z [k] of A[k] which is reached
by e = (z′, z, ζ?, g, ρ, κ), the manipulation of variables
x ∈ Xint ∪ Xout by a is included in κ; for q ∈ {P, P0},
and a transition e = (z, z′′, ζ?, g′′, ρ′′, κ′′) by which the
state z ∈ Z [k] is left, the variable manipulation by a is
included in κ′′.

• Given s ∈ S, a = (q, τ, o, f) ∈ b(s) with q /∈
{P, P1, P0}, and the corresponding state z ∈ Z [k] of
A[k] which is reached by e = (z′, z, ζ?, g, ρ, κ), add a step
variable sv into V ar[k], add the assignment sv := 1 and
the manipulation of the operand o by the action a to κ of e.
(Note: if s is the first step following a parallel branching,
sv is assigned to the state reached by the inactivity state
zin of the branch.) Furthermore, the assignment sv := 0
is added to κ of the transition by which z is left.
For any a = (q, τ, o, f) ∈ b(s) with q /∈ {P, P1, P0}, a
new automaton TA[k] = (Z [k], z

[k]
0 , Lab[k], V ar[k], C [k],

E[k], inv[k]) is added to ∆ with z
[k]
0 = z1, Lab[k] =

{ζ, ε}, V ar[k] = {sv, f} ∪ {X [k]} with X [k] ⊂ X
denoting the variables that are relevant for a. Depending
on the qualifier q, TA[k] is parameterized as follows2:

– q = N : Z [k] = {z1}, C [k] = ∅, E[k] = {e1} with
e1 = (z1, z1, ζ?, (sv = 1 ∧ f = 1),−, κ1), e2 =
(z1, z1, ζ?, (sv = 0 ∨ f = 0),−, κ0) where κ1 updates
the action operand according to a, κ0 resets the operand
to a default value, and inv[k] = ∅.

– q = St: Z [k] = {z1, z2}, C [k] = ∅, E[k] = {e1, e2, e3}
with e1 = (z1, z2, ζ?, (sv = 1 ∧ f = 1),−, κ1),
e2 = (z2, z2, ζ?, (f = 1),−, κ1), e3 = (z2, z1, ζ?, (f =
0),−, κ0), and inv[k] = ∅.

– q = D: Z [k] = {z1, z2}, C [k] = {c}, E[k] =
{e1, e2, e3} with e1 = (z1, z2, ζ?, (sv = 1 ∧ f =
1), (ξ(c) := 0),−), e2 = (z2, z2, ζ?, (sv = 1 ∧ f =
1 ∧ ξ(c) ≥ τv),−, κ1), e3 = (z2, z1, ζ?, (sv = 0 ∨ f =
0),−, κ0), and inv[k](z1) = inv[k](z2) = ∅.

– q = DS: Z [k] = {z1, z2, z3}, C [k] = {c}, E[k] =
{e1, . . . , e5} with e1 = (z1, z2, ζ?, (sv = 1 ∧ f =
1), ξ(c) := 0,−), e2 = (z2, z1, ζ?, sv = 0 ∧ f =
0,−, κ0), e3 = (z2, z3, ζ?, sv = 1 ∧ f = 1 ∧
ξ(c) ≥ τv,−, κ1), e4 = (z3, z3, ζ?, f = 1,−, κ1),
e5 = (z3, z1, ζ?, f = 0,−, κ0), and inv[k](z1) =
inv[k](z3) = ∅, inv[k](z2) = (ξ(c) ≤ τv). ♦

The trigger automaton obtained from Part I of the defi-
nition is shown in Fig. 3. The urgent transition from z1 to

2Due to space limitations, only a few qualifiers are listed here; the
remaining qualifiers are modeled correspondingly.

7724

z0 zin,3 zin,4

g ,0 �?

g ,1 �? g ,2 �? g ,3 �?

g ,5 �? g ,6 �?

g ,7 �?

g ,4 �?g ,8 �?

	 	

	

z8

z3 z4 z5

z6 z7

zu1

zu2

zpar

z1 z2

TA
[2]

TA
[3]

TA
[4]

Fig. 4. Automaton structure for the SFC shown in Fig. 2.

z2 is executed whenever u = 1 signals that the evaluation
of the variables have changed, provided the last triggering
event (ζ!) occurred at least the time τmin

C ago.
For the example in Fig. 2, Part II of Def. 6 leads to the

set of automata shown in Fig. 4. The states zu1 and zu2

in TA[2] are urgent to achieve that the transition labelled
by α and β are executed immediately after the conditions
g0 and g8 become true. The state zpar represents that the
parallel branching is active, i.e. only when TA[2] is in zpar,
the automata TA[3] and TA[4] leave their states of inactivity
zin,4, and zin,5 respectively.

As an example for modeling the actions, Fig. 5 illustrates
the timed automaton introduced for the action qualifier q =
D. The initial state z1 is left, if the corresponding step is
reached (sv = 1), and the execution flag of the action is
set (f = 1). The manipulation of the operand by κ1 is
performed after the time τv , unless the step is left (sv = 0)
or the action is deactivated (f = 0) before. All transitions
are synchronized with TA[1] by the label ζ.

Lemma 2: Given MSFC according to Def. 1-3 with an arbi-
trary reduced run r̃SFC , and let ∆ = {TA[1], . . . , TA[nA]}
be a set of TA derived according to Def. 6. The set of runs
possible for the parallel composition of TA[1], . . . , TA[nA]

contains a run that is semantically equivalent to r̃SFC . �

The proof of this lemma is out of the scope of a conference
paper, however, the proof scheme is as follows: (a) it is
shown first that every step of MSFC is mapped onto a state
of the parallel composition TAcomp = TA[1]‖ . . . ‖TA[nA],
where nA is the total number of automata introduced ac-
cording to Def. 6; (b) it is shown for all possible transitions
t ∈ T executed in MSFC that a corresponding transition
e between the respective states exists for TAcomp, and that
the time of occurrence of t is possible for e in TAcomp;
(c) for all actions manipulating an operand o (and thus
modifying Vi according to r̃SFC), it is shown that the action
automata included in TAcomp manipulate the evaluations of
the variables x ∈ Xint ∪ Xout correspondingly.

IV. CONCLUSIONS

The paper has introduced a formal definition of SFC, the
reduction of runs of MSFC to configurations that are relevant

z1 z2

�?, =1 =1,sv f �():=0c�

�?, =0 =0,sv f 0��
sv f=1 =1, ��
� � �?, ()c v�

Fig. 5. Automaton for the delay action q = D.

for verification, and a transformation procedure into timed
automata. Due to lemma 2, the TA model can be used for
safety verification in the following sense: if MSFC leads to
control signals that drive a plant model into an unsafe state,
the verification will reveal that also TAcomp produces the
same control signal, and thus the same verification result.

The TA model encodes a superset of the control signals
of MSFC , due to the following fact: sending the label ζ!
by the trigger automaton is not bound to the actual cycle
time τc,i but can occur in the complete interval [τmin

c , τmax
c].

Thus, the verification of TAcomp may lead to the result that
the safety property is violated while it is not for MSFC .
However, from a practical point of view and assuming small
values of τmax

c , the SFC is ‘close’ to violating the property
in this case, and a modification of the logic controller is
recommended anyway.

Current work aims at implementing a tool that realizes the
transformation algorithmically.

REFERENCES

[1] Int. Electrotechn. Commission (Techn. Com. No. 65), Programmable
Controllers - Programming Languages, IEC 61131-3, 2003.

[2] E. Clarke, O. Grumberg, and D. Peled, Model Checking. MIT Press,
1999.

[3] K. Fujino, K. Imafuku, Y. Yamashita, and H. Nishitani, “Design and
verification of the SFC program for sequential control,” Comp. Chem.
Eng., vol. 24, pp. 303–308, 2000.

[4] S. Bornot, R. Huuck, Y. Lakhnech, and B. Lukoschus, “Verification of
sequential function charts using SMV,” in Int. Conf. on Parallel and
Distributed Processing Techn. and Applic., 2000, pp. 2987–2993.

[5] S. Lampérière and J. Lesage, “Formal verification of the sequential
part of PLC programs,” in Discrete Event Systems. Kluwer Acad.
Publ., 2000, pp. 247–254.

[6] D. L’Her, P. Le Parc, and L. Marce, “Proving sequential function
chart programs using automata,” in 3rd Int. Workshop on Automata
Implementation, ser. Springer-LNCS, vol. 1660, 1998, pp. 149–163.

[7] M. Remelhe, S. Lohmann, O. Stursberg, and S. Engell, “Algorithmic
verification of logic controllers given as sequential function charts,” in
IEEE Conf. on Comp.-Aided Control System Design, 2004, pp. 53–58.

[8] N. Bauer, S. Engell, R. Huuck, S. Lohmann, B. Lukoschus,
M. Remelhe, and O. Stursberg, “Verification of PLC programs given
as sequential function charts,” in Integration of Software Spec. Techn.
for Applic. in Eng., ser. Springer-LNCS, vol. 3147, 2004, pp. 517–540.

[9] G. Behrmann, A. David, K. Larsen, O. Moeller, P. Pettersson, and
W. Yi, “UPPAAL - present and future,” in 40th IEEE Conf. on Decision
and Control, 2001, pp. 2881–2886.

[10] O. Stursberg, A. Fehnker, and Z. H. und B.H. Krogh, “Specification-
guided analysis of hybrid systems using a hierarchy of validation
methods,” in IFAC Conf. on Analysis and Design of Hybrid Systems,
2003, pp. 289–295.

[11] K. John and M. Tiegelkamp, IEC 61131-3: Programming Industrial
Automation Systems. Springer, 2001.

[12] N. Bauer, R. Huuck, B. Lukoschus, and S. Engell, “A unifying
semantics for sequential function charts,” in Integration of Software
Spec. Techn. for Applications in Eng., ser. Springer-LNCS, vol. 3147,
2004, pp. 400–418.

[13] O. Stursberg, S. Lohmann, and S. Engell, “Improving dependability
of logic controllers by algorithmic verification,” in 16

th IFAC World
Congress, no. Mo-E17-TO/6, 2005.

7725

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

