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Abstract— This paper proposes a new synthesis of a gain
scheduling controller based on the approximation of Lyapunov
matrices by spline functions. The synthesis condition is de-
scribed as dilated linear matrix inequalities which can be
solved numerically. While in a previous study the derived
feedback gains always have the same knots as the approximated
Lyapunov matrices, our condition enables the feedback gains to
have fewer knots without conservatism. Scheduled gains which
are piecewise-linear on a parameter can also be obtained by
adding constraints to the proposed synthesis condition.

I. INTRODUCTION

Gain scheduling control techniques have been considered
applicable to and useful for linear parameter varying (LPV)
systems, and have been studied for the past two decades. The
basic idea of gain scheduling control analysis and synthesis
is to search for adequate Lyapunov functions which ensure
the stability and performance of the closed-loop system. In
previous studies, gain scheduling techniques for polytopic or
other LPV systems have been developed by restricting the
Lyapunov functions to be fixed functions (for example, [1],
[2], [3]), although several studies have shown that parameter-
dependent Lyapunov functions give less conservative perfor-
mance than fixed functions [4].

Recently, parameter-dependent linear matrix inequality
(LMI) problems have been studied, by which gain scheduling
techniques using parameter-dependent Lyapunov functions
are characterized as shown in [5]. While those problems
are inherently equivalent to an infinite number of LMIs
corresponding to each value of the parameter and are hard
to solve numerically, sufficient conditions to parameter-
dependent LMIs have been derived as finite sets of LMIs by
some relaxation techniques[6],[7],[8],[9]. Spline-type func-
tions were introduced in [10] and [11] to approximate the
solution to a class of parameter-dependent convex differential
inequalities which includes parameter-dependent LMIs, and
a sufficient condition with a finite number of LMIs was
derived by dividing the region of the parameter’s values.
Since the number of “knots” of the spline-type function
coincides with the number of elements in the division of
the parameter region, a finer division gives a more accurate
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approximation of the solution. The condition was also proved
to be necessary with a sufficiently fine division of the region.

A gain scheduling controller synthesis for LPV systems by
this approach was also shown in [12]. Although a feedback
gain which achieves L2 gain performance can be derived
using the synthesis, the derived gain has always the same
knots as the approximated Lyapunov matrix, even if there
exists a feedback gain with fewer knots which achieves
required performance. That is, when the region of the pa-
rameter’s value is divided more finely in order to achieve
better performance, the number of knots of the scheduled
gain always increase. Since a greater number of knots of the
scheduled gain requires a large control program, it is not
favorable for implementation.

We propose a new synthesis of a gain scheduling controller
which overcomes the above-mentioned deficiency; that is, a
design method for a scheduled gain which achieves an L2

gain performance with fewer knots (if such a scheduled gain
exists) than those of an approximated Lyapunov matrix. It has
been shown that parameter-dependent Lyapunov functions
can be derived for polytopic LPV systems synthesis via
so-called dilated LMIs[13] (or extended LMIs[14]). The
advantage of the dilated LMI approach is “separation[14]”
between the Lyapunov matrix and some of the dynamic
system matrices in the derived conditions, and this property
is utilized to obtain a feedback gain with fewer knots than
the Lyapunov matrix. We also show that scheduled gains that
are piecewise-linear on a parameter, which do not require
complex calculations for scheduling but simply interpolation,
can be obtained using our synthesis by imposing some
constraints. Although such scheduled gains can also be
derived from a former result [1] in which the Lyapunov
matrix is fixed (i.e. parameter-independent), our approach
is less conservative because the Lyapunov matrix in our
synthesis can be parameter-dependent. The resulting gains
are presented as an example.

This paper is organized as follows. An LPV system that
will be considered here is presented in Section 2, and the re-
sults of previous studies[5],[12] are reviewed. The parameter-
dependent condition which assures L2 gain performance is
rewritten in a dilated LMI form and reduced to a finite set
of dilated LMIs in Section 3. Section 4 shows examples of
derived feedback gains using the proposed synthesis.
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II. PROBLEM FORMULATION

We focus our attention only on the state feedback case,
and consider the following LPV plant:

Σ :
{

ẋ = A(θ)x + B(θ)w + Bu(θ)u,
z = C(θ)x + D(θ)w + Du(θ)u,

(1)

where x ∈ Rn is the plant state, w ∈ Rm is the exogenous
input, u ∈ Rmu is the control input and z ∈ Rp is
the controlled output. The scheduling parameter θ(t) is a
differentiable function whose values are supposed to lie in
the region

θ(t) ∈ Θval := [θ, θ],
θ̇(t) = ω(t) ∈ Ωval := [ω, ω].

(2)

In this discussion, the six matrices in (1) are assumed to
be piecewise-linear functions of θ; for example, A(θ) is
expressed as:

A(θ) = AΣ
i +

θ − θΣi
θΣi+1 − θΣi

(AΣ
i+1 − AΣ

i ), (3)

θ ∈ [θΣi , θΣi+1], i = 0, 1, . . . , NΣ,

where θΣi are knots of A(θ), θ = θΣ0 < θΣ1 < . . . < θΣNΣ
<

θΣNΣ+1 = θ. We denote this division of Θval by DΣ = {θ =
θΣ0 , θΣ1 , . . . , θΣNΣ

, θΣNΣ+1 = θ}. The other matrices are also
assumed to be piecewise-linear functions of the same type
with the common division DΣ.

Consider the scheduled static state feedback controller:

Γ : u = F (θ)x. (4)

We denote the closed-loop system composed of Σ and Γ as
ΣΓ. An LMI condition for stability and L2 gain performance
of an LPV system has been derived in a previous study, and
can be applied to the closed-loop system:

Lemma 1: [5] The closed-loop system ΣΓ is stable and its
L2 gain is less than γ if there exists a differentiable matrix
P (θ) which satisfies the following LMI condition:

P (θ) � 0, (5)
 Qcl(θ, ω) P (θ)B(θ) CT

cl(θ)
BT (θ)P (θ) −γI DT (θ)

Ccl(θ) D(θ) −γI


 � 0, (6)

where,

Qcl(θ, ω) = ω
∂P (θ)

∂θ
+ AT

cl(θ)P (θ) + P (θ)Acl(θ),

Acl(θ) = A(θ) + Bu(θ)F (θ),
Ccl = C(θ) + Du(θ)F (θ)

for any (θ, ω) ∈ (Θval × Ωval)
1.

If such a P (θ) exists, the parameter-dependent quadratic
form xT P (θ)x acts as a Lyapunov function proving stability
and L2 gain performance. �

1Inequality P (θ) � 0 (P (θ) � 0) means that P (θ) ≥ α (P (θ) ≤ −α)
holds for some positive number α and any θ ∈ Θval.

The condition in Lemma 1 is a parameter-dependent LMI
and involves an infinite number of LMIs corresponding to
each pair of (θ, ω) ∈ (Θval×Ωval). The condition is reduced
to a finite set of LMIs as in the following lemma, which gives
a feedback gain matrix F (θ) and a spline-type solution P (θ)
to (5) and (6).

Lemma 2: [12] The following two statements are equiva-
lent.
(i)There exist a differentiable matrix P (θ) and a feedback
gain matrix F (θ) which satisfy (5) and (6).
(ii) There exist a subdivision D of DΣ (D = {θ = θ0, θ1,
. . . , θN , θN+1 = θ}), matrices Wk and symmetric matrices
Xk(k = 0, 1, . . . , N + 1) which satisfy the following LMIs
for ω = ω, ω:

Xk > 0, k = 0, 1, ..., N + 1, (7)
 Qcl(k) Bk ST

k

BT
k −γI DT

k

Sk Dk −γI


 := Jcl(k) < 0,

k = 0, 1, ..., N, (8)
 Q−

cl(k) Bk ST
k

BT
k −γI DT

k

Sk Dk −γI


 < 0,

k = 1, 2, ..., N + 1, (9)

Jcl(k) +
1
2
(Lcl(k) + LT

cl(k)) < 0,

k = 0, 1, ..., N, (10)

where Qcl(k) := AkXk + XkAT
k − ω

∆θk
∆Xk

+Bu(k)Wk + WT
k BT

u(k),

Q−
cl(k) := AkXk + XkAT

k − ω

∆θk−1
∆Xk−1

+Bu(k)Wk + WT
k BT

u(k),

Sk := CkXk + Du(k)Wk,

Lcl(k) :=


 L11

cl(k) ∆Bk 0
0 0 0

L31
cl(k) ∆Dk 0


 ,

L11
cl(k) := (∆AkXk + Ak∆Xk)

+(∆Bu(k)Wk + Bu(k)∆Wk),
L31

cl(k) := (∆CkXk + Ck∆Xk)
+(∆Du(k)Wk + Du(k)∆Wk),

and ∆ denotes difference; ∆θk := θk+1 − θk,∆X :=
Xk+1 − Xk,∆A := A(θk+1) − A(θk) and so on.
If (ii) holds, one of the solutions P (θ) and F (θ) is given as:

P (θ) =

{
1
l

∫ θ+ l
2

θ− l
2

XS(h)dh

}−1

, (11)

F (θ) = WS(θ)X−1
S (θ),
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where l is some small positive constant and

XS(θ) = Xk +
θ − θk

θk+1 − θk
(Xk+1 − Xk),

WS(θ) = Wk +
θ − θk

θk+1 − θk
(Wk+1 − Wk),

for θ ∈ [θk, θk+1]. �

Since the spline-type solution (11) with sufficiently large
N can represent almost any continuous matrix function, even
non-convex solutions with respect to θ can be derived from
this lemma. It thus gives less conservative solutions than the
earlier results in which P (θ) was supposed to be a fixed
matrix P .

Note that the resulting knots of F (θ) are the same as those
of XS(θ) because F (θ) is given as WS(θ)X−1

S (θ). As a
result, the finer the region Θval is divided to obtain a non-
conservative Lyapunov function, the more complicated the
feedback gain F (θ) becomes.

III. A NEW GAIN SCHEDULING CONTROLLER

SYNTHESIS

A. Stability Condition via Dilated LMIs

There has been much research published on dilated LMIs,
and it has been shown that dilated LMI conditions are suit-
able for some control problems. For example, in H2 synthesis
of discrete-time[14] and continuous-time[15],[13],[16] poly-
topic LPV systems, non-common Lyapunov functions for all
vertices of the polytope can be derived via a dilated LMI
approach. For multiobjective synthesis problems[13],[16],
non-common Lyapunov functions for each specification can
be obtained using a dilated LMI condition in which there is
no product between the Lyapunov-related matrix X and the
feedback gain F . As a result, less conservative performance
is realized.

An equivalent condition of Lemma 1 can be derived via a
dilated LMI approach. In the following theorem, parameter-
dependent matrices are expressed by calligraphic characters
and the argument (θ) is omitted for simplicity (A as A(θ),
for example).

Theorem 1: The closed-loop system ΣΓ is stable and its
L2 gain is less than γ if there exist a positive constant ε, a
differentiable matrix X and a square matrix G which satisfy
the following condition:

X � 0, (12)




−ω ∂X
∂θ

+ AX + XAT B XCT −X
BT −γI DT 0
CX D −γI 0
−X 0 0 0




+




BuF
0

DuF
I


G

[
I 0 0 −εI

]

+




I
0
0

−εI


GT

[
FTBT

u 0 FTDT
u I

]
� 0, (13)

for any (θ, ω) ∈ (Θval × Ωval) . �

Proof: This theorem can be proved in a similar way to
[13] and [16].

Suppose that (12) and (13) hold. By multiplying


BuF
0

DuF
I



⊥

=


 I 0 0 −BuF

0 I 0 0
0 0 I −DuF




and its transpose from the left and right sides respectively,
the inequality (13) leads to

 � B XCT

BT −γI DT

CX D −γI


 � 0, (14)

(� := −ω
∂X
∂θ

+ AX + XAT + BuFX + XFTBT
u ).

Then the inequality (6) is obtained by letting X = P−1. It
is apparent that (5) holds.

On the other hand, suppose that (5) and (6) hold. Note that
(6) can be rewritten as (14) by defining X := P−1. There
exists a small positive constant ε such that
 εBuFX

0
εDuFX


 (2εX )−1

[
εXFTBT

u 0 εXFTDT
u

] ≥ 0,

(15)
since X > 0.

If ε is sufficiently small, then

[left side of (14)] + [left side of (15)] � 0

holds. Applying the Schur complement to this inequality
leads to


� B XCT + XFTDT
u −εBuFX

BT −γI DT 0
CX + DuFX D −γI −εDuFX
−εXFTBT

u 0 −εXFTDT
u −2εX


 � 0,

(� := −ω
∂X
∂θ

+ AX + XAT + BuFX + XFTBT
u ).

This inequality shows that, by choosing G = GT = X , the
differentiable matrices X and G satisfy (12) and (13).

The advantage of (13) is that it has no product between
X and F in the matrix elements. This property is utilized in
the next theorem.

B. Controller Synthesis via Dilated LMIs

Before moving on to the theorem, let us consider a division
DΓ of Θval, of which D is a subdivision:

DΓ = {θ = θΓ0 , θΓ1 , . . . , θΓNΓ
, θΓNΓ+1 = θ},

(NΓ ≤ NΣ ≤ N). (16)
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Note that DΓ has the same number or fewer knots than D
(that is, the knots of XS(θ)).

Example 1: Consider the case Θval = [0, 6], DΣ = {0, 6}
and D = {0, 2, 4, 6}, (NΣ = 0, N = 2). Then the
candidates of DΓ are

DΓ =




{0, 6}, (NΓ = 0),
{0, 2, 6}, {0, 4, 6}, (NΓ = 1),
{0, 2, 4, 6}, (NΓ = 2).

�

The following theorem gives a feedback controller F (θ)
whose knots are in DΓ based on Theorem 1.

Theorem 2: The following two statements are equivalent.
(i) There exist a positive constant ε, a differentiable matrix
X , a square matrix G and a feedback gain matrix F which
satisfy (12) and (13).
(ii) There exist a positive constant ε, a subdivision D of
DΣ(D = {θ0, θ1, . . . , θN , θN+1}), a division DΓ as in (16),
symmetric matrices Xk(k = {0, 1, . . . , N + 1}), matrices
WΓ

j and GΓ
j (j = {0, 1, . . . , NΓ + 1}) which satisfy the

following conditions for ω = ω, ω:

Xk > 0, k = 0, 1, ..., N + 1, (17)


Qcl(k) Bk ST
k Rk

BT
k −γI DT

k 0
Sk Dk −γI −εDu(k)Wk

RT
k 0 −εWT

k DT
u(k) −ε(Gk + GT

k )




:= Jcl(k) < 0, k = 0, 1, ..., N, (18)


Q−
cl(k) Bk ST

k Rk

BT
k −γI DT

k 0
Sk Dk −γI −εDu(k)Wk

RT
k 0 −εWT

k DT
u(k) −ε(Gk + GT

k )


 < 0,

k = 1, 2, ..., N + 1, (19)

Jcl(k) +
1
2
(Lcl(k) + LT

cl(k)) < 0, k = 0, 1, ..., N, (20)

where

Gk := GΓ
j +

θk − θΓj
θΓj+1 − θΓj

(GΓ
j+1 − GΓ

j ),

Wk := WΓ
j +

θk − θΓj
θΓj+1 − θΓj

(WΓ
j+1 − WΓ

j ),

(for k s.t. θΓj ≤ θk ≤ θΓj+1),

Qcl(k) := AkXk + XkAT
k − ω

∆θk
∆Xk

+Bu(k)Wk + WT
k BT

u(k),

Q−
cl(k) := AkXk + XkAT

k − ω

∆θk−1
∆Xk−1

+Bu(k)Wk + WT
k BT

u(k),

Rk := Gk − Xk − εBu(k)Wk,

Sk := CkXk + Du(k)Wk,

Lcl(k) :=




L11
cl(k) ∆Bk 0 L14

cl(k)

0 0 0 0
L31

cl(k) ∆Dk 0 L34
cl(k)

0 0 0 −2ε∆Gk


 ,

L11
cl(k) := (∆AkXk + Ak∆Xk)

+(∆Bu(k)Wk + Bu(k)∆Wk),
L31

cl(k) := (∆CkXk + Ck∆Xk)
+(∆Du(k)Wk + Du(k)∆Wk),

L14
cl(k) := ∆Gk − ∆Xk − ε(∆Bu(k)Wk + Bu(k)∆Wk),

L34
cl(k) := −ε(∆Du(k)Wk + Du(k)∆Wk),

and ∆ denotes difference; ∆θk := θk+1 − θk,∆X :=
Xk+1 − Xk,∆A := A(θk+1) − A(θk) and so on.
If (ii) holds, one of the solutions P (θ) and F (θ) is given as:

P (θ) =

{
1
l

∫ θ+ l
2

θ− l
2

XS(h)dh

}−1

,

F (θ) = WΓ
S (θ)GΓ

S

−1
(θ),

where l is some small positive constant,

XS(θ) = Xk +
θ − θk

θk+1 − θk
(Xk+1 − Xk),

for θ ∈ [θk, θk+1] and

WΓ
S (θ) = WΓ

j +
θ − θΓj

θΓj+1 − θΓj
(WΓ

j+1 − WΓ
j ),

GΓ
S(θ) = GΓ

j +
θ − θΓj

θΓj+1 − θΓj
(GΓ

j+1 − GΓ
j ),

for θ ∈ [θΓj , θΓj+1]. �

Proof:
(ii)⇒(i): This can be proved in the same way as in [11].
(i)⇒(ii): This is also proven by choosing DΓ = D(NΓ =
N).

Note 1: The inequalities (17)–(20) are not LMIs since
the variable ε is involved in some products with the matrix
variables Wk and Gk. However, by letting ε be a line-search
parameter, these inequalities can be solved using standard
LMI solvers[17][16].

The main point of the theorem is that the feedback gain
F (θ) is not related to XS(θ) and consequently the number of
knots of F (θ) does not always increase even if the number
of knots of XS(θ) (= N + 2) increases in order to obtain
a less conservative Lyapunov matrix. Fig. 1 illustrates the
difference between Lemma 2 and Theorem 2 with the same
N(= 5). A feedback gain F (θ) derived from Lemma 2
always has the same number of knots as XS(θ) (Fig. 1 left).
On the other hand, a feedback gain with fewer knots can be
derived using Theorem2 (Fig. 1 right) by letting NΓ < N
(NΓ = 0 in Fig. 1). This is preferable for implementation in
a controller since a scheduled gain with fewer knots requires
a smaller control program.
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θ

F(θ)

XS(θ)

F(θ)

XS(θ)

θθ θ θ θ

(A) Lemma 2 (B) Theorem 2 (B’) Theorem 2
(NΓ = 0) (NΓ = 0; G∗:const.)

N = 0 1.47 1.47 1.48
1 0.992 1.07 1.10
2 0.822 0.836 0.883
3 0.743 0.747 0.783
4 0.690 0.698 0.723
5 0.657 0.668 0.692

0 1 2 3 4 5 6-25

-20

-15

-10

-5

0

5

F1

F2

θ
(A) Lemma 2

0 1 2 3 4 5 6
-4

-2

0

2

4

6

F2

F1

θ
(B) Theorem 2

0 1 2 3 4 5 6-4

-2

0

2

4

6

F2

F1

θ
(B’) Theorem 2 with G1=G2

Fig. 2. The derived feedback gains. (A): Lemma2 with N = 4 (γ =
0.690). (B): Theorem 2 with N = 4 and NΓ = 0 (γ = 0.698). (B’):
Theorem 2 with N = 5, NΓ = 0 and G1 = G2 (γ = 0.692).

scheduled gains are to be implemented in a control system.
It is apparent that gain (A) requires the most resources
for implementation since six gain matrices are necessary
to schedule it, three times more than those necessary for
(B) and (B’). This may not seem to be a problem in this
case since the size of each gain matrix is 1 × 2 and the
difference in required storage would be only several tens of
bytes. However, this difference would not be negligible when
dealing with large-scale systems which have several tens
or hundreds of states and inputs. Moreover, because matrix
inverse calculation is required for scheduling (A) and (B),
a controller would require greater computational resources
than for scheduling (B’). Therefore, considering the fact that
all these gains satisfy the performance requirement, gain (B’)
is preferable from the standpoint of implementability.

V. CONCLUSION

We proposed a new gain scheduling controller synthesis
with spline-type parameter-dependent quadratic forms. The
condition is described as dilated LMIs and the synthesis can
be performed using standard LMI solvers. Since scheduled
gain matrices are derived independently of the Lyapunov

Fig. 1. Examples of function XS(θ), which is related to Lyapunov solution,
and feedback gain F (θ) derived from Lemma 1 (left hand) and Theorem 2
(right hand).

Furthermore, if we set G∗ = G (a common matrix) in
Theorem 2 and a solution to (17)–(20) is obtained, the
feedback gain F (θ) that results is simply a piecewise-linear
function of θ. While scheduled gains derived from Lemma 2
need a matrix inverse calculation (WSX−1

S ) for scheduling at
each value of θ, the piecewise-linear scheduled gain requires
only simple interpolation, which reduces the processing re-
quirements for embedded control computers and is therefore
favorable from the standpoint of implementability. These
derived gains are shown in the example that follows.

IV. NUMERICAL EXAMPLE

Consider the LPV system Σ:

A(θ) =
[ −4.1 − 3.0θ 1

−2.0θ 2.0 − 3.2θ

]
,

B(θ) =
[ −0.03 − 0.3θ

−0.47 + 0.9θ

]
,

Bu(θ) =
[

3.0
2.0 − 1.0θ

]
, C(θ) =

[
1 1
0 0

]
,

D(θ) =
[

0
0

]
, Du(θ) =

[
0
1

]
.

In this example, we assume Θval = [0, 6],Ωval = [−10, 10]
and DΣ = {0, 6}. We also assume that L2 gain performance
γ is required to be less than 0.7.

Table 1 shows the results of minimizing γ. The columns
A and B show the minimized values of γ under (7)–(10)
(Lemma 2) and (17)–(20) (Theorem 2) respectively. The
number of knots of F (θ) is supposed to be two (NΓ = 0 and
DΓ = {0, 6}) in Theorem 2. In addition, we also minimize
γ under (17)–(20) and G1 = G2 = G, with the results
shown in column B’. In each case, D is given so that Θ
is divided equally with N = 0, . . . , 5.Using Lemma 2, N
should be at least four in order to meet the requirement of
L2 gain performance. Consequently, the knots of the derived
feedback gain should be six (= N +2) or more. On the other
hand, a feedback gain with two knots can be obtained using
Theorem 2 with N = 4 and NΓ = 0. Moreover, by letting
N = 5, NΓ = 0 and imposing G1 = G2, a feedback gain is
derived which is a linear function of θ.

These resulting gains are shown in Fig. 2. Gain (A) has
six knots, whereas (B) and (B’) have two. Gain (B’) is
linear on the parameter θ. Now let us suppose that these

TABLE I

MINIMIZED VALUE OF γ IN EACH CASE.
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matrix, they are simpler than those in previous studies.
Moreover, scheduled gains which are piecewise-linear on
a parameter can be obtained by imposing some equality
constraints on matrix variables. Scheduled gains derived from
the synthesis were illustrated, and we showed that these are
desirable for practical implementation.

In the example, we supposed DΓ = {0, 6}(NΓ = 0) and
then designed the scheduled gains. It is, however, difficult
to decide a priori a division DΓ in general. Thus, an
algorithm which sets a division DΓ and simultaneously gives
a feedback gain needs to be developed. In addition, output
feedback controller synthesis remains a topic for further
research. These studies are ongoing and the results will be
shown in future presentations.
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