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Abstract— This paper presents a constructive method to
(sub)optimal finite impulse response (FIR) approximation of a
given infinite impulse response (IIR) MIMO model. The method
minimizes the Hankel norm of approximation error by using
the explicit solution of norm-preserve dilation problem. It has
the advantage over the existing methods that it provides an
explicitly constructive solution and allows the trade-off between
the Chebyshev and least square criteria. The lower and upper
bounds on the H2 and H∞ norms of approximation error are
given. The algorithm for approximating non-causal IIR filters by
causal FIR filters is also formulated and solved. The effectiveness
and properties of the proposed algorithm are demonstrated
through two examples.
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I. INTRODUCTION

Finite impulse response (FIR) models have the advantage
of intrinsically stable properties and easy implementation, thus
are more preferred to infinite impulse response (IIR) models
[1], [2]. However, we often end up with IIR models in system
and signal modelling, filter and controller design, etc [1], [2],
[3]. Therefore, effective methods are required to approximate
an IIR model by FIR model. Generally, the approximation
problem can be stated as follows:

Given G(z), a stable rational transfer matrix, find

F (z) = f0 + f1z
−1 + · · · + fm−1z

−m+1

such that the norm of the error ‖G(z) − F (z)‖ is minimized,
where ||·|| could be different norms corresponding to different
design criteria.

The early methods to the approximation use direct trunca-
tion of impulse response that minimizes the least-square error
criterion, or equivalently the H2 error norm ‖G(z) − F (z)‖2

[2]. In [4], [5], [6], the minimum Chebyshev error criterion,
or equivalently, the H∞ error norm ‖G(z) − F (z)‖∞ is used.
In [5], [6], a method called Nehari Shuffle is proposed and
upper and lower bound on the approximation error are derived.
However, the Nehari Shuffle doesn’t provide the optimal

solutions with respect to H∞ norm. A direct H∞ norm
optimization approach is given by the powerful tool of linear
matrix inequalities (LMIs) [4].

As pointed out in [7], the least square criterion is appropriate
if the input signal is narrow-band, and Chebyshev criterion is
appropriate if the input signal is wide-band and distributed
approximately uniformly in the frequency. Thus, there are
situations where neither the Chebyshev criterion nor the least
square criterion is appropriate, and where we call for alterna-
tive design methods with trade-off between least square and
Chebyshev criteria [7], [?].

In this paper, the Hankel norm of the error is chosen to be
minimized. Hankel-norm approximation is extensively used in
model reduction after the remarkable work of Glover [8], [9].
However, the problem here is different from that of [8], which
is to find a lower order IIR model for a given high order IIR
model. The resulting method of this paper has the following
advantages.

• It is developed for multi-input multi-output (MIMO)
models directly, and allows the tradeoff between H2 error
norm and H∞ error norm.

• The design algorithm is constructive, and only involves
algebraic manipulations, therefore no iteration and convex
optimization program (as LMIs) are needed.

• No need to carry out balanced realization and truncation
as [6].

• Lower and Upper bounds on H2 norm and H∞ norm of
the error system are provided.

II. PRELIMINARY

This section introduces the notations and some preliminary
results used in the sequel. Let R and C denote the real
and complex numbers respectively. For a matrix X , let X∗

denote its complex conjugate transpose, λ(X) its eigenvalue,
and σ(X) its singular value. Denote the spectrum norm of
X as ||X|| = (λ̄(X∗X))

1
2 , where λ̄ denotes the largest

eigenvalue of X . For a positive definite matrix X , we use
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X
1
2 to denote its Hermitian square root, that is, X

1
2 X

1
2 = X

and (X
1
2 )∗ = X

1
2 .

A. Spaces, norms and Hankel Operators

Definition 1: Given a causal transfer matrix G(z) ∈ C
q×p,

(A,B, C, D) is called a state space realization if G(z) = D+
C(zI − A)−1B, where A ∈ R

n×n, B ∈ R
n×p, C ∈ R

q×n

and D ∈ R
q×p.

Definition 2: For a stable transfer matrix with state space
realization G(z) = D + C(zI − A)−1B, the controllability
and observability Gramian, denoted by P and Q, is defined
by P =

∑∞
k=0 AkBB∗A∗k and Q =

∑∞
k=0 A∗kC∗CAk.

It is well known that P and Q can be computed from the
following Lyapunov equations respectively

APA∗ − P + B∗B = 0 (1)

A∗QA − Q + C∗C = 0. (2)

The realization is minimal if P and Q are nonsingular.
For causal and stable G(z) =

∑∞
k=0 gkz−k with minimal

state space realization D+C(zI−A)−1B, where A ∈ R
n×n,

B ∈ R
n×p, C ∈ R

q×n and D ∈ R
q×p, the Hankel operator

of G, denoted by ΓG, is defined as

ΓG =

⎡
⎢⎢⎢⎣

g1 g2 g3 · · ·
g2 g3 g4 · · ·
g3 g4 g5 · · ·
...

...
...

. . .

⎤
⎥⎥⎥⎦ .

The Hankel singular values of G(z), denoted by σi(ΓG), i =
1, . . . , n are the ith singular values of ΓG. The Hankel norm
of G, denoted by ||ΓG|| is defined to be the largest singular
value of ΓG, i.e. ||ΓG|| = σ1(ΓG). The following can be used
to compute the Hankel-norm of a transfer matrix, see [11],
[8], [10] for detail.

Lemma 1: For the above G(z), we have

σ2
i (ΓG) = λi(QP ) = λi(Q

1
2 PQ

1
2 ) = λi(P

1
2 QP

1
2 )

||ΓG||2 = λ̄(QP ) = λ̄(Q
1
2 PQ

1
2 ) = λ̄(P

1
2 QP

1
2 )

where P and Q are controllability and observerbility granmi-
ans respectively.

B. Norm-preserve Dilations

Consider the block matrix

[
X R
S T

]
, where X, R, S and

T are matrices of compatible dimensions, and denote

α(X) =
∥∥∥∥
[

X R
S T

]∥∥∥∥ .

The norm-preserve dilation problem is to find X such that
α(X) is minimized for given matrices R, S, and T. Denote

γ0 = min
X

α(X). (3)

The following results play a very important role in our
development [12].

Lemma 2: The minimum γ0 in (3) is given by

γ0 = max
{∥∥[

S T
]∥∥ ,

∥∥∥∥ R
T

∥∥∥∥
}

.

Moreover, assume γ ≥ γ0, then the solution set X such that
α(X) ≤ γ can be characterized by

X = −Y T ∗Z + γ(I − Y Y ∗)1/2W (I − Z∗Z)1/2 (4)

where W is an arbitrary contraction (||W || ≤ 1) and Y and
Z are contractions satisfying

R = Y (γ2I − T ∗T )1/2 (5)

S = (γ2I − TT ∗)1/2Z. (6)
The following lemma gives a more explicit formula when
||T || < γ.

Lemma 3: Assume that γ ≥ γ0 and ||T || < γ. Then the
solution set X such that α(X) ≤ γ can be characterized by

X = −R(γ2I − T ∗T )−1T ∗S + γ[I − R(γ2I − T ∗T )−1R∗]
1
2

W [I − S∗(γ2I − TT ∗)−1S]
1
2 . (7)

The norm-preserve dilation problem is solved independently
by Parrot and Davis et. al. For more detail, please refer to
[12].

III. HANKEL-NORM FIR APPROXIMATION

In this section, an algorithm is developed to solve the
(sub)optimal Hankel-norm FIR approximation of a given IIR
model. First, we present a basic theorem from which the
approximation can be converted to a matrix norm-preserving
dilation problem. Then a constructive algorithm is developed
step by step. Finally, some properties of the resulting FIR
approximation are discussed and the bounds on error norms
are given.

The problem to be considered in this section is as follows.
Given an IIR model G(z) = D + C(zI − A)−1B ∈ C

q×p ,
find an (m − 1)th order FIR model

F (z) = f0 + f1z
−1 + · · · + fm−1z

−m+1

that minimizes ||ΓE ||, the Hankel norm of the approximation
error E(z) = z−1(G(z) − F (z)). The reason we put a delay
term z−1 in E(z) is due to the fact that the Hankel norm of
a system is unrelated to the feed-through term. The relation
of Hankel norm, H2 norm and H∞ norm are given in the
following lemma

Lemma 4: Let E(z) =
∑∞

i=1 eiz
−i satisfy ||ΓE || < ∞.

Then we have

‖E(z)‖2 ≤ ||ΓE || ≤ ‖E(z)‖∞ ≤ 2
N∑

i=1

σi(ΓE)

where σi(ΓE) is the ith singular value of E(z) and
N=rank(ΓE) = McMillan degree of E(z).

The first two inequalities are shown by Theorem 4.2 of [13]
and the last inequality is shown in [10], [6].

Lemma 4 tells us that the Hankel-norm can be seen as the
tradeoff of H2 norm and H∞ norm. The following theorem is
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important to develop our algorithm. A similar result is given
in [14]. Here our proof is more direct.

Theorem 1: For G(z) = D + C(zI − A)−1B, define
H(z) = z−1G(z). Then we have

||ΓH || =
∥∥∥∥ D CP

1
2

Q
1
2 B Q

1
2 AP

1
2

∥∥∥∥
where P and Q are solutions of Lyapunov equations (1) and
(2) respectively.

Proof: Note that H(z) can be written in the state space
form as H(z) = C̄(zI − Ā)−1B̄, where

Ā =
[

A 0
C 0

]
, B̄ =

[
B
D

]
, C̄ =

[
0 I

]
.

Then we get the Lyapunov equations for H(z) as follows

ĀP̄ Ā∗ − P̄ + B̄∗B̄ = 0 (8)

Ā∗Q̄Ā − Q̄ + C̄C̄∗ = 0. (9)

Then we have

P̄ =
[

P APC∗ + BD∗

CPA∗ + DB∗ CPC∗ + DD∗

]
.

and

Q̄ =
[

Q 0
0 I

]
.

From direct matrix manipulation, we have

Q̄
1
2 P̄ Q̄

1
2 =

[
Q

1
2 AP

1
2 Q

1
2 B

CP
1
2 D

] [
Q

1
2 AP

1
2 Q

1
2 B

CP
1
2 D

]∗
.

Then it follows from Lemma 1 that

||ΓH || =
√

λ̄
(
Q̄

1
2 P̄ Q̄

1
2

)
=

∥∥∥∥ D CP
1
2

Q
1
2 B Q

1
2 AP

1
2

∥∥∥∥ .

Theorem 2: Given a transfer matrix G(z) = C(zI −
A)−1B ∈ C

q×p with ||ΓG|| = γ0, define H(z) = z−1(D +
G(z)) for a matrix D
inR

q×p. Then we have
(i) ||ΓH || ≥ γ0 for any D.
(ii) There exist D’s such that ||ΓH || = γ0, and all such D’s
can be characterized by

D = −Y P
1
2 A∗Q

1
2 Z + γ0(I − Y Y ∗)

1
2 W (I − Z∗Z)

1
2 (10)

where ||W || ≤ 1 and Y and Z are contractions satisfying

CP
1
2 = Y

(
γ2
0I − P

1
2 A∗QAP

1
2

) 1
2

Q
1
2 B =

(
γ2
0I − P

1
2 A∗QAP

1
2

) 1
2

Z.

(iii) For any γ > γ0, all D’s such that ||ΓH || ≤ γ are given
by

D = α + β (11)

where ||W || ≤ 1, and

α = −C(γ2P−1 − A∗QA)−1A∗QB (12)

β = γ
[
I − C(γ2P−1 − A∗QA)−1C∗]1/2

W
[
I − B∗(γ2Q−1 − APA∗)−1B

]1/2
. (13)

Proof: We know from Theorem 1 that

||ΓH || =
∥∥∥∥ D CP

1
2

Q
1
2 B Q

1
2 AP

1
2

∥∥∥∥ .

Note that[
Q

1
2 B Q

1
2 AP

1
2

] [
Q

1
2 B Q

1
2 AP

1
2

]∗
= Q

1
2 (BB∗ + APA∗)Q

1
2 = Q

1
2 PQ

1
2 (14)[

P
1
2 C∗ P

1
2 A∗Q

1
2

] [
CP

1
2

Q
1
2 AP

1
2

]

= P
1
2 (C∗C + A∗QA)P

1
2 = P

1
2 QP

1
2 . (15)

By Lemma 1 and (14-15), we have∥∥[
Q

1
2 B Q

1
2 AP

1
2

]∥∥2
= λ̄(Q

1
2 PQ

1
2 ) = γ2

0

= λ̄(P
1
2 QP

1
2 ) =

∥∥∥∥
[

CP
1
2

Q
1
2 AP

1
2

]∥∥∥∥
2

. (16)

Then it follows from Lemma 2 that

min
D

||ΓH || =

max
{∥∥[

Q
1
2 B Q

1
2 AP

1
2

]∥∥ ,

∥∥∥∥
[

CP
1
2

Q
1
2 AP

1
2

]∥∥∥∥
}

= γ0.

Moreover, there exists D such that ||ΓH || = ||ΓG||. Substitut-
ing R = CP

1
2 , S = Q

1
2 B and T = Q

1
2 AP

1
2 into the formula

(4), we can get (10) after some direct algebraic manipulations.
This completes the proof of (i) and (ii).
Obviously we have

∥∥∥Q
1
2 AP

1
2

∥∥∥ ≤ γ0 < γ. Substituting

R = CP
1
2 , S = Q

1
2 B and T = Q

1
2 AP

1
2 into equation (7),

we have D = α + β.
We are now ready to present the main result of this section.

Before presentation, we recall the following well known fact
[6]: a causal transfer matrix G(z) = D + C(zI −A)−1B can
be written in the form G(z) = G1(z) + z−m+1Gm(z), where

G1(z) =
m−1∑
i=0

giz
−i (17)

with gi being the first m impulse responses of G(z), and
Gm(z) is a strictly proper (rational function of z) transfer
matrix.

Theorem 3: For a stable and causal transfer matrix G(z) =
G1(z) + z−m+1Gm(z) with ||ΓGm || = γ0, and e =
[e0 e1 · · · em−1], define

E(z) = z−1

(
m−1∑
i=0

eiz
−i + z−m+1Gm(z)

)
.

5895



Here ei ∈ R
q×p. Then we have

(i) ||ΓE || ≥ γ0 for any e.
(ii) For any γ ≥ γ0, a particular e can be constructed explicitly
such that ||ΓE || ≤ γ.

Proof: Denote Em(z) = Gm(z) and

Em−i−1(z) = z−1(em−i−1 + Em−i(z)) (18)

for i = 0, . . . , m−1. Using part (i) of Theorem 2 recursively,
we have

||ΓE0 || ≥ ||ΓE1 || ≥ · · · ≥ ||ΓEm ||
for any e. Obviously, E0(z) = E(z). Therefore

||ΓE || ≥ ||ΓEm
|| = ||ΓGm

|| = γ0 (19)

for any e. We will prove part (ii) in a constructive manner by
showing that em−i−1 can be computed if em−i is obtained.
Now assume that a state-space realization for Em−i(z) is given
by

Em−i(z) = Cm−i(zI − Am−i)−1Bm−i. (20)

Then the controllability and observability Gramians Pm−i

and Qm−i can be computed from equations (1) and (2)
respectively. Since γ ≥ γ0, it then follows from Theorem 2
that there exists em−i−1 such that

||ΓEm−i−1 || ≤ γ

where Em−i−1(z) is defined by (18). Moreover, if γ > γ0,
then those em−i−1 are given by

em−i−1 = αm−i + βm−i (21)

where

αm−i = −Cm−iPm−i

·(γ2I − A∗
m−iQm−iAm−iPm−i)−1A∗

m−iQm−iBm−i

(22)
βm−i =
γ[I − Cm−iPm−i(γ2I − A∗

m−iQm−iAm−iPm−i)−1C∗
m−i]

1
2

Wm−i[I − B∗
m−iQm−i(γ2I−

Am−iPm−iA
∗
m−iQm−i)−1/2Bm−i]

1
2

(23)
and |Wm−i| ≤ 1. Following the same line as the proof of
Theorem 1, it is easy to check that a state space realization
for Em−i−1(z) is given by

Em−i−1(z) = Cm−i−1(zI − Am−i−1)−1Bm−i−1 (24)

where Am−i−1 =
[

Am−i 0
Cm−i 0

]
, Bm−i−1 =

[
Bm−i

em−i

]
and

Cm−i−1 =
[

0 I
]
. The controllability and observability

Gramians Pm−i−1 and Qm−i−1 for the state space realization
(24) are as follows

Pm−i =
[

Pm−i+1

Cm−i+1Pm−i+1A
∗
m−i+1 + em−iB

∗
m−i+1

Am−i+1Pm−i+1C
∗
m−i+1 + Bm−i+1e

∗
m−i

Cm−i+1Pm−i+1C
∗
m−i+1 + em−ie

∗
m−i

]
(25)

Qm−i =
[

Qm−1 0
0 I

]
. (26)

The proof is then completed by noting that we can now
compute em−i−2 by Theorem 2 again.

The proof of Theorem 3 provides us an algorithm to
compute the m-tap (m − 1th order) suboptimal Hankel-norm
FIR approximation of a given IIR filter G(z) = D + C(zI −
A)−1B. This algorithm is summarized below.

Algorithm 1
1) Set Gm(z) = Cm(zI − Am)−1Bm, where Cm =

CAm−1, Am = A and Bm = B.
2) Obtain Pm and Qm by solving the Lyapunov equations

(1) and (2) and compute P
1
2

m and Q
1
2
m.

3) Compute the Hankel norm of Gm(z) by any of the
following equations

||ΓGm || = λ̄(QmPm) = λ̄(Q
1
2
mPmQ

1
2
m) = λ̄(P

1
2

mQmP
1
2

m)

4) Obtain em−1 by the following equation

em−1 = −CmPm(γ2I −A∗
mQmAmPm)−1A∗

mQmBm. (27)

5) Obtain a state space realization of Em−1(z) from (24)
and obtain Pm−1 and Qm−1.

6) Repeat step 3) and 4) to find em−2, . . . , e0.
7) The optimal Hankel-norm approximant F (z) is then

given by

F (z) :=
m−1∑
i=0

fiz
−i

= G1(z) −
m−1∑
i=0

eiz
−i =

m−1∑
i=0

(gi − ei)z−i.

Remark 1: Algorithm 1 only gives the solution in the case
of γ > γ0. We can also get the optimal solution by the
equation (10) although it is not explicit. Actually, the optimal
solution can be obtained from Algorithm 1 by simply using
pseudo-inverse if γ2I − A∗

m−iQm−iAm−iPm−i is singular.
The following Corollary gives the lower and upper bounds

on the H2 and H∞ norms of the approximation error of the
above algorithm.

Corollary 1: For G(z) = G1(z) + z−m+1Gm(z), let F (z)
be obtained by algorithm 1. Then the following holds for the
approximation error E(z) = G(z) − F (z).

||ΓGm || ≤ ‖E(z)‖∞ ≤ 2
N∑

i=1

σi(ΓE)

‖Gm(z)‖2 ≤ ‖E(z)‖2 ≤ ||ΓGm ||.
Proof: It is easy to see from the proof of Theorem 3

that E(z) = z−1E0(z). The above inequalities then follow
from Lemma 4 and the fact that ‖E(z)‖2 = ‖E0(z)‖2 and
‖E(z)‖∞ = ‖E0(z)‖∞ .

Corollary 1 tells us that the upper bound on the H∞ norm
of approximation error is 2

∑N
i=1 σi(ΓE). Actually we can

achieve a tighter upper bound simply by another choice of f0.
The result is as follows, see [8], [10] for details.
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Corollary 2: For G(z) = G1(z) + z−m+1Gm(z), let
f1 · · · fm−1 be chosen as in algorithm 1. If f0 is chosen such
that ‖G(z) − F (z)‖∞ is minimized, then we have

‖G(z) − F (z)‖∞ ≤
N∑

i=1

σi(ΓE).

IV. APPROXIMATION FOR NON-CAUSAL SYSTEMS

There are situations to approximate a noncausal filters by
causal filters [6], [15]. In this section, we will consider the
problem of approximating a noncausal G(z) by a causal FIR
filter. First we consider the anticausal case. For an anticausal
IIR filter G(z) =

∑∞
k=1 g−kzk, denote the reverse operator

R, as RG(z) =
∑∞

k=1 g−kz−k. Then the Hankel norm and
ith singular value of G(z) are defined as ||ΓG|| = ||ΓRG|| and
σi(G(z)) = σi(RG(z)).

The problem is stated as follows: given an anticausal IIR
filter G(z) =

∑∞
k=1 g−kzk, find an FIR filter F (z) =∑m−1

k=0 fkz−k such that ‖ΓE‖ is minimized, where E(z) =
zm(G(z) − F (z)). Since we have developed the algorithm
for causal IIR filters, the idea here is to convert the anticausal
approximation problem to an equivalent causal problem.

Theorem 4: Given an anticausal IIR filter G(z) =∑∞
k=1 g−kzk, and γ ≥ ‖ΓG‖ . For

f = [ f0 f1 · · · fm−1 ],

define F1(z) =
∑m−1

k=0 fkz−k and F2(z) =
∑m

k=1 fm−kz−k.
Then ‖ΓE1‖ ≤ γ if and only if ‖ΓE2‖ ≤ γ, where E1(z) =
zm(G(z) − F1(z)) and E2(z) = z−mRG(z) − F2(z).
Proof. Note that

E1(z) = zm−1(G(z) − F (z))

= −
m∑

k=1

fm−kzk + zm
∞∑

k=1

g−kzk.

Then

RE1(z) = −
m∑

k=1

fm−kz−k + z−m
∞∑

k=1

g−kz−k

= −F2(z) + z−mRG(z) = E2(z).

Therefore ‖ΓE1‖ ≤ γ if only if ‖ΓE2‖ ≤ γ.
Theorem 4 shows that Algorithm 1 can be revised to find

the (sub)optimal Hankel-norm FIR approximant for a given
anticausal IIR filter. For completeness, We summarize it as
Algorithm 2 below.

Algorithm 2
1) Set Gm+1(z) = Cm+1(zI − Am+1)−1Bm+1, where

Cm+1 = C, Am+1 = A and Bm+1 = B.
2) Use Algorithm 1 to find em, . . . , e1.
3) Set the approximant as F (z) =

∑m−1
k=0 em−kz−k.

Similar to Corollary 1, we have
Corollary 3: For G(z) = G(z) =

∑∞
k=0 g−kzk, let F (z)

be obtained by Algorithm 2 and E(z) = G(z) − F (z). Then

we have

||ΓG|| ≤ ‖E(z)‖∞ ≤ 2
N∑

i=1

σi(ΓE)

‖G(z)‖2 ≤ ‖E(z)‖2 ≤ ||ΓG||.
Proof. The results are obvious from Corollary 1 by noting that
the reverse operator preserve the norms.

So far, we have developed algorithm to obtain the Hankel-
norm FIR approximation of causal and anticausal IIR filters
respectively. For a general noncausal IIR filter, we have the
following algorithm using the treatment of [6], [15].

Algorithm 3.
1. Decompose the noncausal G(z) into its causal and

anticausal (both stable) components: G(z) = Gc(z) + Ga(z).
2. Using algorithm 1 to get the Hankel-norm FIR approxi-

mation F1(z) to Gc(z).
3. Using algorithm 2 to get the Hankel-norm FIR approxi-

mation F2(z) to Ga(z).
4. Set the approximating as F (z) = F1(z) + F2(z).
Corollary 4: For G(z) = Gc(z) + Ga(z), let F (z) be

obtained by Algorithm 3 and E1(z) = Gc(z) − F1(z) and
E2(z) = Ga(z) − F2(z). Then we have

max{||ΓGa ||, ||ΓGcm ||} ≤ ‖G(z) − F (z)‖∞
≤ 2

N1∑
i=1

σi(ΓE1) + 2
N2∑
i=1

σi(ΓE2)

‖Ga(z)‖2
2 + ‖Gcm(z)‖2

2 ≤ ‖G(z) − F (z)‖2
2

≤ ||ΓGa ||2 + ||ΓGcm ||2.
Proof. Note that

max{||E1(z)||∞, ||E2(z)||∞} ≤ ‖G(z) − F (z)‖∞
≤ ||E1(z)||∞ + ||E2(z)||∞

‖G(z) − F (z)‖2
2 = ||E1(z)||22 + ||E2(z)||22.

The results then follow directly from Corollary 1 and Corollary
3.

V. COMPUTATION EXAMPLES

In this section, two examples from system modelling and
filter design are given to illustrate our algorithms.

Example 1: Given below is a 6th order IIR model G(z).
This is the model of spindle vibration we obtained at a hot
steel rolling mill for prediction and reduction of mechanical
failure [16]. The model is non-minimum phase and has a pole
very close to unit circle. Hence, it is prone to numerical error
and not suitable for DSP implementation. To overcome this
implementation difficulty, an FIR approximation is required.

G(z) =
−0.1242z5 + 0.1581z4 + 0.5273z3

z6 − 1.095z5 + 1.299z4 − 1.113z3

+0.2154z2 − 0.0647z1 + 0.6889
+1.028z2 − 0.6043z + 0.426

As shown in Figure 1, the model’s frequency response spikes
at about ω = 0.6, 1.4, 2.1. These spikes, particularly those

5897



0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

3.5

4

frenquency

m
ag

ni
tu

de

Original

Algorithm 1 

Direct truncation 

Fig. 1. Comparison of frequency response for m = 12

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Length   of   FIR   filter,    m

M
ea

su
re

   
of

   
th

e 
  e

rr
or

Chebyshev norm of error by direct truncation 

Least square norm of error  by our algorithm 

Chebyshev norm of error by our algorithm 

Least square norm of error 
by direct truncation

Fig. 2. Bounds of H2 and H∞ norms for error systems for Example 1

two at ω = 0.6, 1.4 cause mechanical damage to the spindle
[16]. Thus, for this particular application, we need an FIR
approximation that better captures these two spikes. Now we
use Algorithm 1 to find an FIR approximation of the model
with length m = 12.

Figure 1 compares the frequency responses of the original
IIR model and those of the 12-length FIR approximations
obtained by Algorithm 1 and by direct truncation of impulse
response. We can see from the figure that the FIR approxi-
mation of Algorithm 1 better captures the frequency spikes at
ω = 0.6, 1.4, whereas that of direct truncation tends to smooth
out these spikes. Compared with the IIR model, the 12-length
FIR approximation of Algorithm 1 has the same arithmetic
complexity and very similar responses in the frequency range
0 ≤ ω ≤ 1.75 that is critical to the application. But it is
numerically more robust since its intrinsic stability.

Figure 2 compares the H∞ and H2 norms of approxima-
tion errors achievable by Algorithm 1 with those of direct
truncation. As can be seen from the figure, the H∞ error
norms are above the H2 error norms, and the H∞ (H2) error
norm achievable by Algorithm 1 is below (above) that of

direct truncation. These agree with the analysis of Corollary
2, and demonstrate that Algorithm 1 truly provides a trade off
between the H∞ and H2 approximation criteria.

VI. CONCLUSION

A constructive method is presented to obtain the optimal
FIR Hankel norm approximation for a given IIR model. This
method can provide a trade-off design between the worse case
Chebyshev criterion and the least square criterion. Lower and
upper bounds on the H2 and H∞ error norms are provided
for the Hankel norm approximate. The effectiveness and
properties of the proposed algorithm are demonstrated through
a computation example. The algorithm can be extended to
MIMO systems directly which may provide potential applica-
tion to filter banks design and MIMO system modelling.
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