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Abstract— A fundamental observation problem is, given a
model of the system to be observed and a specification of the
property to be observed, to check whether the property is ob-
servable (i.e., the observer can resolve potential ambiguities due
to partial observation capabilities) and if so to (automatically)
synthesize an observer.

We consider a simple case of the above setting, namely,
where the system model and specifications are expressed as
regular languages over a finite alphabet. In this setting, and
in the case of one observer (centralized observation), both
checking observability and synthesizing an observer can be done
automatically, and the observer is guaranteed to be finite-state.
The situation is more complicated in the case of more than one
observers (decentralized observation). Here, many definitions
are possible, depending on where the decisions are taken, as
well as on whether the observers are required to be finite-state.
We examine some of these possibilities, surveying recent results
on the topic and providing some new results as well.

I. INTRODUCTION

In this paper we study problems of decentralized obser-

vation. Such problems arise naturally in contexts of decen-

tralized control, where a number of agents control a single

plant, each observing (and acting upon) only part of the

plant. Decentralized control often “hides” a decentralized

observation problem, since the agents must infer, based on a

set of partial observations, facts about the original behavior

of the plant [1]. This remains true independently of whether

the agents are allowed to communicate or not [2].

Decentralized observation problems are also interesting

for their own sake. For instance, when monitoring a large,

distributed system such as a network, a vehicle controller

consisting of many components (“electronic control units”

or ECUs), a manufacturing plant, etc., one usually relies on

local monitors which collect information at different parts of

the system. This information can be gathered and analyzed

off-line at a central point. Alternatively, the information can

be processed on-line and, possibly when it shows that some

properties have been violated, may result in corrective actions

being taken.

Even for finite sets of observations, decentralized obser-

vation problems are inherently difficult from a complexity

point of view [3]. Notice that it is often impractical to

endow the local monitors with advanced capabilities such

as communication and clock synchronization, which would

change the distributed nature of the problem in a significant

way.
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In this paper, we consider a setting with a possibly infinite

set of observations. Still, the setting is one of the simplest

possible. The system under observation (or plant) is modeled

as a regular language L over some finite alphabet Σ. A letter

in Σ can be seen as an event generated by the plant and a

finite word in L can be seen as a behavior of the plant.

Observer i can only observe a subset of events Σi ⊆ Σ.

Thus, the observation that observer i collects from a behavior

ρ ∈ L is the projection of ρ onto Σi. Notice that Σi

are not necessarily disjoint. A regular language K ⊆ L
models a set of distinguished behaviors of the plant. For

example, behaviors in K may be those satisfying a given

requirement while those in L − K do not. The objective of

the observation process is to determine whether the plant

produced a behavior in K or in L − K. Thus, we have

essentially a property monitoring problem.

Obviously, it is not always possible to make a correct

decision, based only on partial observations. For example,

if Σ = {a, b}, Σ1 = {a}, Σ2 = {b}, L = {ab, ba} and

K = {ab}, then it is impossible, based on the observations

(a, b), to determine whether ab or ba happened. Thus, one

concern is to check observability. When observability holds,

the next concern is to synthesize the observers automatically.

In the centralized case, that is, the case of one observer,

both checking observability and synthesizing the observer

can be done algorithmically, using standard techniques from

finite automata theory. This is not always true in the de-

centralized case. Checking observability is sometimes unde-

cidable [4]. Existence of observers does not always imply

existence of finite-state observers [5].

In this paper, we consider four versions of the decentral-

ized observation problem, depending on two criteria. First,

on the memory requirements of the observers, and second, on

where the monitoring decisions are being made. According

to the first criterion, we distinguish between unbounded-
memory observation, where each observer is allowed to

record the entire observed sequence, and finite-memory ob-

servation, where the observers are required to be finite-state

automata. According to the second criterion, we distinguish

between joint observation, where the observers send their

observations to a central decision point, and local observa-

tion, where each observer makes a local one-bit decision and

the local decisions are combined into a global decision by a

boolean function.

In the rest of the paper, we examine these four problems,

relating them to one another and studying their decidability.

Most of the results we provide for joint observation are taken

from [4], [1], [6]. The results on local observation and its

comparison to joint observation are, to our knowledge, new.
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Related work

The problems we study in this paper are related to various

distributed synthesis problems studied in concurrency theory.

In particular, the joint observation problems are related to

trace theory [7] and rational-relation theory [8], as well as the

general problem of synthesis of a distributed system starting

from a “centralized” specification (e.g., see [9]). See [6] for

a detailed discussion and list of references.

The observation problems are also related to decentralized

versions of the fault diagnosis problem for discrete event

systems (DES) [10], [11], [12]. Fault diagnosis is different

from the observation problems we study in this paper in

the sense that in fault-diagnosis the observers are only

required to detect a fault after a certain (bounded) delay.

Still, some fundamental issues are common to both problems.

For instance, the undecidability techniques of [4] have been

used to show undecidability of a decentralized fault-diagnosis

problem in [13]. Also, local observation with respect to

conjunction is related to what is termed “F-codiagnosability”

in [11] and “co-diagnosability” in [12]. Local observation

with respect to disjunction is related to the notion of “NF-

codiagnosability” [11]. Notice that no distinction between

finite- and unbounded-memory observers is made in these

two papers. It is worth mentioning that [11] also consider

observers that can make “conditional” decisions, such as

“Fault if nobody says No Fault” or “No Fault if nobody

says Fault”, and show that these are more powerful than F-

or NF-codiagnosability.

Finally, as mentioned in the introduction, decentralized

observation is related to decentralized control. In fact,

unbounded-memory joint observation can be reduced to

decentralized control without communication [2]. This may

seem surprising, since on the one hand joint observation

is done in two phases (collection and decision) and the

decision phase is centralized, whereas on the other hand the

decentralized control problem used in [2] is on-line, without

a priori communication between the controllers. The paradox

is resolved by the fact that there exist plants which allow

the controllers to communicate indirectly, by enabling and

disabling plant transitions. Thus, joint observation can be

simulated by on-line decentralized control without commu-

nication.

II. SETTING AND NOTATION

Let us first establish the setting which will be used

throughout the paper. We consider a finite alphabet Σ. Each

letter in Σ represents an event that may be produced by the

system under observation. Σ∗ denotes, as usual, the set of

all finite words over Σ, including the empty word ε. The

behaviors of the system under observation are modeled as

a regular language1 L ⊆ Σ∗. A regular language K ⊆ L
models the property to be observed. In other words, we want

to know whether a behavior produced by the system is in K
or not.2

1a language recognized by a finite-state automaton
2The assumption K ⊆ L is not limiting. For any property K′, we can

restrict our attention to K = K′ ∩ L, which satisfies the assumption.

We model partial observation by considering sub-alphabets

Σi ⊆ Σ, for i = 1, ..., n. The understanding is that observer

i can only observe events in Σi. We set Σo =
⋃

i=1,...,n Σi.

Notice that Σi need not be disjoint and Σo need not be

equal to Σ. Given a behavior ρ ∈ Σ∗, observer i observes

the projection of ρ to Σi, denoted PΣi(ρ), or Pi(ρ) for

simplicity.3 The projection is obtained simply by “erasing”

from ρ all events not in Σi. For example, if Σ = {a, b, c}
and Σ1 = {a, c}, then PΣ1(abbcbab) = aca.

We note some properties that are going to be useful to

prove the results of this paper. First, the following holds for

any sets A,B, C:

A = B ∩ C ⇔ A ⊆ B ∧ A ⊆ C ∧ (B − A) ∩ C = ∅ (1)

The following are properties of any projection P and its

inverse. A denotes the complement of set A.

A ⊆ P−1(P (A)) (2)

P (A ∪ B) = P (A) ∪ P (B) (3)

P (A ∩ B) ⊆ P (A) ∩ P (B) (4)

P−1(A ∪ B) = P−1(A) ∪ P−1(B) (5)

P−1(A ∩ B) = P−1(A) ∩ P−1(B) (6)

P−1(A) = P−1(A) (7)

III. A CENTRALIZED OBSERVATION PROBLEM

Definition 1: Let K ⊆ L ⊆ Σ∗. We say that K is
centrally observable with respect to L and Σ1 iff there exists

a total function f : Σ∗
1 → {0, 1} such that

∀ρ ∈ L . ρ ∈ K ⇔ f(P1(ρ)) = 1.
It can be easily seen that f does not always exist, because

of ambiguities resulting from partial observability.

Example 1: Take Σ = {a, b}, Σ1 = {a}, L = {a, ab} and

K = {ab}. Here, we have two behaviors, a and ab, which

must be distinguished, since ab ∈ K while a 
∈ K. But they

cannot be distinguished by an observer observing only a,

since P1(ab) = P1(a) = a.

Checking whether f exists in the centralized case is easy:

f exists iff P1(K) ∩ P1(L − K) = ∅. The latter condition

can be checked since regular languages are closed under

intersection, complementation and projection, and checking

their emptiness is decidable. When the above condition

holds, f can be synthesized. In fact, f can be represented as

a finite-state deterministic automaton over Σ1, the automaton

recognizing P1(K). This also implies that, in the centralized

case, existence of an observer implies existence of a finite-

state observer.

IV. DECENTRALIZED OBSERVATION PROBLEMS

A. Definitions
Definition 1 can be extended to more than one observers

in different ways. We next provide a set of definitions and

comment on their meaning.

3More generally, we could associate to each observer a mask func-
tion [14], Mi : Σ → Oi ∪ {τ}, with the meaning that event a ∈ Σ is
either totally unobservable to observer i (when Mi(a) = τ ) or is perceived
as o ∈ Oi (when Mi(a) = o). This would somewhat complicate the
discussion without affecting the results in a substantial way.
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Perhaps the most straightforward extension of Definition 1

to the decentralized case is Definition 2 given below. Notice

that for n = 1 the two definitions coincide.

Definition 2 (Joint unbounded-memory observation):
We say that K is jointly observable with respect to
L and (Σ1, ...,Σn) iff there exists a total function

f : Σ∗
1 × · · · × Σ∗

n → {0, 1}, such that

∀ρ ∈ L . ρ ∈ K ⇔ f
(
P1(ρ), · · · , Pn(ρ)

)
= 1.

This type of observation may be called “joint” [1] or “two-

phase” [6] observation, because function f plays the role

of a “centralized decision point”, where all observations are

sent. It is the role of this central point to decide whether the

original behavior ρ was in K or not. This type of observation

uses unbounded memory because each local observer i must

“record” the entire observed sequence Pi(ρ), and the latter

can have arbitrary length. We next consider the case where

the observers are required to have finite memory.

Definition 3 (Joint finite-memory observation): We say

that K is finitely jointly observable with respect to L
and (Σ1, ...,Σn) iff there exist finite-state deterministic

automata4 Ai over Σi, Ai = (Si, s
0
i , ti), i = 1, ..., n, and a

total function f : S1 × · · · × Sn → {0, 1}, such that

∀ρ ∈ L . ρ ∈ K ⇔ f
(
t1(P1(ρ)), · · · , tn(Pn(ρ))

)
= 1.

Here observer i is represented as a finite-state deterministic

automaton Ai = (Si, s
0
i , ti), where Si is the set of states,

s0
i the initial state and ti : Si × Σi → Si is the (total)

transition function. There is still a central decision point,

however, observer i does not record the entire observation

Pi(ρ), it only records the final state after the observation is

received, ti(Pi(ρ)) ∈ Si; and the set of states Si is finite.

The last two definitions involve a central decision point.

Let us now consider another definition which involves a set

of local decision points fi, one per observer. Each makes

a decision of one bit. There is still the need, however, to

combine the local decisions into a global decision: this role

is played by an n-ary boolean function B.

Definition 4 (Local unbounded-memory observation):
Let B : {0, 1}n → {0, 1} be an n-ary boolean function. We

say that K is locally observable with respect to L, B and
(Σ1, ...,Σn) iff there exist total functions fi : Σ∗

i → {0, 1},

for i = 1, ..., n, such that

∀ρ ∈ L . ρ ∈ K ⇔ B
(
f1(P1(ρ)), ..., fn(Pn(ρ))

)
= 1.

Notice that for n = 1 and B the identity or negation function,

we obtain essentially Definition 1. Also note that the above

definition assumes observers with unbounded memory. As

in the case of joint observation, we can give an alternative

definition requiring finite memory.

Definition 5 (Local finite-memory observation): Let B :
{0, 1}n → {0, 1} be an n-ary boolean function. We say that

K is finitely locally observable with respect to L, B and
(Σ1, ...,Σn) iff there exist finite-state deterministic automata

4As usual, a deterministic automaton over Σ is a tuple (S, s0, t), where
S is a set of states, s0 ∈ S is the initial state, and t : S × Σ → S is the
transition function (assumed to be total). Given ρ ∈ Σ∗, t(ρ) denotes the
unique state the automaton moves to having consumed its input ρ.

Ai over Σi, Ai = (Si, s
0
i , ti), i = 1, ..., n, and total functions

fi : Σ∗
i → {0, 1}, for i = 1, ..., n, such that

∀ρ ∈ L.ρ ∈ K ⇔ B
(
f1(t1(P1(ρ))), ..., fn(tn(Pn(ρ)))

)
= 1.

It should be noted that K is finitely observable in a trivial

way when K = ∅ or K = L. Also, if an observer cannot

observe anything, i.e., Σi = ∅, then this observer can be

ignored, since it does not bring any information. On the other

hand, if there exists an observer i that can observe any event

that another observer may observe, i.e., ∀j, Σj ⊆ Σi, then the

problem degenerates to a centralized observation problem,

since all observers except the i-th one are redundant. In the

rest of the paper, we will be assuming that we are not in

one of these degenerate cases. Finally, note that, in all above

definitions, the order of Σi does not matter. So, for instance,

K is jointly observable w.r.t. L and (Σ1, Σ2) iff K is jointly

observable w.r.t. L and (Σ2, Σ1).

B. Comparison and examples

We proceed to compare the above notions. We use the

acronyms JO, FJO, LOB and FLOB , respectively, for joint

observability, finite joint observability, local observability

w.r.t. B and finite local observability w.r.t. B.

By definition, FJO implies JO and, for any B, FLOB

implies LOB , FLOB implies FJO and LOB implies JO. For

instance, to see that LOB implies JO, observe that the global

function f required for JO can be defined as the composition

of the boolean function B and the local functions fi required

for LOB .

JO does not generally imply FJO as the following example

shows.

Example 2: Let Σ = {a, b}, Σ1 = {a}, Σ2 = {b}, K =
(ab)∗ and L = (ab)∗b∗.5 It can be checked that K is jointly

observable w.r.t. L and (Σ1, Σ2). Indeed, given observations

ak and bl, it suffices to check whether k = l: if so, the

original behavior was in K, otherwise not. Since k and l are

unbounded, this cannot be checked with finite memory.

This example also shows that JO may not imply LOB ,

for any B. Indeed, there is no B such that the above K
is locally observable w.r.t. L, B and (Σ1, Σ2): because fi

can only transmit an information of one bit each, whereas

observability of K requires two unbounded integers k and l.
For similar reasons, FJO may not imply FLOB either. The

one-bit information provided by functions fi to the central

decision point in the case of FLO, may not be enough,

whereas more bits would suffice. Here is an example where

this occurs.

Example 3: Let Σ = {a, b}, Σ1 = {a} and Σ2 = {b}. Let

L = {ε, a, aa, b, ab, aab} and K = {ε, aa, b}. Since ε ∈ K
but a 
∈ K, f1 must distinguish between the projections

of these words to Σ1, which in this case are the words

themselves. Thus, f1(ε) 
= f1(a). Similarly, f1(aa) 
= f1(a).
Since f1 may assume only two possible values, we conclude

that f1(ε) = f1(aa). On the other hand, b ∈ K but

5We use standard computer-science notation for regular expressions, so
K = (ab)∗ = {ε, ab, abab, ...} and L = (ab)∗b∗ is obtained by appending
at the end of each word of K an arbitrary number of b’s (possibly zero).
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aab 
∈ K. Since the projection of these two words to Σ2

is the same, namely b, f2 cannot distinguish them. Thus, f1

must provide the necessary information to distinguish them,

thus, f1(P1(b)) 
= f1(P1(aab)), or f1(ε) 
= f1(aa), which

contradicts the previous conclusion. Therefore, there is no

B such that K is finitely locally observable w.r.t. L, B and

(Σ1, Σ2).
We proceed to compare LO with FLO. First, let us note

that Definition 4 can be reformulated in a set-theoretic way.

Indeed, the functions fi can be viewed as characteristic

functions of corresponding sets Fi ⊆ Σ∗
i . Also, the boolean

function B can be viewed as a function on sets, for example∧
as

⋂
,
∨

as
⋃

, and so on. Then, local observability holds

when K can be expressed as a “boolean” combination of the

inverse projections of Fi, or

K = L ∩ B(P−1
1 (F1), ..., P−1

n (Fn)).

Finite local observability holds when each Fi is a regular

language.

The question arises, then, does existence of Fi imply

existence of regular Fi? We give a positive answer in the

case where B is either the conjunction function
∧

or the

disjunction function
∨

. In the case of general B the question

remains open.

Lemma 1: K is locally observable w.r.t. L,
∧

and

(Σ1, ...,Σn) iff

K = L ∩
⋂

i

P−1
i (Pi(K)) (8)

Proof: From the reformulation above, what we must

show is that ∃F1, ..., Fn . K = L ∩ ⋂
i P−1

i (Fi) iff Equal-

ity (8) holds. The ⇐ direction is trivial. For the ⇒ direction,

we shall use Equivalence (1). First, K ⊆ ⋂
i P−1

i (Pi(K))
holds, because of Property (2).

It remains to show that (L − K) ∩ ⋂
i P−1

i (Pi(K)) = ∅.

Suppose not, that is, suppose there is ρ ∈ L − K such that

Pi(ρ) ∈ Pi(K), for any i. We claim that Pi(K) ⊆ Fi, for any

i. Let π ∈ Pi(K). So, there exists ρ′ ∈ K such that Pi(ρ′) =
π. Since ρ′ ∈ K, from the hypothesis, ρ′ ∈ P−1

i (Fi), for any

i. Thus, Pi(ρ′) ∈ Fi. The claim implies Pi(ρ) ∈ Fi, for any

i, thus, from the hypothesis, ρ ∈ K. Contradiction.

Lemma 2: K is locally observable w.r.t. L,
∨

and

(Σ1, ...,Σn) iff

K = L ∩
⋃

i

P−1
i (Pi(L − K)) (9)

Proof: From the reformulation above, what we must

show is that ∃F1, ..., Fn . K = L ∪ ⋂
i P−1

i (Fi) iff

Equality (9) holds. The ⇐ direction is trivial. For the

⇒ direction, we shall use Equivalence (1). First, (L −
K) ∩ ⋃

i P−1
i (Pi(L − K)) = ∅ holds, since (L − K) ∩

P−1
i (Pi(L − K)) equals (L − K) ∩ P−1

i (Pi(L − K)) (by

Property (7)), which is empty for any i.
It remains to show that K ⊆ ⋃

i P−1
i (Pi(L − K)), or

equivalently, K ∩ ⋂
i P−1

i (Pi(L − K)) = ∅. Suppose not,

that is, suppose there is ρ ∈ K such that Pi(ρ) ∈ Pi(L − K),
for any i. Since ρ ∈ K, from the hypothesis, there is some

j such that Pj(ρ) ∈ Fj . Since Pj(ρ) ∈ Pj(L − K), there is

FJO
⇒

⇐ JO

⇑ 
⇓ ⇑ 
⇓
FLOB

⇒
⇐ LOB

for ∧,∨
otherwise?

Fig. 1. Implications between different observation problems

some ρ′ ∈ L−K such that Pj(ρ′) = Pj(ρ). Thus, Pj(ρ′) ∈
Fj and, from the hypothesis, ρ′ ∈ K. Contradiction.

In order to illustrate the above two results, we provide

some examples.

Example 4: Let Σ = {a, b, c, d}, Σ1 = {a, d}, Σ2 =
{b, c}. Let L = {ε, a, c, ab, cd} and K = {ε, a, c}. Then,

Equality (8) holds, thus, K is finitely locally observable with

respect to
∧

. Indeed, it suffices for observer 1 to issue 0

when d is observed, 1 otherwise, and for observer 2 to issue

0 when b is observed, 1 otherwise.

Example 5: Next, let us provide an example which shows

that Fi cannot be chosen to be Pi(K) in general, and this

is in the case B is the disjunction function, conforming to

Lemma 2. Let Σ = {a, b, c}, Σ1 = {a, b} and Σ2 = {b, c}.

Let L = {ab, bc, abc} and K = {ab, bc}. Let B =
∨

. Then

K1 = P1(K) = {ab, b} and K2 = P2(K) = {b, bc}. Now,

L∩ (P−1
1 (K1)∪P−1

2 (K2)) = L 
= K. But if we take F1 =
F2 = {b} then we have L∩ (P−1

1 (F1)∪P−1
2 (F2)) = {ab}∪

{bc} = K.

Example 6: The fact that Σi are not disjoint in the above

example is coincidental. Here is another example where Σi

are disjoint. Let Σ = {a, b}, Σ1 = {a} and Σ2 = {b}.

Let L = {a, ab} and K = {ab}. Let B =
∨

. Then

K1 = P1(K) = {a} and K2 = P2(K) = {b}. Now,

L∩(P−1
1 (K1)∪P−1

2 (K2)) = L 
= K. But if we take F1 = ∅
and F2 = {b} then we have L ∩ (P−1

1 (F1) ∪ P−1
2 (F2)) =

∅ ∪ {ab} = K.

The results of this comparison are summarized in Fig. 1.

Lemmata 1 and 2 provide necessary and sufficient con-

ditions for local observability, in the cases where B is a

conjunction or a disjunction. These conditions imply that, in

these cases, the two types of local observability, unbounded-

or finite-memory, coincide and are decidable (recall that we

consider regular languages). They also imply that, when

observability holds, automatic synthesis of observers is pos-

sible: in the conjunction (resp. disjunction) case, the i-
th observer can be taken to be the finite-state automaton

recognizing Pi(K) (resp. Pi(L − K)).
In the rest of the paper, we focus on the joint observation

problems. The results of the rest of the paper are taken

from [4], [1], [6].

V. NECESSARY AND SUFFICIENT CONDITIONS

A necessary and sufficient condition for unbounded-

memory joint observability is the following:

∀ρ ∈ K, ρ′ ∈ L − K . ∃i . Pi(ρ) 
= Pi(ρ′) (10)
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The condition states that K is not observable iff there exist

two behaviors in L which yield the same observations, yet

one is in K and the other is not. This condition cannot be

verified algorithmically, as we shall see in Section VII.

A necessary condition for unbounded-memory (thus, also

for finite-memory) joint observability is the following:

PΣo
(K) ∩ PΣo

(L − K) = ∅ (11)

Condition (11) requires that K be observable in a centralized

manner.

The results of the previous section already provide suffi-

cient conditions for joint observability (see Fig. 1). Another

sufficient condition for finite-memory (thus, also unbounded-

memory) joint observability is the following:

∃i . Pi(K) ∩ Pi(L − K) = ∅ (12)

Condition (12) essentially states that all observers except the

i-th one are redundant. Thus, this is a case where the prob-

lem reduces to a centralized observation problem. For this

reason, Condition (12) is also sufficient for (finite-memory)

local observability, with respect to a decision function B
that ignores all inputs except the i-th one, i.e., defined as

B(b1, ..., bi, ..., bn) = bi.

Condition (12) is not necessary, as Example 4 shows.

Recall that in that example K is finitely locally observable

with respect to
∧

. However, Condition (12) is not verified,

because observer 1 cannot distinguish a from ab and observer

2 cannot distinguish c from cd.

Conditions (11) and (12) can be checked algorithmically,

since K and L are regular languages. Note that for n = 1,

Conditions (10-12) all coincide.

The following lemma provides another necessary condi-

tion for joint observability.

Lemma 3: If K is observable (resp. finitely observable)

w.r.t. L and (Σ1, ...,Σn) then PΣo(K) is observable (resp.

finitely observable) w.r.t. PΣo(L) and (Σ1, ...,Σn).

VI. A SPECIAL CASE: L TRACE LANGUAGE

We now examine the special case where L is a trace
language. Trace languages are defined with respect to a

reflexive and symmetric relation D ⊆ Σ × Σ, called the

dependence relation. D induces the irreflexive and symmetric

relation I = (Σ×Σ)−D, called the independence relation. D
also induces the equivalence ≡, called the trace equivalence,

defined as the reflexive, symmetric and transitive closure of

the relation ≡1⊆ Σ∗ × Σ∗, where π ≡1 ρ iff there exist

words σ1, σ2 ∈ Σ∗ and (a, b) ∈ I , such that π = σ1abσ2

and ρ = σ1baσ2. That is, π ≡ ρ iff π can be obtained from ρ
by repeatedly swapping adjacent independent letters. L ⊆ Σ∗

is a trace language over (Σ, D) if it is closed under ≡, that

is, ∀ρ, ρ′ ∈ Σ∗, ρ ≡ ρ′ ⇒ (ρ ∈ L ⇔ ρ′ ∈ L).
For our purposes, we define the following dependence

relation:

DΣ1,...,Σn
= (

⋃

i=1,...,n

Σi×Σi)∪{(u, u) | u ∈ Σ−Σo} (13)

In words, two distinct letters are dependent iff there is a

sub-alphabet Σi containing both. When two distinct letters

a and b are independent, either they belong to different sub-

alphabets Σi, or at least one of them is unobservable. In

either case, their order of occurrence cannot be reconstructed

based on the observations provided by projections onto Σi.

This is captured in the following lemma.

Lemma 4: Let ≡ be the trace equivalence induced by

DΣ1,...,Σn . For any ρ, ρ′ ∈ Σ∗, ρ ≡ ρ′ iff ∀i ∈
{1, ..., n} . Pi(ρ) = Pi(ρ′) and PΣ−Σo

(ρ) ≡ PΣ−Σo
(ρ′).

Using this lemma, we can prove the following.

Theorem 1: Assume L is a trace language over

(Σ, DΣ1,...,Σn). Then, K is jointly observable w.r.t. L and

(Σ1, ...,Σn) iff K is a trace language over (Σ, DΣ1,...,Σn)
and Condition (11) holds.

Checking trace-closure of regular languages is decidable.6

Thus, the above theorem implies that, when L is trace-closed,

unbounded-memory joint observability is decidable.

Trace-closure of L does not ensure that JO implies FJO,

as the following example shows.

Example 7: Let Σ1 = {a1, b}, Σ2 = {a2, b} and Σ =
{a1, a2, b}. Let K = ((a1 + a2)(a1 + a2 + b))∗. K is jointly

observable w.r.t. Σ∗ and (Σ1, Σ2). Intuitively, it suffices

for the decision function to check that between every two

consecutive b’s (or from the beginning of the computation

until the first b observed) the sum of a1’s and a2’s is odd.

However, K is not finitely jointly observable. Intuitively, this

is because the number of b’s can be arbitrary, and observer i
needs to record the parity of the number of ai’s it observes

between every two consecutive b’s.

In the example above, Σ1∩Σ2 
= ∅. It turns out that when

Σi are pairwise disjoint, and K is regular, JO indeed implies

FJO.

Theorem 2: Assume Σi are pairwise disjoint, K is regular

and L is a trace language over (Σ, DΣ1,...,Σn). Then, K is

finitely jointly observable w.r.t. L and (Σ1, ...,Σn) iff K is

jointly observable w.r.t. L and (Σ1, ...,Σn).
The proof of the above result employs Mezei’s theo-

rem [8], which states that a regular trace language over

(Σ, DΣ1,...,Σn
) is isomorphic to a finite union of Cartesian

products of regular languages over Σi.

VII. UNDECIDABILITY

The results of the previous sections already provided some

positive answers regarding the decidability of the observation

problems we consider. In this section we present some

undecidability results.

Theorem 3: Checking unbounded-memory joint observ-

ability for regular languages is undecidable for n ≥ 2.

The above theorem was first proven in [4], using a direct

reduction of Post’s Correspondence Problem. It turns out

6First, observe that L is closed with respect to ≡ iff it is closed with
respect to ≡1. Checking whether L is closed with respect to ≡1 can be done
by building the deterministic, minimal, finite-state automaton recognizing
L, call it AL, and then checking whether AL has the so-called “diamond
property”. The latter states that for every state s of AL, and every pair
of independent letters (a, b), the successor of s by ab is the same as the
successor of s by ba.

10



L trace L not trace

Equivalent to Condition (11) and K trace. Generally undecidable for n ≥ 2.
JO Decidable. When K, L prefix-closed, undecidable for n ≥ 3.

When K, L prefix-closed and n = 2?

FJO When Σi pairwise disjoint, equivalent to JO and decidable. ?
Otherwise?

LOB When B ∈ {∧,∨}, equivalent and decidable.
FLOB For general B?

TABLE I

SUMMARY OF RESULTS AND OPEN QUESTIONS.

that similar undecidability proofs are common in the theory

of rational relations [8]. An alternative proof of the above

theorem using results from this theory can be found in [6].

The first proof of the above theorem relies on the fact that

K and L are not prefix-closed (they are regular, of course).

The proof can be modified in the special case where K and

L are prefix-closed, to show that the problem is undecidable

for n ≥ 3 [4].

Theorem 4: Checking unbounded-memory joint observ-

ability for prefix-closed regular languages is undecidable for

n ≥ 3.

The problem remains open for n = 2 in the case where K
and L are prefix-closed. Decidability of finite-memory joint

observability in the general case also remains open.

The results and open questions are summarized in Table I.

VIII. CONCLUSIONS AND PERSPECTIVES

We have studied some basic problems of decentralized

observation in the context of regular languages. A number

of interesting open questions remain, summarized in Ta-

ble I. Apart from those, some other possible directions for

further research are the following. First, in the definitions

of local observation, a natural extension is to allow the

observers to make local decisions that are richer than a

single bit. We have already seen that the one-bit restriction

can result in non-observability in some cases. Obviously,

the local information amount must be fixed, otherwise we

fall into the finite-memory joint observation case. Fixing

the amount of local information appears to generalize the

“conditional” architecture of [11]. It probably also allows

for simple decidability results by enumeration, however, it

is worth looking for more efficient algorithms (or proving

that there is none). Another direction is to consider on-line

communication among observers, that is, communication that

occurs during the operation of the plant (as opposed to the

communication that takes place in joint or local observation,

which is done after the plant stops). Such a direction has

been partially explored in [2], where it has been shown that,

for lossless, order-preserving networks with bounded delays,

the problem is decidable.
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