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Abstract— The purpose of this paper is to show how the
Mindlin model of a plate can be fruitfully described within
the framework of distributed port Hamiltonian systems (dpH
systems) so that rather simple and elegant considerations can
be drawn regarding both the modeling and control of this
mechanical system. Once the distributed port Hamiltonian
(dpH) model of the plate is introduced, a simple boundary or
distributed control methodology based on damping injection
is discussed.

I. INTRODUCTION

The port Hamiltonian representation of a finite dimen-
sional system [1], [2] has been recently generalized to the
distributed parameter case [3], [4], [5], [6] by introducing
the notion of Dirac structure on an infinite dimensional
space of power variables. The port Hamiltonian approach
overcomes the limitations in dealing with non-zero bound-
ary conditions of classical Hamiltonian formulations [7],
[8] by introducing the notion of infinite dimensional inter-
connection structure.

From a physical point of view, the dynamics of an infinite
dimensional system with spatial domain Z and boundary
∂Z can be considered as the result of the interaction among
(at least) two energy domains within Z and/or between the
system and its environment through ∂Z . This interaction
is mathematically described by a generalization of the
Dirac structure to the distributed parameter case. Since
this new class of power conserving interconnection deeply
relies on the Stokes Theorem, we speak about Stokes–Dirac
structure [4]. This class of infinite dimensional systems
is quite general, thus allowing the description of several
physical phenomena, such as heat conduction [5], [6],
electromagnetism, fluid dynamics [3], piezoelectricity [9]
and elasticity, [5], [10], and the development of control
schemes based on energy considerations, generalization of
results valid in finite dimensions, [10], [11], [12], [13].

In this paper, the advantages of the proposed modelling
and control techniques are illustrated by formulating the
Mindlin model of a flexible plate (e.g. see [14], [15]) within
this new framework. It is shown how boundary conditions
can be explicitly taken into account and how they can
naturally define a boundary port through which the dis-
tributed parameter system can interact, i.e. exchange power,
with the environment. Then, by properly interconnecting a
dissipative element at the boundary and/or along the spatial
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domain, it is shown how it is possible to stabilize the
system around the zero configuration corresponding to the
undeformed state.

This paper is organized as follows. Firstly, a short
introduction about distributed parameter systems in port
Hamiltonian form is given in Sect. II. In particular, the
definition and some basic properties of the Dirac struc-
tures are presented in Sect. II-A, while the Stokes–Dirac
structures defined by skew-adjoint differential operators are
introduced in Sect. II-B and the corresponding class of
distributed parameter port Hamiltonian systems in Sect. II-
C. The Mindlin model of a flexible plate is illustrated in
Sect. III in its original formulation, while its port Hamil-
tonian interpretation is discussed in Sect. IV. Then, simple
control techniques based on damping injection through the
boundary and along the spatial domain are illustrated in
Sect. V-A and Sect. V-B respectively. Conclusions and final
remarks are given in Sect. VI.

II. PORT HAMILTONIAN FORMULATION OF

DISTRIBUTED PARAMETER SYSTEMS

A. Basics on Dirac structures

Denote by F × E the space of power variables, with
F an n-dimensional linear space, the space of flows (e.g.
velocities and currents) and E ≡ F∗ its dual, the space of
efforts (e.g. forces and voltages), and by 〈e, f〉 the power
associated to the port (f, e) ∈ F × E , with 〈·, ·〉 the dual
product between f and e. Based on the dual product, the
following symmetric bilinear form (+pairing operator) is
well-defined.

� (f1, e1), (f2, e2) � := 〈e1, f2〉 + 〈e2, f1〉 (1)

Consider a linear subspace S ⊂ F × E of dimension m
and denote by S

⊥ its orthogonal complement with respect to
the +pairing operator (1), which is again a linear subspace of
F×E with dimension 2n−m since (1) is a non-degenerate
form. Based on the +pairing operator (1), it is possible to
give the fundamental definition of Dirac structure, that is
the basic mathematical tool that is used to describe the
interconnection structure between physical systems.

Definition 2.1 (Dirac structure): Consider the space of
power variables F × E and the symmetric bilinear form
(1). A (constant) Dirac structure on F is a linear subspace
D ⊂ F × E such that

D = D
⊥

Note 2.1: Suppose that (f, e) ∈ D; from (1), we have
that 〈e, f〉 = 0, i.e. a Dirac structure on F defines a power-
conserving relation between power variables (f, e) ∈ F×E .
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B. Constant Stokes–Dirac structures

Denote by Z a compact subset of R
d, the spatial domain

of the distributed parameter system, and by U and V a pair
of smooth functions from Z to R

qu and R
qv respectively.

Definition 2.2: A constant matrix differential operator of
order N is a map L from U to V such that, given u =
(u1, . . . , uqu) ∈ U and v = (v1, . . . , vqv ) ∈ V

v = Lu ⇐⇒ vb :=

N∑
#α=0

Pα
a,bD

αua (2)

where α := {α1, . . . , αd} is a multi-index of order
#α :=

∑d
i=1 αi, Pα are a set of constant qu × qv matrices

and Dα := ∂α1

z1
· · · ∂αd

zd
is an operator resulting from a

combination of spatial derivatives. Note that, in (2), the sum
is intended over all the possible multi-indexes α with order
0 to N and, implicitly, on a from 1 to q.

Definition 2.3: Consider the constant matrix differential
operator (2). Its formal adjoint is the map L∗ from V to U
such that

u = L∗v ⇐⇒ ub :=

N∑
#α=0

(−1)#αPα
b,aDαva

Definition 2.4: Denote by J a constant matrix differ-
ential operator. Then, J is skew-adjoint if and only if
J = −J∗.

An important relation satisfied by skew-adjoint differen-
tial operators is expressed by the following lemma, which
generalizes an analogous result presented in [16] to the
multi variable case. It is an extension of the integration
by part formula and it turns out to be fundamental in the
definition of the Stokes–Dirac structure associated to this
class of differential operators.

Lemma 2.1: Consider a skew-adjoint matrix differential
operator J . Then, for every functions u ∈ U and v ∈ V
with qu = qv , we have that∫

Z

[
vTJu + uTJv

]
dV =

∫
∂Z

BJ(u, v) · dA (3)

where BJ is a symmetric differential operator on ∂Z
determined by J .

Note 2.2: Given u ∈ U and v ∈ V , from the Stokes’
Theorem, it is well known that relation (3) can be equiva-
lently written as vTJu+uTJv = div BJ(u, v), i.e. vTJu+
uTJv can be expressed in divergence form. Moreover, it is
important to note that BJ is a constant differential operator,
that is a constant linear combination, of the functions u and
v, restricted on ∂Z , together with their spatial derivatives
up to a certain order. Equivalently, it can be interpreted
as a constant linear combination of BZ(u) and BZ(v),
where BZ is an operator providing the boundary terms
(conditions), i.e. all the spatial derivatives required in (3).

As in finite dimensions, the definition of a power con-
serving interconnection structure is possible once the notion
of power is properly introduced. Denote by F a space of
smooth functions from Z ⊂ R

d to R
q (space of flows)

and, as far as concerns the space of efforts E , assume
that E ≡ F . Then, given f = (f1, . . . , fq) ∈ F and
e = (e1, . . . , eq) ∈ E , define the dual product as follows:

〈e, f〉 :=

∫
Z

q∑
i=1

eif i dV =

∫
Z

eTf dV

A wide class of constant Stokes–Dirac structures is
provided by the following proposition, [6]. The Stokes–
Dirac structure associated with the Mindlin model of an
elastic plate belongs to this class.

Proposition 2.2: Denote by Z ⊂ R
d a compact set and

by F a space of vector values smooth functions on Z , the
space of flows. For simplicity, suppose that E ≡ F is the
space of efforts. Moreover, assume that J is a skew-adjoint
matrix differential operator. Then,

D =
{

(f, e, w) ∈ F×E×W | f = −Je,w = BZ(e)
}

(4)

is a Stokes–Dirac structure with respect to the pairing

� (f1, e1, w1), (f2, e2, w2) �J=

=

∫
Z

[
eT
1 f2 + eT

2 f1

]
dV +

∫
∂Z

BJ(w1, w2) · dA
(5)

where BZ is the analogous of the boundary operator of
Note 2.2 and BJ(·, ·) is the boundary differential operator
induced by J .

Note 2.3: Suppose that (f, e, w) ∈ D. From (5), we have:

−

∫
Z

eTf dV =
1

2

∫
∂Z

BJ(w,w) · dA

This relation is a direct consequence of the definition of
Dirac structure and expresses the property that the variation
of internal energy is equal to the power provided to the
system through the boundary ∂Z . This means that no
dissipative (or diffusive) effect is present in the distributed
parameter system. As discussed in [6], this property follows
from the fact that J is a skew-adjoint differential operator
as in finite dimension when the dynamics of the system is
defined on a Poisson manifold.

C. Infinite dimensional port Hamiltonian systems

As in finite dimensions, the dynamics of a distributed
parameter system can be obtained from its Stokes–Dirac
structure once the power ports are terminated on the corre-
sponding elements, that is the input/output behavior of the
components are specified.

Denote by X the space of smooth real valued functions on
[0, +∞)×Z representing the space of energy configuration.
The total energy is a functional H : X → R such that

H(x) =

∫
Z

H(z, x) dV

where H is the energy density. As proposed in [4], the port
behavior of the energy storing element is given by

fs = −
∂x

∂t
es = δxH (6)
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where δxH is the variational derivative of the Hamiltonian
with respect to the energy configuration. Consequently,
taking into account (4) and (6), the following definition
makes sense.

Definition 2.5: Denote by X the space of vector valued
smooth functions on [0, +∞) × Z (energy configurations)
and by W the space of vector valued smooth functions on
∂Z representing the boundary terms. Moreover, denote by J
a skew-adjoint differential operator and by BZ the boundary
operator introduced in Note 2.2. If H : X → R is the
Hamiltonian function,⎧⎨

⎩
∂x

∂t
= J δxH

w = BZ(δxH)
(7)

is the multi-variable distributed port Hamiltonian system
associated with the differential operator J .

Proposition 2.3: Consider the mdpH system (7). Then,

dH

dt
=

1

2

∫
∂Z

BJ(w,w) · dA (8)

i.e. the variation of internal energy is equal to the power
provided to the system through the boundary.

III. MINDLIN MODEL OF A FLEXIBLE PLATE

The Mindlin model of an elastic plate is the generaliza-
tion to the 2D case of the Timoshenko model of a flexible
beam, [10]. These models of simple flexible structures take
into account the vertical deformation and the rotation of
the cross section. The resulting mathematical descriptions
are more accurate in predicting system response than the
Euler-Bernoulli or the Kirchoff ones but more difficult to
be utilized (e.g. in control applications) because of their
complexity.

The classical formulation of the Mindlin plate with
spatial domain Z ⊂ R

2 is

ρ
h3

12

∂2ψx

∂t2
= qx −

∂mx

∂x
−

∂mxy

∂y

ρ
h3

12

∂2ψy

∂t2
= qy −

∂mxy

∂x
−

∂my

∂y

ρh
∂2w

∂t2
=

∂qx

∂x
+

∂qy

∂y

(9)

where w is the vertical displacement, ψx and ψy are the
deflection of the cross section in the x and y direction
respectively, h is the thickness of the plate, while mx, my ,
mxy , qx and qy are given by

mx = −D

(
∂ψx

∂x
+ ν

∂ψy

∂y

)
my = −D

(
ν

∂ψx

∂x
+

∂ψy

∂y

)
mxy = −D

1 − ν

2

(
∂ψx

∂x
+

∂ψy

∂y

)
qx = kGh

(
∂w

∂x
− ψx

)
qy = kGh

(
∂w

∂y
− ψy

)

with ν the Poisson ratio, D the plate module, G the stiffness
module and k a corrective factor, which is equal to π2/12,
[14], [15]. These quantities represent the stress of the plate,
which is a function of the vertical deformation and of the
deflection of the plate itself.

The total energy H of the system is

H = K + W (10)

where K is the kinetic and W the potential energy, with
area densities K and W respectively given by

K =
ρ

2

{
h3

12

[(
∂ψx

∂t

)2

+

(
∂ψy

∂t

)2
]

+ h

(
∂w

∂t

)2
}

W =
1

2

(
mxΓx + myΓy + mxyΓxy + qxΓxz + qyΓyz

)
where

Γx = −
∂ψx

∂x

Γy = −
∂ψy

∂y

Γxy = −

(
∂ψy

∂x
+

∂ψx

∂y

)
Γxz = −ψx +

∂w

∂x

Γyz = −ψy +
∂w

∂y

(11)

are the the strain variables, [14].

IV. DPH FORMULATION OF THE MINDLIN PLATE

In order to properly obtain the port Hamiltonian model of
a physical system, it is necessary to determine the right set
of energy (state) variables χ and to define the corresponding
Stokes–Dirac structure (i.e. the skew-adjoint operator J of
Prop. 2.2). As discussed in [10] and from an analysis of the
energy function (10), it seems natural to assume as energy
variables the (translational and rotational) momenta and the
strain terms (11), that is

χ :=

[
ρhv,Γxz,Γyz, ρ

h3

12
ωx, ρ

h3

12
ωy,Γx,Γy,Γxy

]T
(12)

with v = ẇ, ωx = ψ̇x and ωy = ψ̇y . Consequently,
the flows are related to the time derivatives of the energy
variables, that is f = −χ̇, as in (6). Moreover, the efforts
are the co-energy variables given by

e := [v, qx, qy, ωx, ωy,mx,my,mxy]
T (13)

It is easy to check that, if the Hamiltonian function is chosen
as in (10), then e = δχH, as in (6).

The equations of motion (9) can be re-written in terms
of the energy and co-energy variables (12) and (13), so that
the system (14) can be obtained. This system is the dpH
formulation of the Mindlin model of an elastic plate. The
operator J introduced in (14) is skew-adjoint. Then, it is
possible to define a Stokes–Dirac structure in the form (4).
Clearly, it is necessary to determine the operator BZ , which
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρhv̇

Γ̇xz

Γ̇yz

ρh3

12
ω̇x

ρh3

12
ω̇y

Γ̇x

Γ̇y

Γ̇xy

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
f=−χ̇

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 ∂
∂x

∂
∂y

0 0 0 0 0
∂
∂x

0 0 −1 0 0 0 0
∂
∂y

0 0 0 −1 0 0 0

0 1 0 0 0 − ∂
∂x

0 − ∂
∂y

0 0 1 0 0 0 − ∂
∂y

− ∂
∂x

0 0 0 − ∂
∂x

0 0 0 0

0 0 0 0 − ∂
∂y

0 0 0

0 0 0 − ∂
∂y

− ∂
∂x

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
−J

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v

qx

qy

ωx

ωy

mx

my

mxy

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
e=δχH

(14)

−eTf = v

(
∂qx

∂x
+

∂qy

∂y

)
+ qx

(
∂v

∂x
− ωx

)
+ qy

(
∂v

∂y
− ωy

)
+ ωx

(
qx −

∂mx

∂x
−

∂mxy

∂y

)
+ ωy

(
qy −

∂mxy

∂x
−

∂my

∂y

)
− mx

∂ωx

∂x
− my

∂ωy

∂y
− mxy

(
∂ωx

∂y
+

∂ωy

∂x

)
=

∂

∂x
(vqx − ωxmx − ωymxy) +

∂

∂y
(vqy − ωymy − ωxmxy)

(15)

Fig. 1. Simulation of the uncontrolled Mindlin plate. The system is clamped except along the x = Lx side.

provides the set of boundary variables, and the operator BJ ,
which is necessary in order to compute the boundary energy
flow.

From (15) and the Stokes’ Theorem, we have that

−

∫
Z

eTf =

∮
∂Z

(
vqn − ωnmn − ωtmnt

)
(16)

where the subscripts n and t denote the normal and tangen-
tial directions to the border respectively. Consequently, the
boundary terms or, equivalently, the operator BZ are given
by

w = BZ(e) = [v, ωn, ωt,mnt,mn, qn]
T

while the power flow through the boundary can be deter-
mined by integrating 1

2
BJ(w,w) = 1

2
wTBJw on ∂Z , with

the symmetric matrix BJ given by

BJ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1
0 0 0 0 −1 0
0 0 0 −1 0 0
0 0 −1 0 0 0
0 −1 0 0 0 0
1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

Note 4.1: By simply analyzing the corresponding
Stokes–Dirac structures, i.e. the operator J , it is easy to

note the similarities between Mindlin plate and Timoshenko
beam. In both cases, the effect of rotatory inertia and the
presence of deformation due to shear are revealed by the
presence of a power flow that couples the vertical motion
with the rotational motion of the cross section.

V. CONTROL BY DAMPING INJECTION

A. Boundary control

In this section, the control by damping injection [17] of
the Mindlin plate is briefly discussed. The energy function
(10) assumes its minimum in the zero configuration (χ =
0), the undeformed state. As any mechanical system, if a
dissipative effect is present or introduced by means of a
controller, it is possible to drive the state to the configuration
in which the (open loop) energy function assumes a local
minimum. In the case of the Mindlin plate, a dissipative
controller can make the undeformed state (asymptotically)
stable. If the controller can interact with the system through
the border, dissipation can be introduced by terminating
the boundary ports with a dissipative element, i.e. by a
generalized impedance simulated by the control algorithm.

For simplicity, let us assume that the spatial domain of
the flexible plate is rectangular and given by Z = [0, Lx]×
[0, Ly], with Lx, Ly > 0.

5992



Fig. 2. Simulation of the boundary controller by damping injection. The controller is interconnected to the system along the x = Lx side, while the
plate is clamped on the others.

The control law⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

v(Lx, y, t) = −βtqx(Lx, y, t)
ωx(Lx, y, t) = −βrnmx(Lx, y, t)
ωy(Lx, y, t) = −βrtmxy(Lx, y, t)

w(0, y, t) = ψx(0, y, t) = ψy(0, y, t) = 0
w(x, 0, t) = ψx(x, 0, t) = ψy(x, 0, t) = 0
w(x,Ly, t) = ψx(x,Ly, t) = ψy(x,Ly, t) = 0

(17)

with βt, βrn, βrt > 0, is able to (asymptotically) stabilize
the plate around the undeformed configuration. More in de-
tail, relation (17) states that the controller is interconnected
to the system along the x = Lx side, while the plate is
clamped on the others. Furthermore, the controller can apply
a torque and a force, thus allowing the regulation of both
vertical displacement and rotation of the cross section. If it
is assumed that βt = 0, then the controller can directly act
only on the angular deformation of the plate but still assur-
ing the stability of the scheme. If no control action is applied
and the x = Lx side is free to move, i.e. no force/torque
action is applied, the system is not asymptotically stable,
as shown in the simulation of Fig. 1. Here, the distributed
parameter system (14) has been spatially discretized by
using the so-called line method, [18]. According to this
method, the spatial domain is approximated by a grid
of nx × ny small rectangular elements, while the partial
derivatives with respect to the spatial variables x and y are
replaced by a discrete approximation. The result is an high
order set of ODEs that can be integrated using standard
methods (e.g. in Matlab). The parameters of the plate have
been reported in Table I.

Stability of the control scheme (17) can be easily proved
by considering (8), (16) and (17). We have that

dH

dt
= −

∫ Lx

0

(
βtq

2
x + βrnm2

x + βrtm
2
xy

)
dy ≤ 0

relation showing that the energy of the system is not
increasing along system trajectories. Moreover, asymptotic
stability can be proved by applying a generalization of

Lx, Ly 1
G 3.84 · 104

D 1.14
ν 0.3
h 0.05
ρ 10

k π2/12

nx, ny 20

βt 1
βrn, βrt 5

TABLE I

MINDLIN PLATE AND CONTROLLER PARAMETERS USED IN THE

SIMULATIONS.

La Salle Theorem to the distributed parameter case, as
discussed in [19] or by reformulating the problem within
the framework proposed in [20].

The behavior of the proposed control technique is pre-
sented in Fig. 2 in order to show the validity of the boundary
regulator (17) and the asymptotic stability of the closed–
loop system. The parameters of the plate and its initial state
are the same of the simulation of Fig. 1 while the values of
the controller impedances have been reported in Table I.

B. Distributed control

A different way to control the system via damping
injection can be to interconnect the regulator along the
spatial domain Z . This approach requires the definition
of a distributed power port on Z and, then, the Stokes–
Dirac structure (4) has to be modified accordingly. Denote
by Fd × Ed the space of power variables associated to the
distributed port and by Gd a differential operator in the form
(2). Then, it is possible to prove that the following subset

D =
{

(f, fd,e, ed, w) ∈ F × Fd × E × Ed ×W |

f = −Je − Gdfd, ed = G∗

de

w = BZ(e, fd)
} (18)
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is a Stokes–Dirac structure, [5], [6].
In the case of the Mindlin plate, the space of power

variables associated with the distributed port is given by
Fd × Ed, where Fd ≡ Ed = (L2(Z))3, while the operator
Gd is given by

Gd =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 0 0
0 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Consequently, from (18), given a distributed flow fd =
[fd,t, fd,rx, fd,ry]

T, the corresponding effort is equal to

ed =

⎛
⎝ ed,t

ed,rx

ed,ry

⎞
⎠ =

⎛
⎝ v

ωx

ωy

⎞
⎠

Under the assumption of a zero power flow through the
boundary (e.g. the plate is clamped), from the properties
of a Dirac structure, the following energy balance relation
holds.

dH

dt
=

∫
Z

eT
d fd (19)

Then, a (asymptotically) stabilizing control law based on
damping injection is the following:⎧⎨

⎩
fd,t = −btv
fd,rx = −brxωx

fd,ry = −bryωy

(20)

with bt, brx, bry > 0. The stability of the control law can
be easily proved from (19), since

dH

dt
= −

∫
Z

(
btv

2 + brxω2
x + bryω2

y

)
≤ 0 (21)

while asymptotic stability can be verified by means of clas-
sical results on infinite dimensional systems, [21]. Finally, it
is interesting to note that the distributed control law (20) can
be applied only on a subset Z̄ ⊂ Z of the spatial domain if
it is supposed that bt(z), brx(z) and bry(z) are greater than
0 for every z ∈ Z̄ and they are equal to 0 if z ∈ Z \Z̄ . The
power balance relation (21) still holds, but it is sufficient to
integrate on Z̄ .

VI. CONCLUSIONS

In this paper, the Mindlin model of an elastic plate has
been described within the framework of distributed port
Hamiltonian systems. Once the distributed port Hamiltonian
(dpH) model of the plate has been introduced, simple
control methodologies based on damping injection have
been discussed. An interesting improvement could be the
computation of a control actuation distribution (over the
free boundary) that minimizes some meaningful cost index
(e.g. the norm of certain signals).
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