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Abstract— A fast algorithm for accurate initiation and
tracking of multiple targets is developed. The basis of
the approach is the linear multi-target (LM) method in
which exact joint data association for multiple targets is
approximated by single target data association for each
target with clutter density modified to include contributions
from neighbouring targets. This enables multiple target
tracking to be performed with the computational expense of
single target tracking. Previously the LM method has been
combined with tracking using a Gaussian approximation. In
this paper accurate tracking is achieved through the use of a
variant of the auxiliary particle filter. Simulation results show
that the use of the particle filter is particularly advantageous
in demanding scenarios where targets are in close proximity
for long periods.

I. INTRODUCTION

The main difficulty in multiple target tracking is posed
by measurement origin uncertainty. This arises because
each measurement can be due to one of several targets
or to some non-target related phenomena. Measurements
from non-target related phenomena are referred to as
clutter. The optimal way of resolving measurement origin
uncertainty is to enumerate and evaluate all possible
associations between the measurements and the targets. In
an environment in which the number of targets is unknown
it is also necessary to enumerate hypotheses proposing
the existence of new targets. Exhaustive enumeration of
all possible association hypotheses is an impossible task
and sophisticated hypothesis management is required [2],
[15]. Algorithms which use this approach are collectively
referred to as multiple hypothesis trackers (MHTs).

The difficulty of developing hypothesis management
techniques which reduce computation while maintaining
performance led to the development of the joint integrated
probabilistic data association filter (JIPDAF) [12]. The
JIPDAF uses as its basis the joint probabilistic data
association filter (JPDAF) [9]. The JPDAF tracks a fixed
number of targets by enumerating all measurement-target
associations at each scan and then combining them into
a single component. This can be regarded as an extreme
form of hypothesis management. The JIPDAF extends the
JPDAF through the calculation of an “existence probabil-
ity” which enables target tracks to be initiated, confirmed
and terminated depending on the received measurements.

The requirement for joint association of several mea-
surements with several targets limits the scenarios in

which the MHT and JIPDAF can be applied with rea-
sonable computational expense. In particular, the number
of targets in a given area cannot be too large since the
number of association hypotheses increases exponentially
with the number of targets. There has therefore been much
interest in developing methods for performing joint data
association in such a way that this exponential increase in
computational expense is avoided with a minimal loss of
accuracy [8], [16], [17], [18].

More recently, a technique which permits approximate
joint data association with a computational expense which
is linear in the number of targets was proposed in [13].
This technique will be referred to as linear multi-target
(LM) tracking. The key idea in LM tracking is that
each target performs single target data association with
the neighbouring targets treated as clutter. This takes
into account the presence of neighbouring targets without
incurring exponentially increasing computational expense.
In fact, LM tracking for multiple targets is only slightly
more computationally expensive than performing single
target data association for each target. The algorithms
of [8], [17] also have a computational expense which is
linear in the number of targets but perform poorly when
a large number of targets are in close proximity [16]. The
robustness of LM tracking to increases in the number of
targets is demonstrated in [11].

As with any data association technique, optimal target
state estimation using the LM method, in the Bayesian
sense, requires a computational expense which increases
exponentially with time. This prevents exact computation
of the posterior distribution of the target state. In [13],
probabilistic data association (PDA), in which the poste-
rior density is approximated by a Gaussian by combining
the association hypotheses at each time step [1], was used.
The combination of the LM method with IPDA is referred
to as the LMIPDAF. PDA is a reasonable approximation
but tends to break down in more demanding scenarios
involving large numbers of targets and/or clutter measure-
ments. In such cases the use of a numerical technique
which permits arbitrarily accurate approximation of the
posterior distribution, albeit at additional computational
expense, is desirable. This approach is pursued here with
a particle filter (PF) used to approximate the posterior
distribution of the target state. The resulting algorithm is
referred to as the LM integrated PF (LMIPF).
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Essentially, PFs use Monte Carlo simulation to approx-
imate the integrals which arise in the evaluation of the
posterior distribution [6]. This results in a representation
of the posterior distribution comprised of a number of
weighted random samples, or particles. The advantages
of PFs, in comparison to other numerical techniques [3],
lie in the ease with which they can be implemented, the
generality with which they can be applied and their ability,
when properly designed, to reduce the effects of the curse
of dimensionality [5]. Convergence results for PFs under
a wide range of conditions can be found in [4].

PFs are commonly implemented using the sequential
importance sampling (SIS) framework which involves par-
ticle proposal, weight update and possibly resampling at
each time step. Depending on the manner in which the PF
is implemented data association is performed in the weight
update, as in the bootstrap filter [10], or is part of both the
particle proposal and weight update, as in a measurement-
directed proposal [7]. A measurement-directed proposal
provides superior performance for a given sample size
and will be the approach used here. In particular, a
variant of the auxiliary PF [14] is proposed. LM data
association, which permits particles to be proposed and
updated separately for each target using single target data
association, greatly reduces the computational expense of
the particle proposal and weight update steps. Simulations
will demonstrate that this decrease in computational ex-
pense is achieved while maintaining good performance.

The paper is organised as follows. Section II defines
the notation. Section III contains a brief review of the
LM method. The particle filtering algorithm is described
in Section IV. Section V contains the simulation results
and conclusions are drawn in Section VI.

II. NOTATION

Measurements are made at times t1, t2, . . .. At each
time step the LM algorithm maintains a number of tenta-
tive tracks. Let rk denote the number of tentative tracks at
time tk. The relevant information concerning the ith track
is contained in the dynamic state xk,i and the existence
state. The dynamic state contains kinematic information
such as target position and velocity and manoeuvring
mode. The binary existence state permits track formation
and deletion. The event that the ith track is following a
target, i.e., the ith track exists, is denoted as χk,i with
χ̄k,i denoting the converse.

Assume that the ith track is initiated at time k0. Then
the existence state of the ith track evolves as

P(χk,i|χk−1,i) = η, (1)

P(χ̄k,i|χ̄k−1,i) = 1, k = k0 + 1, k0 + 2, . . . , (2)

with P(χk0,i) = ρ0. Conditional upon target existence,
the dynamic state xk,i evolves according to

xk,i|xk−1,i ∼ N(fk(xk−1,i), Qk), (3)

for k = k0 + 1, k0 + 2, . . . , where N(µ, Σ) is the
Gaussian distribution with mean µ and covariance matrix

Σ. If necessary, the transition probability (1) and transition
density can differ between targets. At time k0, xk0,i ∼
τk0,i.

At time tk, mk measurements are received and collected
into yk = {yk,1, . . . , yk,mk

}. The ith target is associated
with a set of mk,i validated measurements which are
obtained by performing gating in the usual manner. Let
Gk,i ⊆ {1, . . . , mk} denote the set of indices of the
measurements validated by the ith target. Then, θj,i, i =
1, . . . , rk, j ∈ Gk,i is the event that the jth measurement
is due to the ith target and θ0,i denotes the event that the
ith target has not been detected. Considering the ith target
in isolation we have, for j, l ∈ Gk,i,

yk,l|xk,i, θj,i ∼
{

N(h(xk,i), Rk), l = j,
ck, otherwise,

where ck is the assumed probability density function for
clutter measurements. Under θ0,i, yk,l ∼ ck for l ∈ Gk,i.
Note that θj,i, j ∈ {0}∪Gk,i are the complete collection
of single target association hypotheses for the ith target.
Thus if the jth measurement is not due to the ith target
it is a clutter measurement. In multi-target tracking it
is also necessary to consider the possibility that the jth
measurement is due to some other target. The optimal
approach does this by enumerating additional association
hypotheses. In order to reduce computational expense
the LM method does it by modifying the clutter density
according to the proximity of neighbouring targets. This
is described in Section III.

Targets are detected with probability PD at each time
step. If a target is detected, the probability that the
target measurement falls in the validation gate of that
target is PG. When the notation p is used to denote
probability density functions the particular density under
consideration will be clear from the arguments.

The goal of the tracking algorithm is to recursively
compute the posterior density of the dynamic state, de-
noted as πk|k,i at time tk for the ith target, and the
posterior probability of track existence for each tentative
track. Here the LM method is used in conjunction with a
particle filter to compute these quantities. The procedures
are described in the following two sections.

III. REVIEW OF LINEAR MULTI-TARGET TRACKING

The key idea in LM tracking is that when updating
one track, detections of targets followed by other tracks
are unwanted measurements or clutter. Clutter measure-
ment density is modulated to account for the additional
source(s) of clutter, after which single target tracking is
performed.

Denote with yk the set of measurement up to and
including time tk:

yk =
k⋃

t=1

yt.

Let
νk,i(j) =

∫
p(yk,j |x)πk|k−1,i(x) dx (4)
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denote the a priori target measurement density for the
ith track evaluated at the jth measurement. Denote the
clutter measurement density at the jth measurement as
ρk(j) = ck(yk,j).

The first step of the LM approach is to calculate a
priori data association probabilities for each track, under
the assumption that the selected measurements may have
originated from the target or from clutter only. Under this
assumption, the a priori probability that the jth measure-
ment is the detection of the ith target is approximated by,
for j ∈ Gk,i,

P i
j ≈ PDPGP

(
χk,i|yk−1

) νk,i(j)
ρk(j)∑

l∈Gk,i

νk,i(l)
ρk(l)

. (5)

The a priori clutter measurement density of the jth mea-
surement when updating the ith track is, after including
the contributions of neighbouring targets, given by

ρk,i(j) = ρk(j) +
rk∑

d=1
d �=i

νk,d(j)
P d

j

1 − P d
j

. (6)

The LM method involves using ρk,i(j) rather than ρk(j)
when computing data association probabilities for the ith
track and otherwise ignoring neighbouring tracks.

Automatic track formation is performed by initialising
new tracks at each time step using two-point initiation.
These new tracks are given a prior target state density,
based on the two measurements used for initialisation,
assigned an initial existence probability and added to the
set of tentative tracks. Tracking of the existing tentative
tracks is performed using the algorithm of Section IV with
the existence probability updated using (19). Tentative
tracks are classified as confirmed, i.e., they are deemed
to belong to a target, or are terminated on the basis of the
existence probability. Confirmation occurs when the exis-
tence probability exceeds a threshold Pc while termination
occurs if the existence probability falls below a probability
Pt. This simple track management is augmented with
procedures for merging tracks which are very close for
long periods of time. Details can be found in [13].

IV. PARTICLE FILTERING USING THE LM METHOD

In a PF, the posterior density of the ith target
state at time tk−1 is represented by a set of particles
x1

k−1,i, . . . , x
n
k−1,i and weights w1

k−1,i, . . . , w
n
k−1,i where

n is the sample size. Upon receipt of measurements at time
tk, these particles and weights are modified to produce an
approximation to the posterior density. In SIS the new par-
ticles and weights are produced by importance sampling
which involves drawing samples from a proposal or im-
portance density and applying a multiplicative adjustment
to the weights. To prevent sample degeneracy, in which
the weights become concentrated in only a few particles,
resampling should be performed regularly. Resampling

involves selecting particles according to the weights so
that particles with small weights will be removed while
those with large weights will be selected many times.

A. Target state posterior density approximation

The best importance density to use, in the sense that it
minimises the variance of the particle weights conditional
upon the measurement history to time tk and the particle
trajectory to time tk−1, is the optimal importance density
(OID) [7]. However, the OID can be used only if the
measurement equation is linear and Gaussian. In the
following we use a variant of the auxiliary PF (APF) [14]
to provide a natural extension of the OID for nonlinear
measurement equations. The proposed method reduces to
the OID when the measurement equation is linear.

The PF approximation to the posterior density of the
ith target state at time tk−1 can be written as

π̂k−1|k−1,i(x) =
n∑

t=1

wt
k−1,iδ(x − xt

k−1,i). (7)

Using Bayes’ rule leads to the following approximation
to the posterior density at time tk:

π̃k|k,i(x) ∝ p(yk|x)
n∑

t=1

wt
k−1,ip(x|xt

k−1,i). (8)

Equivalently,

π̃k|k,i(x, t) ∝ p(yk|x)p(x|xt
k−1,i)w

t
k−1,i, (9)

where t ∈ {1, . . . , n}, an index on the mixture in (8),
is referred to as an auxiliary variable. It is proposed to
obtain samples from (9) using importance sampling with
an importance density of the form

q(x, t|yk) = γt(yk)g(x|xt
k−1,i, yk), (10)

where
∑n

t=1 γt(yk) = 1. A draw from (10) is made by
selecting t = l with probability γl(yk) and then drawing
xt

k,i from g(·|xt
k−1,i, yk). The probabilities γt(yk), t =

1, . . . , n will be referred to as the first-stage weights. In
[14], it is suggested to use first-stage weights of the form

γt(yk) ∝ wt
k−1,ip(yk|µt

k), (11)

where µt
k is some value which characterises the transition

density p(xk,i|xt
k−1,i). Since the best approach, if possi-

ble, is to draw samples from the OID, it is of interest
to examine the relationship between the use of (10) with
(11) and the use of the OID. In the OID updated weights
are proportional to wt

k−1,ip(yk|xt
k−1,i). The first-stage

weights used in the APF can be interpreted as an attempt
to approximate this weight update. Thus the APF with
first-stage weights as in (11) approximates the predictive
likelihood at measurement y as follows:

p(y|xk−1) =
∫

p(y|xk, xk−1)p(xk|xk−1) dxk (12)

≈
∫

p(y|xk, xk−1)δ(xk − µ) dµ = p(y|µ). (13)
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Thus, if the APF is regarded as an approximation to
the OID, implicit in the use of the weights (11) is an
approximation of the transition density by a delta function
centred at some characteristic value of the state. This is
a crude approximation which will, in general, result in a
sampling procedure substantially different from the OID.

Since the form of the likelihood is the barrier preventing
exact computation of (12), the approach taken here is to
replace the likelihood by an approximate quantity which
allows analytic computation of the integral (12). This is a
strategy used in nonlinear filtering approximations such
as the extended and unscented Kalman filters. In this
paper the likelihood is approximated by linearising the
measurement equation about the predicted target state, as
in the extended Kalman filter. This requires computation
of the Jacobian, denoted as H = (∇xh(x)′|x=f(xk−1))

′

with ′ denoting matrix transpose. Under the linearised
approximation to the measurement equation, the first-stage
weights are

γt(yk) = wt
k−1,il(yk|xt

k−1,i)

/
n∑

d=1

{
wd

k−1,il(yk|xd
k−1,i)

}
,

(14)
where

l(yk|xt
k−1,i) = 1 − PDPG

⎧⎨
⎩1 −

∑
j∈Gk,i

l(yk,j |xt
k−1,i)

ρk,i(j)

⎫⎬
⎭ ,

with ρk,i(j) given in (6) and

l(yk,j |xk−1,i) = N(yk,j ; h(fk(xk−1,i)), HQkH ′ + Rk).

In the remainder of the paper the notation l will be used in
place of p to denote pdfs derived using linearisation of the
measurement equation. In keeping with the desire for the
sampling procedure to be as close to the OID sampling
procedure as possible, the density g used to propose those
particles selected by the first-stage weights is a linearised
approximation to the OID:

g(x|xt
k−1,i, y

k) =
l(yk|x, xt

k−1,i)p(x|xt
k−1,i)

l(yk|xt
k−1,i)

=
∑

j∈{0}∪Gk,i

αt
k,i(j)N(x; µt

k−1,i(j), Σ
t
k−1,i(j)),

(15)

where

αt
k,i(j) =

⎧⎪⎪⎨
⎪⎪⎩

1 − PDPG

l(yk|xt
k−1,i)

, j = 0,

PDPGl(yk,j |xt
k−1,i)

ρk,i(j)l(yk|xt
k−1,i)

, j ∈ Gk,i,

µt
k,i(j) =

⎧⎪⎪⎨
⎪⎪⎩

f(xt
k−1,i),

j = 0,
f(xt

k−1,i) + Kt
k,i{yk,j − f(xt

k−1,i)},
j ∈ Gk,i,

Σt
k,i(j) =

{
Qk, j = 0,
Qk − Kt

k,iH
t
k,iQk, j ∈ Gk,i,

with
Kt

k,i = QkHt′
k,i(H

t
k,iQkHt′

k,i + Rk)−1. (16)

While the Jacobian matrix H t
k,i can be different for

each particle, for instance H t
k,i = (∇xh(x)′|x=f(xt

k−1,i)
)′,

it is significantly simpler computationally to use the same
matrix for all particles. Here we use, for t = 1, . . . , n,
Ht

k,i = Hk,i = (∇xh(x)′|x=f(x̂k−1|k−1,i))
′, where

x̂k−1|k−1,i =
n∑

t=1

wt
k−1,ix

t
k−1,i. (17)

Thus the Jacobian, along with the gain matrix K t
k,i, need

be computed just once for each target at each time step.
The final step is to assign weights to the proposed

particles. The weight for the tth particle of the ith track
can be found as

wt
k,i ∝

π̂k|k,i(xt
k,i, t)

q(xt
k,i, t|yk)

=
p(yk|xt

k,i)
l(yk|xt

k,i, x
t
k−1,i)

. (18)

The ratio (18) accounts for the approximations involved
in linearising the measurement equation. A summary of
the procedure for producing a particle approximation to
the posterior distribution of the ith target state at time tk

from a corresponding approximation at time tk−1 is given
in Table I.

TABLE I

A RECURSION OF THE PARTICLE FILTER

1) Compute the first-stage weights γ1(yk), . . . , γn(yk) using
(14).

2) Select particle indices j1, . . . , jn such that jt = s with
probability γs(yk).

3) Draw target states xt
k,i ∼ g(·|xjt

k−1,i, yk), t = 1, . . . , n with
g given in (15).

4) Compute the updated weights w1
k, . . . , wn

k using (18).

For a linear measurement equation, the linearised and
true likelihoods are identical and the weights are even, i.e.,
wt

k,i = 1/n. If the measurement equation is nonlinear, the
variability of the weights will depend on the accuracy of
the linerisation. In the scenario of Section V the accuracy
of the linearised measurement equation is sufficient to
produce almost equal weights for each particle. This is
desirable since highly variable weights reduce accuracy.

Although the use of linearisation to approximate the
OID is not new, the procedure suggested here is subtly
different from existing methods. The difference between
the proposed technique and the APF as proposed in [14]
has been described above. Linearisation of the measure-
ment equation was also suggested in [7] although not in an
auxiliary variable framework. An important aspect of the
use of auxiliary variables is that particles are selected for
resampling, using the first-stage weights, prior to drawing
new samples. This ensures a diverse particle set, and
improved performance, since all particles will have unique
values. In [7] resampling is performed after drawing new
particles. This causes duplication of particle values and a
loss of diversity.
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B. Computation of the existence probability

The posterior probability of target existence for the ith
track is calculated as [11]

P
(
χk,i|yk

)
=

(1 − δk,i)P
(
χk,i|yk−1

)
1 − δk,iP (χk,i|yk−1)

, (19)

where

δk,i = PDPG

⎛
⎝1 −

∑
j∈Gk,i

νk,i(j)
ρk,i(j)

⎞
⎠ . (20)

The quantities ρk,i(j) are computed as in (6) while the
prior probability of target existence is computed using (1)
and (2). This leaves the quantities νk,i(j), j ∈ Gk,i. Recall
that νk,i(j) is the prior target measurement density for the
ith target computed at the jth measurement. This can be
expanded as

νk,i(j) =
∫

p(yk,j |xk,i)πk|k−1,i(xk,i) dxk,i. (21)

An approximation to the density πk|k−1,i can be
obtained by stochastic prediction of the particles
x1

k−1,i, . . . , x
n
k−1,i. This results in the approximation

π̂k|k−1(xk,i) =
n∑

t=1

wt
k−1,iδ(xk,i − x̃t

k,i), (22)

where x̃t
k,i ∼ N(f(xt

k−1,i), Qk), t = 1, . . . , n. Replacing
πk|k−1,i in (21) with the approximation (22) gives

ν̂k,i(j) =
n∑

t=1

wt
k−1,ip(yk,j |x̃t

k,i). (23)

The quantities ν̂k,i(j), j ∈ Gk,i are computed using
(23) and used in place of the exact values in (20) to
approximate δk,i. This approximation is then substituted
into (19) to obtain an approximation to the posterior
probability of target existence.

V. SIMULATION RESULTS

In this section the performance of the LMIPF is ex-
amined using Monte Carlo simulations. The previously
proposed LMIPDAF is taken as a benchmark. It has been
demonstrated in [13] that the LMIPDAF is capable of
slightly better performance than the JIPDAF, which uses
exact joint association for neighbouring targets. The supe-
riority of the LMIPDAF over the JIPDAF arises because
the computational efficiency of the LMIPDAF allows it to
perform approximate multiple target data association on
all tentative tracks while the JIPDAF can perform multiple
target data association only on confirmed tracks.

Measurements are collected at equi-spaced time in-
stants, tk = tk−1 + T , k = 1, 2, . . . where T is the
sampling period. Targets move in two dimensions with
a constant velocity. The ith target state is comprised
of position and velocity in each direction and evolves
according to xk,i = Fxk−1,i, k = 1, 2, . . . with

F = I2 ⊗
(

1 T
0 1

)
,

where ⊗ is the Kronecker product and Im is the m × m
identity matrix. Note that target trajectories are generated
without process noise but the filters assume process noise
so that target states are assumed to evolve according to
xk,i|xk−1,i ∼ N(Fxi,k−1, Q) where

Q = I2 ⊗ 1/10
(

T 3/3 T 2/2
T 2/2 T

)
.

Target position is measured in polar coordinates using
a sensor located the origin of the reference frame. The
measurement noise covariance matrix is

Rk = diag((π/180)2, 16).

Each target is detected with probability PD = 0.9 and the
gating probability is set to PG = 0.99 in order to minimise
the number of validated measurements.

A scenario with five crossing target trajectories is
considered. Targets move with a speed of 15 m/s and
are tracked for 70 time steps with a sampling period of
T = 1s. The trajectories of all targets meet at the 40th time
step. The clutter is Poisson distributed with density 0.02
pts/(scan·m·rad) throughout the surveillance region. The
angle between the neighbouring trajectories is used to vary
the severity of the scenario. A small angular separation
increases the severity of scenario since it increases the
amount of time that the targets share measurements.

Performance is measured by the mean number of con-
firmed true tracks for a given number of confirmed false
tracks. A true track is one which has been initiated from
target measurements or has a state estimate sufficiently
close to the true target state. The mean number of con-
firmed true tracks is estimated over 1000 realisations of
the scenario described above for the LMIPDAF and the
LMIPF using 200, 500 and 1000 particles. The confir-
mation and termination probabilities are such that the
false track confirmation rate is one per 50 time steps.
The results are given in Figures 1 and 2 for angular
separations of 10 degrees and 5 degrees, respectively. Both
algorithms perform well with angular separations of 10
degrees although it is clear that a sample size of at least
500 particles is required for the LMIPF. The following
comments regarding the performance of the LMIPF apply
only for these larger sample sizes. Compared to the
LMIPF, the LMIPDAF is quicker to confirm tracks but
has a greater tendency to lose tracks when the targets are
in close proximity. Evidence of this latter characteristic is
the perceptibly larger decrease in the number of confirmed
true tracks before and after the 40th time step for the
LMIPDAF compared to the LMIPF. The results for an
angular separation of 5 degrees more clearly demonstrate
the superiority of the LMIPF over the LMIPDAF for
tracking in dense target environments. The mean number
of true tracks confirmed by the LMIPF is significantly
larger across the entire observation interval and the dip in
performance immediately after the target trajectories cross
is less marked.
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Fig. 1. Mean number of confirmed true tracks plotted against time for
the LMIPDAF (dotted) and the LMIPF with 200 particles (dash-dot),
500 particles (dashed) and 1000 particles (solid). The angular separation
between neighbouring target trajectories is 10 degrees.
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Fig. 2. Mean number of confirmed true tracks plotted against time for
the LMIPDAF (dotted) and the LMIPF with 200 particles (dash-dot),
500 particles (dashed) and 1000 particles (solid). The angular separation
between neighbouring target trajectories is 5 degrees.

Computational expense is an important consideration
when using a numerical method such as a particle filter.
The results of Figures 1 and 2 indicate that significant
improvement in performance is obtained by increasing
the sample size of the LMIPF from 200 to 500 particles
but only marginal improvement is obtained by a further
increase to 1000 particles. This implies that, for the sce-
nario under consideration, a sample size of 500 particles
provides the best trade-off between computational expense
and performance. With this relatively small sample size
the computational expense of the LMIPF is about four
times that of the LMIPDAF. Even with this four-fold
increase in computational expense over the LMIPDAF,
the LMIPF is remarkably computationally efficient com-
pared to algorithms which perform exact multi-target data
association such as the MHT and JPDAF.

VI. CONCLUSIONS

An algorithm for automatic track formation and main-
tenance of multiple targets was proposed. The algorithm

combines the linear multi-target method, so-called because
it’s computational expense is linear in the number of
targets and measurements, with particle filtering to arrive
at a fast accurate solution. The performance of the pro-
posed algorithm was examined for a five-target scenario
with positions measured in polar coordinates. Simulation
results showed that, compared to an existing algorithm
which employs a Gaussian approximation, the proposed
algorithm performs particularly well in demanding scenar-
ios where targets are in close proximity for a long period
of time. Importantly, this performance is achieved with a
reasonably small sample size. Thus, combining the linear
multi-target method with particle filtering permits reliable
multiple target track formation and maintenance in dense
target environments with modest computational expense.
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