
Application of MPC to an active structure
using sampling rates up to 25kHz

A. Wills, D. Bates, A. Fleming, B. Ninness, R. Moheimani.

Abstract— In this paper we demonstrate the implementation
of model predictive control (MPC) for vibration suppression of
the first five bending modes of an active structure. For adequate
performance, this requires a 5kHz sampling rate, which is
achieved using a standard active-set optimisation technique
running on a 200MHz digital signal processor. Experimental
results show that MPC offers improved performance for this
application when compared with other standard approaches.

I. INTRODUCTION

In this paper we describe the application of MPC (Model
Predictive Control) to an active structure, namely, the can-
tilever beam illustrated in Figures 1 and 2. This apparatus is
a simple representation of many systems experienced in the
field of active vibration control. Examples include flexible
links, dual stage hard-drives, smart aerospace structures, and
high-speed robotics [18]. The common objective is to aug-
ment mechanical damping through the use of piezoelectric
strain actuators.

In situations where piezoelectric actuators have limited
control authority, for example when hitting amplifier voltage
limits, then control performance may suffer unduly. Standard
techniques for active structural control [5], [21], do not
explicitly cater for such a scenario.

In the field of process control, MPC has been successfully
applied for the regulation of systems subject to constraints
- see e.g. [13], [22] and [26]. Here, we investigate the use
of MPC to provide active damping for the first five bending
modes of the beam while satisfying input constraints. For
performance, this requires sampling rates of 5kHz.

Although this application is of independent interest, the
main contribution of this paper is the implementation of MPC
using standard active-set optimisation techniques at sampling
rates up to 25kHz using an inexpensive 200MHz DSP.

In terms of closed-loop performance, the preferred im-
plementation uses a 12 step-ahead prediction horizon and
a control interval of 200µs. Recorded worst-case solution
times show that the QP is easily solved within this time, and
the benefits of achieving this are clearly illustrated by exper-
imental results. Furthermore, two sampling intervals, 5kHz
and 25kHz, are compared to observe the effects of absolute
prediction horizon (in seconds) on closed-loop performance.

Included in this paper is a description of the cantilever
beam used in laboratory experiments together with an iden-
tified model of the beam - Section II. The state observer and
MPC structure are provided in Section III. The Quadratic
Programming (QP) structure and active-set solution method
are explained in Section IV. Implementation details for the
Digital Signal Processor (DSP) are given in Section V.
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Fig. 1. Experimental apparatus.

Fig. 2. Plan view schematic of the experimental apparatus.

Experimental results are presented in Section VI and Sec-
tion VII concludes the paper.

II. PLANT - CANTILEVER BEAM

As shown in Figures 1 and 2, the experimental setup com-
prises a uniform aluminium beam, clamped at one end, and
free at the other. Such an apparatus is a simple representation
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Fig. 3. Magnitude (dB) frequency response of identified beam model versus
measured frequency response

of many systems experienced in the field of active vibration
control.

Although six piezoelectric transducers are bonded to the
front and rear surfaces, only three patches are required in this
application. Remaining patches are short circuited to isolate
their response from the structural dynamics.

The beam is 550mm in length, 3mm in thickness, and
50mm in width. The transducer centers are mounted 55
and 215mm from the clamped base. All transducers are
manufactured from Physik Instrumente PIC151 piezoelectric
ceramic and are 50mm in length, 25mm in width, and
0.25mm in thickness.

The disturbance and control signals, w and u respec-
tively, are applied through high-voltage amplifiers to the
base patches. The location of these patches, over an area
of high modal strain, affords sufficient authority over all
structural modes. The mechanical strain at the beam center,
acquired by buffering the induced open-circuit transducer
voltage, is utilised as the feedback variable y. For the
purpose of performance analysis, a Polytec Laser Vibrometer
is employed to measure the tip velocity.

A. System Identification

The frequency domain class of subspace algorithms [15]
has proven useful for the identification of high-order multi-
variable resonant structural and acoustic systems [16]. By
applying a periodic chirp to each input successively (while
zeroing the remaining input), a matrix of SISO frequency re-
sponse measurements can be constructed. A total of 908 FFT
points from the experimental system were utilised to identify
a 14 state two-input two-output model1. A satisfactory fit in
the frequency domain can be observed in Figure 3.

For the purposes of control, only the transfer function
between input u and voltage measurement y, and the transfer
function between disturbance ω and measurement y are
considered. The corresponding discrete-time state-space re-
lationship between u, ω and y is given by

ξt+1 = Apξt + Buut + Bωωt,

yt = Cpξt + Duut + Dωωt + νt.

1An implementation of McKelveys algorithm [15] is freely available by
contacting Andrew.Fleming@newcastle.edu.au.

In order to adequately observe and control the high-
frequency content of y, sample rates of 5kHz (approximately
10 times the frequency of the highest mode under consid-
eration) and 25kHz are tested. Comparisons are provided in
Section VI.

The disturbance ωt and measurement noise νt are assumed
to be Gaussian distributed with zero mean and respective
covariances of σω and σν with no cross-covariance, i.e.[

ωt

νt

]
∼ N

([
0
0

]
,

[
σω 0
0 σν

])
.

III. OBSERVER AND MPC STRUCTURE

In this application, we are interested in rejecting distur-
bances ω using feedback control between the measurement
y and input u. An important consideration is that the control
action u has limited authority due to voltage bounds on the
amplifier. Although this presents an ideal situation for using
MPC it is challenging in light of the desired sample rates of
5kHz and 25kHz (i.e. sample intervals of 200µs and 40µs
respectively).

In what follows we provide some background material on
MPC and the specific structure used in this application. More
detail on MPC can be found in many surveys including those
by [1], [2], [6], [13], [14] and [19]. Surveys of industrial
applications can be found in [22].

As the name suggests, MPC requires a model (see Sec-
tion II) and a method of predicting future states/outputs of the
plant. These predictions are used in determining an optimal
(in terms of a control objective function) control action over
a prediction horizon N .

Before considering the estimation problem, we discuss an
embellishment of the plant model that is pertinent to closed-
loop performance. From Section II we see that the model
incorporates the first five modes of the beam only. Since
higher frequency modes exist, but are unmodeled, their effect
on closed-loop performance can be devastating, as indeed
observed during experimental trials. To compensate for this
we include a penalty on high frequency control action by
augmenting the plant model to generate a high-pass filtered
version of the input signal, and include a penalty on this term
in the control objective function.

More precisely, we constructed a fourth order discrete-
time Butterworth high-pass filter with 3dB roll-off point
at 450Hz (c.f. frequency response in Figure 3). The state-
space matrices corresponding to this filter are denoted by
(Af , Bf , Cf , Df ) and the augmented system is given by

xt+1 = Axt + But + Fωt,

zt = Cxt + Dut + Gωt + Hνt.

where

A =

»
Ap 0
0 Af

–
, B =

»
Bu

Bf

–
, C =

»
Cp 0
0 Cf

–
,

D =

»
Du

Df

–
, F =

»
Bω

0

–
, G =

»
Dω

0

–
, H =

»
I
0

–
.

Combined with the 14 states used to represent the first five
modes, this results in an 18 state model.

In terms of predicting the states we use a steady state
Kalman predictor, which under the Gaussian assumptions on
ωt and νt, provides optimal (in minimum variance sense)
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prediction of states and outputs. This results in a Kalman
gain matrix L such that

x̂t+1|t = Ax̂t|t−1 + But +

[
L(yt − ŷt|t−1)

0

]
, (1)

ŷt|t−1 = [Cp 0] x̂t|t−1 + Duut,

L =
(
ApXCT

p + Z
) (

CpXCT
p + V

)−1
, (2)

X = W + ApXAT
p − L

(
CpXCT

p + V
)
LT ,

W = BωσωBT
ω ,

V = σν + σωD2
ω,

Z = BωσωDω

We actually require estimates of the state/output over the
entire prediction horizon from time t + 1 until time t + N .
Since we already have x̂t+1|t, the optimal estimates from
time t + 1 to t + N can be obtained as follows (for more
detail regarding optimal prediction see e.g. [11]).

x̂t+k+1|t = Ax̂t+k|t + But+k, (3)
ẑt+k|t = Cx̂t+k|t + Dut+k. (4)

Of course, the above predictions depend on future inputs
ut+1, . . . , ut+N , which are free variables. This is important
because it enables a search for the best (according to some
control objective function) sequence of future inputs.

Concerning the control objective function J , we use the
following structure

J(x̂t+1|t,ut) �

∞∑
k=1

||ẑt+k|t||
2
Q + ||ut+k||

2
R,

where ut denotes an input sequence {ut+1, ut+2, . . .} and
ẑt+k|t denotes the controlled output estimate at time t + k
given input and output measurements up to and including
time t. Of course this can be replaced by a finite horizon
cost function with a penalty on the terminal state as follows

J(x̂t+1|t,ut) = ||x̂t+N+1|t||
2
P +

N∑
k=1

||ẑt+k|t||
2
Q + ||ut+k||

2
R,

where N is called the prediction horizon and P is the
solution to the following DARE,

P = C
T
QC + A

T
PA − K

“
B

T
PB + R + D

T
QD

”
K

T
, (5)

K = −

“
A

T
PB + C

T
QD

” “
B

T
PB + R + D

T
QD

”
−1

. (6)

In addition to minimising the control objective function J ,
it is desirable that the input signal u (see Figure 2) satisfies
certain hard constraints, in this case upper and lower bounds
due to amplifier voltage limits. Such constraints enter MPC
in a natural manner as side conditions on the optimal control
action calculation. More precisely, the optimal control action
u
∗
t over the prediction horizon N is obtained by solving the

following quadratic program given x̂t+1|t

(MPC) : u
∗
t = arg min

ut

J(x̂t+1|t,ut)

s.t. ut ∈ U,

where U is a, preferably non-empty, polyhedron. The first
element of u

∗
t , namely ut+1, is the optimal control move to

be applied at the next time interval (i.e. t6 in Figure 4). At
the next time interval we obtain new information about the
plant output and repeat the process - see Section V for more
details.

IV. QUADRATIC PROGRAMMING SOLVER

In this Section we provide some detail on the construction,
and method for solving the quadratic program (MPC)
online.

To simplify subsequent notation we define a stacked
version of the predicted output and terminal state and the
future inputs as follows.

Zt �

⎡
⎢⎢⎣

ẑt+1|t

...
ẑt+N |t

x̂t+N+1|t

⎤
⎥⎥⎦ , Ut �

⎡
⎣ut+1

...
ut+N

⎤
⎦ .

From the relationships (3) and (4)

Zt = Λx̂t+1|t + ΦUt, (7)

where

Λ �

2
6666664

C
CA

CA2

...
CAN−1

AN

3
7777775

, Φ �

2
6666664

D
CB D
CAB CB D
...

. . .
CAN−2B · · · · · · CB D

AN−1B · · · · · · AB B

3
7777775

.

Using these definitions, the cost function J can be expanded
to offer a more convenient quadratic form in terms of x̂t+1|t

and Ut as

J(x̂t+1|t, Ut) = UT
t HUt + 2UT

t f + c.

Here c is a constant term that may be safely ignored and the
terms H and f are given by

H = ΦT Q̄Φ + R̄, f = Γx̂t+1|t, Γ = ΦT Q̄Λ, (8)

with

Q̄ �

⎡
⎢⎢⎣

Q
. . .

Q
P

⎤
⎥⎥⎦ , R̄ �

⎡
⎢⎢⎣

R
R

. . .
R

⎤
⎥⎥⎦

It is important to note that H depends on certain matrices,
namely A,B,C,D,Q,R and P that change infrequently.
This means that H may, and should, be computed off-line.
Furthermore, the size of this matrix is Nnu × Nnu, but
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only half the entries need to be stored since it is symmetric
by construction. On the other hand, only part of f can be
computed off-line, namely Γ, since x̂t+1|t is likely to change
every control interval. Nevertheless, f can be computed
online using a matrix vector multiplication given in (8).

In light of the above definitions, (MPC) can be equiva-
lently stated as (where x̂t+1|t subsumed within f )

(MPC) : U∗
t = arg min

Ut

UT
t HUt + 2UT

t f

s.t. Ut ∈ Ū

Under the assumption that Ū can be constructed
from linear equalities and linear inequalities (i.e. Ū

is a polyhedron), then MPC may be solved using
many quadratic programming routines - see e.g.
http://www.numerical.rl.ac.uk/qp/qp.html.
However, for time-critical online optimisation it is often
necessary to adapt these tools in order to exploit problem
structure and circumvent inapplicable preprocessing of the
problem instance.

For this application we have implemented2 an active-set
method based on the work of [8], [20] and [23]. This method
requires a positive definite Hessian matrix H; which is
automatically satisfied, for example, whenever R is positive
definite. It does not require a feasible initial point (in the
primal space), which simplifies the algorithm. It handles
equality, general inequality and simple bound constraints in
a straightforward manner. It caters for “hot starting”, i.e.
where previous solutions are used to initialise the algorithm
(although this feature is not exploited in our implementation).
Furthermore, it has been refined in the open literature and
open source community for some 20 years.

The method is based on maintaining two matrices Za and
Ra such that ZaZT

a = H−1 and ZT
a Aa = Ra, where the

columns of Aa hold the normals to the active constraints
and Ra is an upper triangular matrix. Note that since H is
computed offline then Za can also be computed offline.

Each iteration of the algorithm involves the addition of
a violated constraint - if any remain - to the active-set
of constraints. There is also the possibility of dropping an
already active constraint if no longer needed (i.e. an associ-
ated negative Lagrange multiplier). The implementation uses
Givens rotations (see e.g. [9]) to update the matrices Za and
Ra in a numerically robust fashion.

A common difficulty when using online optimisation algo-
rithms is the uncertainty over solution time. Some methods
offer better theoretical complexity limits than others - see
e.g. [25] - however, in practice the efficacy and efficiency of
an algorithm often depends on the problem instance (see e.g.
[24]). In order to provide some idea of the performance of
this algorithm we include a histogram of actual completion
times for different horizon lengths in Section VI. Although a
suitable interior-point algorithm was developed in C3, further
development into assembly language is an outstanding task.

V. IMPLEMENTATION ON DSP

Part of the philosophy when developing this controller was
to ensure that the MPC algorithm including state observer

2For specific details and code, please contact Adrian Wills via
Adrian.Wills@newcastle.edu.au

3This algorithm is based on ideas used in OOQP by [7]. In particular,
Mehrotra’s predictor-corrector approach [17] and Gondzio’s multiple cen-
trality correctors [10] are both employed.

and quadratic programming solver could be implemented
on a standard DSP. The particular hardware used for the
MPC experiments is an Analog Devices ADSP-21262 [3]
evaluation kit connected to an ancillary board containing
a single channel ADC (Analog-to-Digital Converter) and a
single channel DAC (Digital-to-Analog Converter).

The ADSP-21262 is a 32-bit floating point DSP running
at a clock speed of 200MHz. All instructions are single
cycle (except division which is closer to eight) with the
capability of performing 2 instructions in parallel; although
this feature is not being used. All software used for online
purposes was developed manually in assembler in order to
minimise overhead. Furthermore, memory requirements for
the algorithm fall well within the available limits of on-chip
memory for this device.

For this application, as is often the case, MPC can be
split into offline and online calculations. Offline calculations
proceed as follows.

Procedure 1 Given the plant model in terms of the state-
space system matrices A,B,C,D, compute the following:

1) Determine noise covariance terms σω and σν .
2) Calculate L according to Equation (2).
3) Choose the prediction horizon N and state and input

weighting matrices Q and R according to acceptable
performance. Calculate P according to (5).

4) Construct H and Γ according to (8).
5) Construct the constraint set U according to physical

limitations and desired operating ranges.

Once the above procedure is complete, MPC is imple-
mented on the DSP according to the following algorithm,
which is also depicted in Figure 4.

Algorithm V.1 At each time interval t (corresponding to t0
in Figure 4), complete the following tasks,

1) Apply the previously calculated control move ut to the
system (calculated as ut+1 in the previous iteration).

2) Measure the system output yt.
3) Estimate the current state x̂t+1|t using the measured

outputs and inputs according to (1).
4) Compute f according to (8).
5) Compute the next control move ut+1 by selecting the

first control move from U∗
t , which is obtained by

solving MPC.
6) Preload DAC with ut+1.

Memory requirements necessary to perform the MPC
algorithm are shown in Table I, where n is the number of
states, p is the number of outputs, m is the number of inputs
and N is the prediction horizon.

VI. EXPERIMENTAL RESULTS

In this section, some experimental results are presented for
the cantilever beam apparatus described in Section II and the
MPC algorithm described in Sections III, IV and V.

In terms of the offline procedure from Section V, we
use the following values. The noise covariances are given
by σω = 1 and σν = 10−12 and the controller weighting
matrices are set to Q = diag{10, 100} and R = 1. The
constraint set U was constructed as (simple bounds on
actuator voltage prior to amplification - see Section II)

U = {U ∈ RN : −0.2 ≤ Ui ≤ 0.2, for i = 1, . . . , N}.

3179



The first experiment is intended to show that the controller
performs to a satisfactory level in the absence of hitting con-
straints. To achieve this, we used a periodic chirp disturbance
ranging from 5Hz to 800Hz and adjusted the disturbance gain
so that actuator limits were not encountered. Figure 5 shows
the open and closed loop response for this controller in both
simulation and in practice. It can be seen that the controller
is performing well and the match between simulation and
actual results is satisfactory.

In light of this we proceeded to test the constraint handling
capabilities of MPC by increasing the gain of the periodic
chirp disturbance to ensure that limits were encountered.

In terms of comparing the performance we also tested an
LQG controller that is “clipped” when hitting constraints.
In fact, the particular LQG controller gain matrix is given
by Equation (6) so that ut+1 = Kx̂t+1|t is the optimal
control action in the absence of constraints. Actually, by
construction this control action coincides with that obtained
from MPC when constraints are inactive. In fact, there exists
a region for which SLQG and MPC coincide even when
hitting constraints [4]. To be more precise the Saturated LQG
control law (SLQG) is given by

ut+1 =

⎧⎨
⎩

0.2 if Kx̂t+1|t > 0.2,

−0.2 if Kx̂t+1|t < −0.2,

Kx̂t+1|t otherwise.

Figure 6 shows time-domain plots of the measured beam tip
velocity when disturbed by a band-pass filtered step function
under the control of MPC and SLQG at 5kHz sample rate
with prediction horizon N = 12. To generate the filtered
step function an 8th order Butterworth filter is used with
pass band between 230–270Hz, which corresponds to the
4th mode - see Figure 3.

Although there is visible evidence from Figure 6 that MPC
outperforms SLQG, Figure 7 confirms this by showing the
output and input energy signals for a series of filtered step
disturbances under both MPC and SLQG.

In order to test the limitations of the current MPC im-
plementation, we increased the sample rate from 5kHz to
25kHz. In so doing, we are faced with the reality that
not only does the available computation time decrease by
a factor of 5, but the prediction horizon N needs to be
increased by the same factor in order to have the same
predictive capabilities as the 5kHz controller. In practice,
this compounding effect forces us to reduce the prediction
horizon from N = 12 to N = 4 instead of increasing it to
N = 60 - compare with Table II which shows the worst-case
solution time for the QP method under different prediction
horizons. Figure 8 shows the output and input energy for
the case of 25kHz sampling, and as expected there is now a
marginal difference between MPC and SLQG.

The above results illustrate that MPC has an associated
performance benefit for this application, although some care
needs to be exercised when considering the sampling inter-
val.

In terms of solving the quadratic program online and
within the chosen sampling interval, we recorded the worst-
case (i.e. maximum) time to solve the QP for different
prediction horizons N in Table II. For these values we
considered a sample rate of 5kHz and used periodic chirp
disturbance.

For each case, the controller is run for around 5 minutes
(approximately 1,500,000 calls to the QP routine) and the

maximum QP solve times are recorded. Also recorded in
Table II are the number of times constraints were active at
the solution during the test period.

Table III provides some idea of the distribution for QP
solve times with prediction horizon N = 12. The disturbance
signal applied is the same as for the previous test condition.
Table IV shows the number of constraints active at the
solution of the QP versus the number of times each case
occurred.

VII. CONCLUSION

While MPC has attracted enormous research interest, it
is commonly perceived that difficulties associated with the
required on-line optimisation limit their applicability. The
empirical study of this issue has been a central motivation
for this paper. While we believe that the achieved active
structural control results are of interest in their own right,
the problem was also chosen for its suitability in examining
these computational overhead issues. In relation to this, a key
outcome was to illustrate that using a very inexpensive hard-
ware platform, the MPC action based on a non-trivial model
(18 state), a reasonable prediction horizon (12 samples) and
with constraints, can be straightforwardly computed in less
than 150µs.

With regard to this particular application, the quadratic
program associated with MPC falls within a class of
quadratic programs that can be modelled using a sector-
bounded nonlinearity [12]. As such, standard robust stability
results (including model uncertainty) are directly applicable.
Although this issue falls outside the scope of this paper, it
aligns well with previous work using robust control for active
structures.
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Fig. 5. Open and closed loop frequency responses (no actuator limits
encountered)
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Fig. 6. Comparison of tip velocity for MPC and Saturated LQG (SLQG)
running at 5kHz sampling rate when a filtered step function (for 4th mode)
is applied to the disturbance patch. Notice a distinct reduction in settling
time.
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Fig. 7. Comparison of output and input energy for MPC and Saturated
LQG (SLQG) running at 5kHz sampling rate when a series of filtered step
functions (for 4th mode) are applied to the disturbance patch. Notice that
both in terms of input and output energy, MPC outperforms SLQG.
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Fig. 8. Comparison of output and input energy for MPC and Saturated
LQG (SLQG) running at 25kHz sampling rate when a series of filtered step
functions (for 4th mode) are applied to the disturbance patch. There is a
reduced performance saving compared with the 5kHz case.

Data for No. of 32 bit words
Observer n(n + m + p + 2) + m + p + 3

QP 4(Nm)2 + Nm(n + 6) + 5

TABLE I
MEMORY REQUIREMENTS FOR OBSERVER AND QUADRATIC

PROGRAMMING SOLVER ON DSP.

N QP clock cycles Hit constraints Max. time (µs)
4 5962 74748 29.81
6 10347 75609 51.735
8 13745 75088 68.725

10 20356 74379 101.78
12 27742 75384 138.71

TABLE II
WORST-CASE TIME TO SOLVE QP FOR DIFFERENT HORIZONS N .

QP clock cycles No. times QP solved
c < 5000 1197566

5000 ≤ c < 7500 90002
7500 ≤ c < 10000 70154

10000 ≤ c < 12500 48030
12500 ≤ c < 15000 40836
15000 ≤ c < 17500 32899
17500 ≤ c < 20000 12444
20000 ≤ c < 22500 4667
22500 ≤ c < 25000 4923
25000 ≤ c < 27500 534
27500 ≤ c < 30000 5

c > 30000 0

TABLE III
SPREAD OF QP SOLVE TIMES FOR N = 12

No. active No. times
1 106084
2 114076
3 55391
4 23208
5 5644
6 68

7–11 0
12 23

TABLE IV
NUMBER OF CONSTRAINTS ACTIVE AT SOLUTION (LEFT COLUMN) AND

NUMBER OF TIMES ACTIVE (RIGHT COLUMN) FOR N = 12.
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