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Abstract—We demonstrate here that a necessary
condition of optimality studied in a previous paper
is in fact a necessary and sufficient condition of op-
timality for the receding horizon control problem of
discrete-time Markov jump linear systems subject
to noisy inputs. The performance index is quadratic
and the information available to the controller does
not involve observations of Markov chain states. Se-
quences of linear feedback gains that are independent
of the Markov state is adopted, in accordance with the
information available to the controller. We make use
of an equivalent deterministic form of expressing the
stochastic problem, and the complete solution given
in feedback form, is obtained by dynamic program-
ming arguments and by the benefit of some quadratic
convex relations.

I. INTRODUCTION

In [1], the authors have developed a necessary opti-
mality condition of the receding horizon control prob-
lem for Markov Jump Linear Systems (MJLS) with
unobservable Markov state chain, subject to exogenous
stationary noise. The admissible control sequences should
be given in linear feedback form that are independent of
the Markov state, an assumption that is well-matched
with the fact that the Markov state is unaccessible. In
addition, that assumption renders a problem with restrict
complexity, which is solvable by recursive methods. In
the present paper we return to the subject, showing that
those optimality conditions are not only necessary but
also sufficient conditions of optimality.

The MJLS class comprises an important class of
stochastic linear systems, and considerable interest has
been focused on these systems over the last decades.
The class is suited to model dynamic systems subject
to random phenomena that presents abrupt changes in
its structure or parameters, such as component failures
or repairs, sudden environment changes, modification of
the operating point of a system, etc. Several results can
be found nowadays in the current literature concerning
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applications, stability conditions and optimal control
problems. We can cite the monograph [2] and the ar-
ticles [3], [4], [5], [6] as important contributions on the
theoretical development of MJLS.

Receding horizon control problems have been studied
in a vast literature of deterministic systems connected
with the model predictive control (MPC) technique.
Results for linear deterministic systems are amalgamated
notably in [7] and [8]. For nonlinear systems one can ob-
serve an strong output drive in the present-day research;
see the recent surveys [9], [10]. Receding horizon results
applied in MJLS are relatively new, see [11], [12], [13],
[14].

The aim of the present paper is to complete the
solution to the problem studied in [1], by showing that
the optimality conditions presented therein are not only
necessary but also sufficient. These results involve a
dynamic representation for the expectation of the process
expressed in a convenient form, which yields an asso-
ciated calculus to express the cost and dynamics in a
deterministic equivalent form. The method in the former
paper was variational, whereas here, we adopt standard
dynamic programming to prove the sufficiency part of
the optimal control characterization. We show that these
conditions in fact produce the optimal solution in form
of a feedback law defined in an appropriate state space.

In Section II we give some basic definitions and nota-
tion, in Section III we present the problem formulation,
feedback concepts and provide a representation for the
problem in terms of some linear operators that are
quadratic with respect to the control variable. In Section
IV we show a necessary and sufficient condition of opti-
mality given by dynamic programming technique, which
constitutes the complete solution to the studied problem.
Finally, in Section V, we present some conclusions.

II. Definitions and Basic Concepts

Let Mr,s (Mr) represent the linear space formed by all
r × s (r × r) real matrices. Let Sr represent the normed
linear subspace of Mr of symmetric matrices such as
{U ∈ Mr : U = U ′}, where U ′ denotes the transpose of
U . Consider also Sr0 (Sr+) its closed (open) convex cone
of positive semidefinite (definite) matrices {U ∈ Sr : U ≥
0 (> 0)}. Let N := {1, . . . ,η} be a finite set, and let S

r

denote the linear space of all N -sequences of matrices
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such that S
r = {U = (U1, . . . ,Un) : Ui ∈ Sr, i ∈N }. We also

write S
r0 (Sr+) when Ui ∈ Sr0 (∈ Sr+) for all i ∈ N .

We employ the ordering U >V (U ≥V ) for elements of
S

r, meaning that Ui−Vi is positive definite (semi-definite)
for all i ∈N . For U ∈ S

r we use the following norm ‖·‖2:

‖U‖2
2 = ∑

i∈N

tr {U ′
i Ui},

where tr {·} represents the trace operator. It is known
that S

r equipped with the above norm forms a Hilbert
space with an inner product given by

〈U,V 〉 = ∑
i∈N

tr {U ′
i Vi}.

We consider a controlled Markov jump linear system
described as follows. Let A := {Ai ∈ Mr : i ∈ N }, B :=
{Bi ∈ Mr,s : i ∈ N }, H := {Hi ∈ Mr,� : i ∈ N }, Q := {Qi ∈
Sr0 : i ∈ N }, R := {Ri ∈ Ss+ : i ∈ N } and F := {Fi ∈ Sr0 :
i ∈ N } be some associated finite set of matrices.

Let (Ω,F,{Fk},P) be the fundamental probability
space. Let Θ := {θ(k);k = 0,1, . . .} be the discrete-time
homogeneous Markov chain, with N as state space,
having P = [pi j],∀i, j ∈ N as the transition probability
matrix. The state of the Markov chain at a certain future
time t, conditioned to the knowledge of the state at
time instant k, is determined according to an associated
probability distribution µt|k on N , namely, µt|k(i) :=
Pr(θ(t) = i | Fk). Considering the n-dimensional vector
µt|k = [µt|k(0), . . . ,µt|k(i), . . . ,µt|k(η)]′, the state distribu-
tion of the chain, µt|k, is defined as µt|k = (P′)t µk|k. In the
sequel we often set k = 0, thus we denote µt|0 simply by
µt .

III. Problem Formulation

Consider the process G in an underlying probability
space defined by:

G :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x(k +1) = Aθ(k)x(k)+Bθ(k)u(k)+Hθ(k)w(k)
q(k) = x(k)′Qθ(k)x(k)+u(k)′Rθ(k)u(k)
p(k) = x(k)′Fθ(k)x(k)
k ≥ k0, x(k0) = x0, θ(k0) ∼ µ0,

where x is an r-dimensional state vector and u is an s-
dimensional control vector. The Markov chain is indexed
by θ and the joint process {x,θ} is a Markovian process.
The second and third expressions in G represent the cost
by stage q and the final cost p, respectively. The model
G is a discrete-time stochastic linear system subject
to Markov jumps in the parameters, written in state
variable form. The stochastic process {w(k);k ≥ k0} is
a second-order i.i.d. sequence of �-dimensional random
vectors with zero mean values and covariance matrix
Σ := E[w(k)w(k)′] ∈ Sr0,∀k ≥ k0, where E[·] represents
the expected value. We also know that {w(k);k ≥ k0} is
independent from {θ(k);k ≥ k0}. In particular, x(k) and
w(k) are independent random vectors. Notice that the
matrices Aθ(k), Bθ(k) and Hθ(k) are functions of the process

Θ = {θ(k);k ≥ k0}. Thus, whenever θ(k) = i, i ∈ N , one
has that Ai, Bi and Hi.

The performance index associated with G is a standard
quadratic cost functional with a horizon of N stages
defined by

Jk,N := Exk,µk|k

[
N−1

∑
�=0

q(k + �)+ p(k +N)

]
, (1)

where Exk,µk|k [ · ]≡ E[ · |x(k) = xk,θ(k)∼ µk|k] and N > 0.
The receding horizon control principle states that the
cost functional (1) should be minimized at each time
instant k = k0, . . . ,k1. The current input u(k) is obtained
by determining the input sequence {û(k), . . . , û(k+N−1)}
that minimizes Jk,N , by setting u(k) = û(k). The remain-
ing sequence is discarded and this procedure is repeated
subsequently at each time instant.

The model is valid solely when the time index k is such
that k0 ≤ k ≤ k1 + N, where k0, . . . ,k1 + N represents the
certainty range of G .

A. Feedback Concepts

A restricted information pattern is imposed in the
sense that the present state x(k) is available but Θ cannot
be precisely known on the interval from k to k + N, the
distribution µk|k being the only information available.
In this regard, we consider the regulation problem of
receding horizon control with noisy input for G , assuming
that admissible controls are in the linear state feedback
form as

u(k) = Kkx(k), (2)

for each k = k0, . . . ,k1.
Let K := {Kt ∈ Ms,r, t = 0, . . . ,N − 1} be a sequence of

feedback gains. Recall the cost functional Jk,N in (1). In
accordance with (2), we associate the sequence K with
the receding state feedback as

û(t + k) = Ktx(t + k), t = 0, . . . ,N −1, (3)

and denote accordingly, the system GK and the cost Jk,N
K .

For notational simplicity we set the initial stage k to
coincide with the time origin, whenever possible, and we
refer to the cost functional by JN

K , that is

JN
K = Ex0,µ0

[
N−1

∑
�=0

q(�)+ p(N)

]
, (4)

with controls in the form u(t) = Ktx(t), t = 0, . . . ,N − 1.
The class of all possible controls is denoted by K .

B. Associated Functionals and Operators

We provide in this section an equivalent deterministic
form of expressing the cost JN

K that is convenient for
optimization. As in [1], we define a set of matrices of
conditional second moments of the state X t = {X t

i , i∈N }
as

X t
i = Ex0,µ0 [x(t)x(t)

′11{θ(t)=i}], ∀i ∈ N , (5)
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t = 0, . . . ,N, where µ0 and x(0) = x0 are known vectors and
11C represents the indicator function of the set C . Recall
that µt express the distribution of the Markov chain at
a certain time t given µ0. Let Ψt ∈ S

r0 be

Ψt
i := ∑

j∈N

p jiµt( j)H jΣH ′
j, ∀i ∈ N .

Let us introduce the following operators E : S
r0 → Sr0

and L ,T : S
r0 ×Ms,r → Sr0 defined, respectively, as

Ei(φ) := ∑
j∈N

pi jφ j, ∀i ∈ N ,

Li(φ ,ψ) := (Ai +Biψ)′Ei(φ)(Ai +Biψ), ∀i ∈ N ,

Ti(φ ,ψ) := ∑
j∈N

p ji(A j +B jψ)φ j(A j +B jψ)′, ∀i ∈ N .

for any φ ∈ S
r0 and ψ ∈ Ms,r.

The next representation result establishes the dynam-
ics of X t

i ,0 ≤ t ≤ N using the operators introduced above.
The proof is detailed in [1].

Proposition 3.1: For any K ∈ K and X0
i =

µ0(i)x(0)x(0)′, ∀i ∈ N ,

X t+1
i = Ti(X t ,Kt)+Ψt

i, (6)

∀i ∈ N and t = 0, . . . ,N −1.
The above representation shows that the second mo-

ment dynamics (6) is non-linear (quadratic) in Kt , and
given any sequence {K0, . . . ,KN−1} in K, the correspond-
ing trajectory X0, . . . ,XN is uniquely determined.

Next, we state the representation of the cost in terms
of the trajectories X t = (X t

1, . . . ,X
t
η).

Proposition 3.2: The cost JN
K is identical to

JN
K =

N−1

∑
t=0

〈Q+(Kt)′RKt ,X t〉+ 〈F,XN〉. (7)

Proof: Let Z = {Zi ∈ Mr0, i ∈ N } be any set. Then

Ex0,µ0 [x(t)
′Zθ(t)x(t)] = ∑

i∈N

Ex0,µ0 [x(t)
′Zθ(t)x(t)11{θ(t)=i}]

= ∑
i∈N

tr{ZiX t
i } = 〈Z,X t〉.

Applying the result above in (4) with u(t) = Ktx(t) gives
(7).

Remark 3.1: Note that the stochastic control problem
associated to the receding cost can now be solved at each
k by considering the problem:

minimizing JN
K in (7)

subject to (6), K ∈ K and X0
i = µk|k(i)x(k)x(k)′∀i ∈ N .

This is an unconstrained optimal control problem in-
volving a linear dynamics (see operator Ti), for which
the dependence on the control sequence K is quadratic.
The cost functional possesses a linear dependence with
respect to the trajectories X t ,0 ≤ t ≤ N and a quadratic
dependence on the control sequence K. One direct ap-
proach to the problem is to solve it as static optimiza-
tion problem. This involves substituting the trajectory
X t by its representation in terms of the past sequence
K0, . . . ,Kt−1 and the initial condition X0. Then one could

apply hill-climbing techniques to solve it. However this
would be an unsatisfactory way of solving it since by
throwing away the dynamic structure, the procedure does
not lead to any conclusion regarding optimality and the
characterization of solutions, as the next simple example
shows.

Example 3.1: Consider a SISO Markov jump system

x(t +1) = aθ(t)x(t)+bθ(t)u(t),

with N = {1,2} and parameters a1 = 0.3, a2 = 0.1,
b1 = −1, b2 = 1. Let u(t) = gtx(t) be the control input.
According to (7) the cost is defined as

JN
{g0,...,gN−1}

=
N−1

∑
t=0

(
∑

i∈N

(qi + rig2
t )X

t
i + fiXN

i

)
,

where X t
i , i = 1,2 are scalars defined as in (6). The cost

parameters are q1 = q2 = 0.4, r1 = r2 = 1, f1 = f2 = 0.5,
and we adopt N = 2, x(0) = 2, µ0 = [0.25 0.75] and the
stochastic transition matrix

P =

[
0.6 0.4
0.2 0.8

]
.

After some algebraic manipulations, one can obtain the
cost explicitly as

J2
{g0,g1}

= 1.6+4g2
0 +(0.4+g2

1)(0.3−g0)
2

+(1.2+3g2
1)(0.1+g0)

2 +0.3(0.3−g1)
2(0.3−g0)

2

+0.2(0.1+g1)
2(0.3−g0)

2 +0.1(0.3−g1)
2(0.1+g0)

2

+0.4(0.1+g1)
2(0.1+g0)

2. (8)

Note that (8) as function of g0 with g1 fixed, or vice-
versa, is a quadratic and convex function with respect to
the remaining variable. However, the multiple variable
function (8) is not even convex as can be seen from
its contour plot in Fig 1. The figure suggests that the
function presents an unique minimum but the solution
could be nonunique.
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Fig. 1. Three dimensional contours of the cost J2
{g0,g1}

.

The analysis developed in the sequel is aimed at an
explicit feedback control rule for the control problem
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stated in Remark 3.1. The precise sense is to obtain a set
of algebraic function ϕ t : S

r0×Ms,r →Ms,r, t = 0, . . . ,N−1
such that for any X ∈ S

r0 there exists K ∈ Ms,r with
ϕ t(K,X) = 0 ∈ Ms,r. Thus, given X t = X ∈ S

r0, one can
get the optimal action Kt from the above relation, and
ϕ t(·) represents the optimal closed loop policy for the
optimal control problem stated in Remark 3.1.

IV. Optimality Analysis

We wish to choose a sequence K = {K0, . . . ,KN−1} ∈K

so as to minimize the cost JN
K in (7). We use dynamic

programming technique as follows. Let Vt(X) be the infi-
mum of the functional cost for the intermediate problem
starting at X t = X ∈ S

r0 for some t ∈ {0, . . . ,N}. This is
known as the value function at time t. This definition
indicates that Vt ought to satisfy the optimality principle
[15]:

Vt(X) = inf
G

[
〈Q+G′RG,X〉+Vt+1(T (X ,G)+Ψt)

]
(9)

where the infimum is over all admissible G ∈ M s,r. To
check this, set X t = X and feedback gain Kt = G. Then:
a) The cost paid at time t is 〈Q+G′RG,X〉.
b) The next state is X t+1

i = Ti(X ,G)+Ψt
i,∀i ∈ N .

Thus Vt+1(T (X ,G)+Ψt) is the minimal cost for the rest
of the problem if gain value G is applied at stage t, and
obviously,

Vt(X) ≤ 〈Q+G′RG,X〉+Vt+1(T (X ,G)+Ψt) (10)

and this holds for any value of G.
On the other hand, suppose that

{
X̄k, K̄k

}
is optimal

over the stages t ≤ k ≤N starting at X̄ t = X . The principle
of optimality indicates that

V�(X̄ �) =
N−1

∑
k=�

〈Q+(K̄k)′RK̄k, X̄k〉+ 〈F, X̄N〉.

where � is either t or t +1. Hence,

Vt(X) = 〈Q+(K̄t)′RK̄t ,X〉+Vt+1(T (X , K̄t)+Ψt) (11)

since X̄ t = X . Now, (10) and (11) together imply that
(9) holds. Note that at the terminal time N the value
function is

VN(X) = 〈F,X〉. (12)

The proof of the next result is addressed in the ap-
pendix.

Theorem 4.1: (Verification theorem)
Suppose VN ,VN−1, . . . ,V0 satisfy the Bellman equation
(9) with terminal condition (12). Suppose that for each
0 ≤ t ≤ N − 1, the infimum in (9) is achieved by G = K̄t

that satisfies ϕ t(G, X̄ t) = 0, where ϕ t(·) is some specified
function. Now define (X̄ t , K̄t) recursively as follows:

X̄0 = X0, ϕ t(K̄t , X̄ t) = 0,

X̄ t+1 = T (X̄ t , K̄t)+Ψt , t = 0, . . . ,N −1.

Then K̄ = {K̄0, . . . , K̄N−1} is an optimal feedback gain
sequence and the minimum cost is V0(X0).

The next result establishes the optimal gain sequence
for the overall control problem.

Theorem 4.2: The solution of the Bellman equation
(9) for the receding horizon control problem is given by

Vt(X) = inf
Kt
〈Lt ,X〉+ µ ′

t ω t , t = 0, . . . ,N −1, (13)

with terminal value VN(X) = 〈LN ,X〉, where Lt and wt

satisfies the following recurrences

Lt
i = Qi +(Kt)′RiKt +Li(Lt+1,Kt), ∀i ∈ N , (14)

ω t
i = Ei(ω t+1)+ tr{Ei(Lt+1)HiΣH ′

i}, ∀i ∈ N , (15)

with terminal condition LN
i = Fi, ωN

i = 0, ∀i∈N . The op-
timal feedback gain sequence K = {K0, . . . ,KN−1} satisfies
ϕ t(Kt ,X t) = 0, t = 0, . . . ,N −1, with

ϕ t(K,X) = ∑
i∈N

[(Ri +B′
iEi(Lt+1)Bi)K +B′

iEi(Lt+1)Ai]Xi

(16)
Moreover, the minimal cost is given by

V0(X0) = 〈L0,X0〉+ µ ′
0ω0. (17)

Remark 4.1: Note that the feedback control given by
the law ϕ t(K,X) = 0 in (16) may not be unique; however
it is always possible to provide an optimal solution. To
see this we write ϕ t(K,X) = 0 equivalently as

{
∑

i∈N

Xi ⊗ (Ri +B′
iEi(Lt+1)Bi)

}
vec(K) =

−vec

{
∑

i∈N

B′
iEi(Lt+1)AiXi

}
(18)

which is an square set of linear equations. Here we
denote by M⊗N = [mi jN] ∈Mqs,rt the Kronecker product
of matrices M = [mi j] ∈ Mq,r and N ∈ Ms,t , and we set
vec(M) = [m11 m21 . . . mq1 m12 . . . mq2 m13 . . . mqr]

′ ∈
Mqr,1. We get (18) by using the identity vec(MZN) =
N′⊗M ·vec(Z).

A. Proof of Theorem 4.2

We present some preliminaries to the proof of Theo-
rem 4.2. Let f (X) be a differentiable real valued func-
tion of the matrix X = [xi j] ∈ Mm,n. The matrix of
first order partial derivatives of f (X) is defined by
∂ f (X)

/
∂X =

[
∂ f (X)

/
∂xi j

]
∈ Mm,n, and the Hessian ma-

trix of second order partial derivatives is defined by
∂ 2 f (X)

/
∂vec(X)∂vec(X)′ ∈ Mmn,mn. Now we can present

the following result.
Lemma 4.1: (i) [16], [17]. Let N ∈ Mn,n,M ∈ Mm,m and

Z ∈ Mm,n be any matrices. Then

tr{ZNZ′M} = vec(Z)′(N′⊗M)vec(Z)

= vec(Z)′(N ⊗M′)vec(Z) (19)

∂ tr{ZNZ′M}

∂Z
= M′ZN′ +MZN (20)

∂ 2tr{ZNZ′M}

∂vec(Z)∂vec(Z)′
= N ⊗M′ +N′⊗M. (21)
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(ii) [18]. Let N ∈ Mn,n and M ∈ Mm,m be any symmetric
positive semi-definite matrices. Then N ⊗M ≥ 0.

The next result asserts the convexity of f (Z) =
tr{ZNZ′M}.

Lemma 4.2: Let N ∈Mn,n and M ∈Mm,m be symmetric
positive semi-definite matrices and Z ∈ Mm,n be any ma-
trix. If f (Z) = tr{ZNZ′M}, then f (Z) is a convex function.

Proof: We can see from (19) that f (Z) = tr{ZNZ ′M}
is a quadratic function with respect to Z. Moreover, (21)
yields that the Hessian matrix of f (Z) is N⊗M′+N′⊗M;
from Lemma 4.1(ii) we conclude that it is a positive
semi-definite matrix. The result follows from the well-
known fact that any quadratic function with positive
semi-definite Hessian matrix is a convex function.

Next we develop some useful equivalences considering
an arbitrary X t = X ∈ S

r0.

Lemma 4.3:

(i) 〈Lt+1,T (X ,G)+Ψt〉

= ∑
i∈N

[
tr{Li(Lt+1,G)Xi}+ tr{Ei(Lt+1)HiΣH ′

i}µt(i)
]

(22)

(ii) µ ′
t+1ω t+1 = ∑

i∈N

Ei(ω t+1)µt(i) (23)

Proof: (i) Set Â j := A j + B jG,∀ j ∈ N . From the
definition of Ψt

i and operators Ti(·), get from basic trace
properties that

〈Lt+1,T (X ,G)+Ψt〉

= ∑
i∈N

tr{ Lt+1
j ∑

j∈N

p ji[Â jX jÂ′
j + µt( j)H jΣH ′

j] }

= ∑
j∈N

tr{ ∑
i∈N

pi jLt+1
j [ÂiXiÂ′

i + µt(i)HiΣH ′
i ] }

= ∑
i∈N

[
tr{ Â′

i ∑
j∈N

pi jLt+1
j ÂiXi }

+ tr{ ∑
j∈N

pi jLt+1
j µt(i)HiΣH ′

i}
]

and using operators Ei(·) and Li(·) above we get (22).

(ii)µ ′
t+1ω t+1 = ∑

j∈N

µt+1( j)ω t+1
j = ∑

i∈N

∑
j∈N

µt(i)pi jω t+1
j

= ∑
i∈N

µt(i) ∑
j∈N

pi jω t+1
j = ∑

i∈N

Ei(ω t+1)µt(i).

Now we are prepared to develop the proof of Theorem
4.2.

Proof: The proof is constructed by backwards induc-
tion on t and the dynamic programming technique. Note
from (12) that VN(X) = 〈F,X〉, and the result is certainly
true at t = N; hence LN = F,ωN = 0. Now consider t =
N −1. For a given XN−1 = X , the Bellman equation (9),
becomes

VN−1(X) = inf
G

[
〈Q+G′RG,X〉

+ 〈LN ,T (X ,G)+ΨN−1〉
]
. (24)

Applying (22) in (24) we get that

VN−1(X) = inf
G

∑
i∈N

[
tr{ [Qi +G′RiG+Li(LN ,G)]Xi}

+ tr{Ei(LN)HiΣH ′
i}µN−1(i)

]
= inf

G
〈LN−1,X〉+ µ ′

N−1ωN−1 (25)

which is an expression identical to (13) for t = N−1 and
LN−1 and ωN−1 as in (14) and (15), respectively. Now we
evaluate the optimal G that satisfy (25). First note that
tr{Ei(LN)HiΣH ′

i} does not depend on G. Applying direct
differentiation to (25) with respect to G (recall property
(20)) we get (16) and G = KN−1 sets this derivative to
zero, providing in principle a local minimum. On the
other hand, (25) is a quadratic function of G as in (19)
and by recognizing in Lemma 4.2 M = Ri +B′

iEi(LN)Bi ≥ 0,
N = Xi ≥ 0 and Z = G, we conclude that the expres-
sion inside “inf” on the right-hand side of (25) is a
quadratic and convex function with Hessian matrix given
by ∑i∈N 2(Ri +B′

iEi(LN)Bi)⊗Xi ≥ 0. Thus, G = KN−1 that
satisfies ϕ t(KN−1,X) = 0 in (16) is a global minimum
of (25), which amounts to a necessary and sufficient
optimality condition at the stage t = N − 1 via (16).
To show that the result holds for t < N − 1 we apply
induction. Suppose it holds for t = k +1. Taking

Vk+1(X) = 〈Lk+1,X〉+ µ ′
k+1ωk+1

with Lk+1,ωk+1 given, the Bellman equation (9) for any
Xk = X ∈ S

r0 becomes

Vk(X) = inf
G

[
〈Q+G′RG,X〉

+ 〈Lk+1,T (X ,G)+Ψk)〉+ µ ′
k+1ωk+1]. (26)

Using Lemma 4.3 in (26) we get that

Vk(X) = inf
G

∑
i∈N

[
tr{ [Qi +G′RiG+Li(Lk+1,G)]Xi }

+[tr{Ei(Lk+1)HiΣH ′
i}+Ei(ωk+1)]µk(i)

]
= inf

G
〈Lk,X〉+ µ ′

kωk (27)

which is an expression identical to (13) with Lk and ωk as
in (14) and (15), respectively. Each argument developed
to show that (25) possesses a global minimum applies
equally to (27), implying the fact that G = Kk for which
ϕk(Kk,X) in (16) is set to zero is an optimal solution
at time instant k. These arguments show that the result
holds for t = k and the result follows. Finally, (17) holds
for the optimal sequence K according to Theorem 4.1.

V. Conclusions

In this paper we characterize the solutions to the
receding horizon control problem of MJLS with noisy
inputs. In the interest of applications, we assume that the
state of the underlying Markov chain is not available to
the controller. The controller developed here minimizes
the expected cost functional associated to a fixed number
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of stages, within the admissible class of controls, which
comprises affine feedback solutions that are independent
of the chain state. The result relies on some evolution
operators related to the expected value of second-order
moments of the trajectory and cost matrices. The original
stochastic control problem is coined in terms of an opti-
mal control problem of deterministic nature, possessing
linear dynamics and costs, which is quadratic in the
control variable. The dynamic programming framework
is employed which provides the optimal solution in feed-
back form, a result that also benefits from the quadratic
convex structure of the problem.
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Appendix – Proof of Theorem 4.1

The Verification Theorem is expressed here in the
paper notation.

Proof: Let K = {K0, . . . ,KN−1} be any control and
X0, . . . ,XN the corresponding trajectory for some given
X0 = X . Then, from (9) we have that

Vt(X t) ≤ 〈Q+(Kt)′RKt ,X t〉+Vt+1(X t+1). (28)

Hence

VN(XN)−V0(X0) =
N−1

∑
t=0

(
Vt+1(X t+1)−Vt(X t)

)

≥− ∑
t=0

〈Q+(Kt)′RKt ,X t〉. (29)

Since VN(XN) = 〈F,XN〉 this shows that

V0(X0) ≤ JN
K . (30)

On the other hand, when X t = X̄ t and Kt = K̄t equality
in (28) holds by definition, and hence if Kt = K̄t , t =
0, . . . ,N −1, (29) holds with strict equality. Thus,

V0(X0) = JN
K̄ . (31)

Now (30) and (31) provide that K̄ is optimal and that
the minimal cost is V0(X0).
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