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Abstract— The problem of stabilization for a class of feedback
linearizable systems with multiple state constraints is addressed.
The design procedure is constructive, and yields a continuous
final control law which guarantees that all specified states
remain within certain bounds for all time. The achieved bounds
on the states are independent of the initial conditions. The
procedure entails shaping the control Lyapunov function, and
propagating hard-bounds imposed on the pertinent stabilising
functions and associated error signals through the steps of the
backstepping control design framework.

I. INTRODUCTION

The problem of saturation nonlinearities is by far the most
common challenge faced by control engineers as all real
systems possess at least one form of saturation nonlinearities
[1], [2]. Control problems for constrained linear systems have
been extensively studied in the literature due to the hitherto
successful use of linear approximations to represent a re-
stricted range of operating conditions of otherwise nonlinear
processes. Key approaches include override control [3], set
invariance and admissible set control [4], [5], the reference
governor approach [6], and Linear Model Predictive Control
[7]. Many of those approaches are numerical in nature
and/or rely heavily on computationally intensive algorithms
to solve the control problems. It is only recently that insights
into structural properties of stabilizable constrained linear
systems, as well as control design methodologies for such
systems, were provided in [8], [9].

All real systems are, however, inherently nonlinear. Factors
such as higher product quality specifications, increasing
productivity demands, tighter environmental regulations, and
demanding economical considerations all require systems
to operate over a wider range of operating conditions and
often near the boundary of the admissible region. Under
these conditions, linear models are no longer sufficient to
describe the process dynamics adequately and nonlinear
models must be used. Various techniques have been devel-
oped to solve the constrained control problems for nonlinear
systems, namely artificial potential field [10], invariance
control [11], nonlinear reference governor [12], [13], and
Nonlinear Model Predictive Control [14]. Works which fall
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under the ‘constructive nonlinear control’ framework have
focussed on the problem of actuator saturations and led to
the modern techniques of forwarding [15], [16].

To tackle output or state saturation, however, it appears
more effective to employ the backstepping methodology
capable of supplying the high input gain margins, which are
required to impose the saturation constraints. Backstepping
is a powerful tool for the synthesis of robust and adaptive
nonlinear controllers for various important classes of systems
with parametric or dynamic nonlinearities and uncertainties
[17]–[19]. Freeman and Praly in [20], and later extended to
a more general class of nonlinear systems by Mazenc and
Iggidr [21], addressed the problem of bounded controls and
control rates. To the best of the authors’ knowledge, there
exists no result on the problem of multiple state constraints
in the backstepping paradigm.

In this paper, we present a modified backstepping control
design procedure to stabilize a class of feedback lineariz-
able systems with multiple state constraints. The paper is
motivated by the consideration of physical motion systems
where the non-linear model of the system is only valid
for a restricted band of velocities. For example, consider
the 4th-order longitudinal dynamics of a conventionally-
configured aircraft. The dynamic model comprises altitude,
vertical velocity, pitch attitude, and pitch rate [22]. In this
case the vertical velocity, or climb rate, is proportional to
the angle of attack of the aircraft. This internal state of
the system model must be bounded below the stall angle of
the aircraft to avoid catastrophic failure of the closed-loop
system. For commercial jet aircraft, the “passenger comfort”
factor imposes magnitude constraints on both the aircraft’s
pitch attitude and pitch rate during manoeuvres which can be
well below actuator saturation limits. The main features of
our design consist of shaping the control Lyapunov function
to bound and suppress the propagation of the errors at each
stage of the backstepping procedure and the introduction of
a barrier-function like term employed to impose hard bound
on the associated error signals. The present paper extends an
earlier paper [23] that considers imposing a hard-bound on
the velocity state to imposing multiple bounds on the states
of feedback linearizable systems.

The paper is organized as follows. Section 2 states the
problem definition and the control design procedure along
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with the main results. A discussion of the achieved state
bounds and how to tune the design constants is given Section
3. Simulation results for a simple 4th-order integrator cas-
cade are presented in Section 4, whilst concluding remarks
and possible future work are contained in section 5.

II. BACKSTEPPING WITH BOUNDED STATES

A. Notations

The notation f(x) = O(g(x)), read ‘f(x) is big O of g(x)’,
means |f(x)| ≤ κ|g(x)|, for some constant κ.

B. Definitions

A system

ẋ = f(x, t), f(x0, t) = 0, x0 ∈ R
n (1)

with equilibrium point x0 is termed domain globally asymp-
totically stable (DGAS) to x0 with domain U if:

1) There exists a set U ⊆ R
n that is forward invariant

under the dynamics of (1) and x0 ∈ U .
2) The equilibrium point x0 is Lyapunov stable under the

dynamics of (1) restricted to U .
3) For any initial condition x0 ∈ U , then the solution x(t)

of (1) satisfies:

lim
t→∞x(t) = 0 (2)

C. Problem Statement

Consider a feedback linearizable system transformable
into the Brunovsky normal form:

ξ̇i = ξi+1, i = 1, ..., n − 1

ξ̇n = b(ξ) + a(ξ)u, (3)

where ξ ∈ R
n, u ∈ R are the state vector and the control

input, respectively. There exist magnitude constraints on the
system states due to physical/performance limits as follows:

|ξi+1(t)| ≤ Bi, ∀t ≥ 0 (4)

Our objective is to develop a procedure to design asymp-
totically stable controllers for system (1) with constraints
as defined by (4). No bound is applied to the output state
ξ1. This choice is driven by the motivating example of the
longitudinal dynamics of an aircraft. However, it is typical of
problems with state rather than output constraints. Problems
with unbounded output require a saturated reference trajec-
tory design that is unnecessary for bounded output cases. The
case of bounded output and multiple state constraints may
be solved using a straightforward extension of the results
presented in this paper.

D. Assumptions

The functions a and b: R
n−→R are smooth, that is, C∞.

In addition, the function a(ξ) �= 0 for all ξ.

E. Control Design Procedure

1) Step 1: Consider the first scalar subsystem

ξ̇1 = ξ2 (5)

It is required that the propagation of the error in ξ1 through
to the next subsystem is bounded. The reason why this
is necessary is explained at the end of this design step.
Consequently, the growth of the control Lyapunov function
(CLF) for (5) is to be restricted to a linear one. That is

V1(ξ1) = O(ξ1), as |ξ1| → ∞ (6)

This is the first key condition of our design. A candidate CLF
is

V1(ξ1) = k1ξ1 arctan(ξ1) (7)

=⇒ V̇1 = k1ξ2

[
arctan(ξ1) +

ξ1

1 + ξ2
1

]
, (8)

where the gain k1 > 0 is a design constant.
Since ξ2 is required to be bounded, the stabilising function

for (5), ξ2ref
, must first be bounded. This is the second key

condition of our design procedure. A choice for ξ2ref
is

ξ2ref
= −c1 arctan(ξ1) (9)

z1 = ξ2 − ξ2ref
, (10)

where z1 is the error signal variable, and c1 > 0 is a design
constant. The stabilizing function ξ2ref

is bounded by

|ξ2ref
(t)| <

π

2
c1 (11)

Substituting (9) and (10) into (5) and (8) yields

ξ̇1 = −c1 arctan(ξ1) + z1 (12)

V̇1 = −k1c1 arctan(ξ1)
[
arctan(ξ1) +

ξ1

1 + ξ2
1

]

+ k1z1

[
arctan(ξ1) +

ξ1

1 + ξ2
1

]

≤ −W1(ξ1) + k1z1

[
arctan(ξ1) +

ξ1

1 + ξ2
1

]
, (13)

respectively, where

W1(ξ1) = k1c1 arctan(ξ1)
[
arctan(ξ1) +

ξ1

1 + ξ2
1

]
, (14)

and is positive-definite in ξ1. It is clear from (13) that V̇1(ξ1)
becomes negative-definite once z1 is driven to 0.

It is necessary to limit the growth of V1(ξ1) in order to
prevent the forward propagation of the error in ξ1 through
to the next subsystem via the cross-term in (13).

2) Step 2: Consider the augmented subsystem for (12)

ż1 = ξ̇2 − ξ̇2ref

= ξ3 +
c1ξ2

1 + ξ2
1

(15)

and define the error signal variable z2 by

z2 = ξ3 − ξ3ref
(16)
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With the stabilising function for (5), ξ2ref
, already bounded

in Step 1 as shown by (11), we are now only required to
saturate z1 in order to bound ξ2, see (10). This is achieved
by defining the CLF for (15) with a barrier function structure
such that the growth of the CLF is governed by

|z1| → ∆z1 =⇒ V2(z1) → ∞, (17)

where the constant ∆z1 is the desired hard-bound on z1.
This is the third and final key condition of our design. A
valid choice for V2(ξ1, z1) is

V2(ξ1, z1) = V1(ξ1) +
1
2
k3 log

(
k2
2

k2
2 − z2

1

)
, (18)

where the gain k3 > 0 is a design constant. Such a choice
for V2 yields

|z1(t)| < k2, ∀t ≥ 0 (19)

Differentiating (18) with respect to time gives

V̇2 = −W1(ξ1) + z1

[
k1 arctan(ξ1) +

k1ξ1

1 + ξ2
1

+
k3ż1

k2
2 − z2

1

]

(20)

whenever V2(ξ1, z1) is well-defined, and bounded at every
t ≥ 0. To simultaneously make V̇2 negative-definite and
bound the stabilizing function for (15), ξ3ref

, we choose
ξ3ref

to be

ξ3ref
= −c2z1 − c1ξ2

1 + ξ2
1

−
(
k2
2 − z2

1

)
k3

[
k1 arctan(ξ1) +

k1ξ1

1 + ξ2
1

]
, (21)

where c2 > 0 is a design constant. Since every term on
the right hand side (RHS) of (21) is bounded, ξ3ref

is
consequently bounded.

Substituting (16) and (21) into (15) and (20) yields

ż1 = −c2z1 −
(
k2
2 − z2

1

)
k3

[
k1 arctan(ξ1) +

k1ξ1

1 + ξ2
1

]
+ z2

(22)

and

V̇2 = −W1(ξ1) − k3c2z
2
1

k2
2 − z2

1

+
k3

k2
2 − z2

1

z1z2,

(23)

respectively, where W1(ξ1) is as defined in (14) and is
positive-definite in ξ1. Thus, from (23), it follows that
V̇2(ξ1, z1) becomes negative-definite once z2 is driven to 0.

Now that z1 is bounded, and with the stabilising function
ξ2ref

also bounded, ξ2 is consequently bounded as a direct
result of (10).

The procedure to bound each of the remaining states is
iterative and is analogous to Step 2. The exception of Step
1 is due to the desire to have the signal ξ1 unbounded. The
generic algorithm to bounding each of the remaining states
of system (3) is detailed below.

3) Step 3: Consider the augmented subsystem for (22)

ż2 = ξ̇3 − ξ̇3ref

= ξ4 − ξ̇3ref
(24)

and define the error signal variable

z3 = ξ4 − ξ4ref
(25)

As the stabilising function ξ3ref
has already been bounded

in Step 2, as shown by (21), we are now only required to
saturate the error signal z2 in order to bound ξ3, see (16).
To achieve this we again impose a barrier function structure
on the CLF for (24) with a growth condition defined by

|z2| → ∆z2 =⇒ V3(z2) → ∞, (26)

where the constant ∆z2 is the desired hard-bound on the
error signal z2. A valid CLF choice is

V3(ξ1, z1, z2) = V2(ξ1, z1) +
1
2
k5 log

(
k2
4

k2
4 − z2

2

)
(27)

which yields

|z2(t)| < k4, ∀t ≥ 0, (28)

where the gain k5 > 0 is a design constant. The time
derivative of (27) is given by

V̇3 = −W1(ξ1) − k3c2

k2
2 − z2

1

z2
1

+ z2

[
k3

k2
2 − z2

1

z1 +
k5

k2
4 − z2

2

ż2

]
, (29)

whenever V3(ξ1, z1, z2) is well-defined and bounded at every
t ≥ 0. To bound the stabilising function for (24), ξ4ref

, we
choose ξ4ref

to be

ξ4ref
= −c3z2 + ξ̇3ref

, (30)

where c3 > 0 is a design constant. As in Step 2, it is straight
forward to verify that ξ̇3ref

is bounded. The bound on ξ4ref

is
|ξ4ref

(t)| < c3k4 + |ξ̇3ref
(t)| (31)

Substituting (30) and (25) into (24) and (29) yields

ż2 = −c3z2 + z3 (32)

V̇3 = −W1(ξ1) − k3c2

k2
2 − z2

1

z2
1 +

k3

k2
2 − z2

1

z1z2 − k5c3

k2
4 − z2

2

z2
2

+
k5

k2
4 − z2

2

z2z3, (33)

respectively, where W1(ξ2) is as defined in (14) and is
positive definite in ξ1.

We choose to not explicitly cancel the cross-term
k3

k2
2−z2

1
z1z2 in (29) because as |z1| → k2, k3

k2
2−z2

1
z1z2 → ∞.

This means that the reference signal ξ4ref
is not bounded if

direct cancelation of the cross-term is employed. To avoid
this problem and still render V̇3(ξ1, z1, z2) negative definite,
we dominate the cross-term by appropriately tuning the
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design constants. This is achieved by first manipulating (33)
into the form

V̇3 = −W1(ξ1) − k3

2 (k2
2 − z2

1)
(z1 − z2)

2 − k3c2

k2
2 − z2

1

z2
1

+
k3

2 (k2
2 − z2

1)
z2
1 +

k3

2 (k2
2 − z2

1)
z2
2 − 1

2
k5c3

k2
4 − z2

2

z2
2

− 1
2

k5c3

k2
4 − z2

2

z2
2 +

k5

k2
4 − z2

2

z2z3 (34)

What we have done is complete the squares for the
cross-term k3

k2
2−z2

1
z1z2, and add the terms k3

2(k2
2−z2

1)
z2
1 and

k3

2(k2
2−z2

1)
z2
2 which come from the completion of the squares.

These are the fourth and fifth terms on the RHS of (34),
respectively. We then split the term k5c3z2

2
k2
4−z2

2
in two parts

to clearly indicate our intention to use one part of the
term to dominate the additional terms coming from the
completion of the squares, and other part in the next step
of the backstepping design procedure.

Let us now consider the sum of the third, fourth, fifth, and
sixth term on the RHS of (34) separately

Y1 = − k3c2

k2
2 − z2

1

z2
1 +

k3

2 (k2
2 − z2

1)
z2
1 +

k3

2 (k2
2 − z2

1)
z2
2

− 1
2

k5c3

k2
4 − z2

2

z2
2 (35)

Our goal is to tune the design constants such that Y1 is
rendered negative-definite. If we choose

c2 ≥ k2
4

[k2αz1 ]2
+

1
2
, (36)

where αz1 ∈ (0,
√

2) is a constant, then the following is
obtained

Y1 = − k3

k2
2 − z2

1

[
k2
4

[k2αz1 ]2
+

1
2

]
z2
1 +

k3

2 (k2
2 − z2

1)
z2
1

+
k3

2 (k2
2 − z2

1)
z2
2 − 1

2
k5c3

k2
4 − z2

2

z2
2 (37)

= − k3

(k2
2 − z2

1)
k2
4

[k2αz1 ]2
z2
1 +

k3

2 (k2
2 − z2

1)
z2
2

− k5c3

2 (k2
4 − z2

2)
z2
2 (38)

From (28), it follows that

k3

2 (k2
2 − z2

1)
z2
2 <

k3

2 (k2
2 − z2

1)
k2
4 (39)

Thus, when |z1| ≥ k2αz1 , Y1 is negative-definite if the design
constant c2 is tuned in accordance with (36).

When |z1| < k2αz1 , we employ the term − 1
2

k5c3
k2
4−z2

2
z2
2 to

dominate k3

2(k2
2−z2

1)
z2
2 . By simply examining k3

2(k2
2−z2

1)
z2
2 , we

can deduce that

−1
2

k5c3

k2
4 − z2

2

z2
2 ≥ −1

2
k5c3

k2
4

z2
2 (40)

In addition, when |z1| < k2αz1 , the following is true for the
second term on the RHS of (38)

k3

2 (k2
2 − z2

1)
z2
2 <

k3

2 (k2
2 − [k2αz1 ]2)

z2
2 (41)

Thus, if we choose

k5c3

k2
4

≥ k3

k2
2 − [k2αz1 ]2

(42)

then it follows that
k5c3

2 (k2
4 − z2

2)
z2
2 ≥ k3

2 (k2
2 − z2

1)
z2
2 , ∀|z1| < k2αz1 (43)

Consequently,

Y1 = − k3c2

k2
2 − z2

1

z2
1 +

k3

2 (k2
2 − z2

1)
z2
1 +

k3

2 (k2
2 − z2

1)
z2
2

− 1
2

k5c3

k2
4 − z2

2

z2
2 , (44)

and is negative-definite for |z1| < k2, |z2| < k4, if the design
constants are tuned according to (36) and (42). If (44) is
negative-definite, then from (34), we obtain

V̇3 ≤ −W2(ξ1, z1, z2) − 1
2

k5c3

k2
4 − z2

2

z2
2 +

k5

k2
4 − z2

2

z2z3,

(45)

which is negative-definite inside the set S = {ξ1 ∈ R, |z1| <
k2, |z2| < k4}, once z3 is driven to 0. The function W2 is
defined as

W2 = W1(ξ1) +
k3c2

k2
2 − z2

1

z2
1 − k3

k2
2 − z2

1

z1z2 +
1
2

k5c3

k2
4 − z2

2

z2
2 ,

(46)

which is positive-definite inside the same set if (36) and (42)
are satisfied.

Now that z2 and ξ3ref
are both bounded, ξ3 is therefore

bounded as a direct result of (16).
The procedure to bound each of the remaining states is

recursive and analogous to Step 3. The recursion terminates
when system (3) is stabilized by the actual control u, which
is at the nth step of our control design.

4) Step n: Consider the final augmented subsystem

żn−1 = ξ̇n − ξ̇nref

= b(ξ) + a(ξ)u − ξ̇nref
(47)

To bound ξn we need to have the error signal variable for
this step, zn−1, bounded. This is achieved by imposing a
barrier function structure on the CLF for (47) with a growth
condition governed by

|zn−1| → ∆zn−1 =⇒ Vn(zn−1) → ∞ (48)

A candidate CLF for system (3) is

Vn = Vn−1 +
1
2
k2n−1 log

(
k2
2n−2

k2
2n−2 − z2

n−1

)
, (49)

where k2n−1 > 0 is a design constant, and k2n−2 is the
desired bound on zn−1. That is

|zn−1(t)| < k2n−2, ∀t ≥ 0 (50)
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The time derivative of (49) is given by

V̇n = −Wn−1 − 1
2

k2n−3cn−1z
2
n−2

k2
2n−4 − z2

n−2

+ zn−1

[
k2n−3

k2
2n−4 − z2

n−2

zn−2 +
k2n−1żn−1

k2
2n−2 − z2

n−1

]

(51)

whenever Vn is well-defined and bounded for every t ≥ 0.
As there is no prescribed constraint on the control u, one
choice for u is

u =
1

a(ξ)

{
−cnzn−1 − b(ξ) + ξ̇nref

}
, (52)

where the gain cn > 0 is a design constant. Again we
choose to not directly cancel the cross-term k2n−3

k2
2n−4−z2

n−2
zn−2

in (51). This is because the presence of this term in the final
control law produces extremely large actuator commands as
|zn−2| → k2n−4. Such a choice for u yields

V̇n = −Wn−1 − 1
2

k2n−3cn−1z
2
n−2

k2
2n−4 − z2

n−2

+
k2n−3

k2
2n−4 − z2

n−2

zn−2zn−1 −
k2n−1cnz2

n−1

k2
2n−2 − z2

n−1

(53)

The same trick to dominate the cross-term, as detailed in
Step 3, is again needed here in order to make V̇n negative-
definite. As this is the final design step, there is no need to

split the term −k2n−1cnz2
n−1

k2
2n−2−z2

n−1
. Thus, if we choose

cn−1 ≥ k2
2n−2

[k2n−4αzn−2 ]2
+

1
2
, (54)

k2n−1cn

k2
2n−2

≥ 1
2

k2n−3

k2
2n−4 − [k2n−4αzn−2 ]2

, (55)

where αzn−2 ∈ (0,
√

2) is a constant. Then by following
similar arguments detailed in Step 3, we have

V̇n(ξ1, z1, ..., zn−1) ≤ −Wn(ξ1, z1, ..., zn−1), (56)

which is negative-definite in the set S = {ξ1 ∈ R, |z1| <
k2, ..., |zn−1| < k2n−2}. The function Wn−1 is defined as

Wn−1 = Wn−2 +
1
2

k2n−3cn−1z
2
n−2

k2
2n−4 − z2

n−2

− k2n−3

k2
2n−4 − z2

n−2

zn−2zn−1 +
k2n−1cnz2

n−1

k2
2n−2 − z2

n−1

,

(57)

and is positive-definite inside the same set S.
The last state in the cascade, ξn, is now bounded by virtue

of (25) since both zn−1 and ξnref
are bounded.

Remark 2.1: The constraints on the design constants, that
is (36), (42), ..., (54), and (55), are analytically derived from
the worst case scenario. Numerical determination of those
constants, based on the system’s CLF and its derivative,
reveals that the actual constraints on them are much less
stringent. This can be observed in the simulation results later
on.

Remark 2.2: It is interesting to note that if the functions
1

a(ξ) and b(ξ) are bounded with bounded first derivatives
for all ξ, then the control u, as defined in (52), is bounded
in both magnitude and rate. This means that the algorithm
detailed above is potentially applicable to systems with
bounded controls and control rates as well as those with
state constraints, or both.

5) The Closed-loop System: The closed-loop system with
control given by (52) expressed in the error co-ordinates is
as follows
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ̇1

ż1

ż2

...
żn−2

żn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−A11 z1 0 · · · 0 0

−A21 −c2z1 z2 · · · 0 0

0 0 −c3z2 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · −cn−1zn−2 zn−1

0 0 0 · · · 0 −cnzn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(58)

where

A11 = c1 arctan(ξ1)

A21 =

(
k2
2 − z2

1

)
k3

[
k1 arctan(ξ1) +

k1ξ1

1 + ξ2
1

]

Theorem 2.3: Consider system (3) in domain D defined
by

D = {ξ1 ∈ R, zi ∈ R : |zi| < k2i, i = 1, ..., n − 1} (59)

The closed-loop system (58) with static state feedback
control u given by (52), and the design constants tuned in
accordance with (36), (42), ..., (54), and (55), is:

i) Domain globally asymptotically stable in U .
ii) The control u is continuous in D.

Proof:
Conclusion i) The control Lyapunov function for the

closed-loop system (58), Vn(ξ1, z1, ..., zn−1), is continuous,
and positive definite, see (49), in the domain D = {ξ1 ∈ R,
zi ∈ R : |zi| ≤ εzi

< k2i, i = 1, ..., n − 1}. In addition,
Vn → ∞ as |ξ1| → ∞, |zj−1| → k2j−2. Its derivative,
V̇n(ξ1, z1, ..., zn−1), is negative-definite in the same domain
D when (36), (42), ..., (54), and (55) are satisfied. Thus, any
trajectory starting from inside domain D will asymptotically
converge to the origin.

Conclusion ii) comes directly from our construction of the
control signal u, see (52).

III. STATE BOUNDS AND CONTROL TUNING

The goal of the control design is to obtain a controller that
exploits the maximum range of state variation that is allowed
while guaranteeing the state constraints are respected. The
controller derivation provided a set of constraints on the error
coordinates that depend on the controller parameters {ki, ci}.
In practice, it is desirable that system states approach their
hard bounds during the evolution of the system to ensure best
performance of the closed-loop system. An important aspect
of the proposed design is that choosing {ki, ci} parameters
that are self-consistent is a straightforward matter of satisfy-
ing a set of mutual constraints (36), (42), ..., (54), and (55).
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The remaining task required is to relate the constraints on
error coordinates back to constraints on the state coordinates.

The domain constraints obtained as a function of the
proposed control design yield a set of conditions on the error
variables

|zi| = |ξi+1 − ξ(i+1)ref
| < k2i (60)

The reference trajectories, ξ(i+1)ref
, are defined as alge-

braic functions of the error coordinates, system states and
controller parameters. It is a straight forward exercise to
obtain worst case over-bounds for the norms of the reference
trajectories. Following from these bounds it is possible to
obtain a set of non-linear bounds {X1, X2, . . . , Xn} for the
state evolution in terms of the control parameters

|ξ2(t)| ≤ |z1(t)| + |ξ2ref
(t)|

< k2 +
π

2
c1 =: X1 (61)

|ξ3(t)| ≤ |z2(t)| + |ξ3ref
(t)|

< k4 + c2k2 + c1X1 +
k1k

2
2 (π + 1)
2k3

=: X2 (62)

...

|ξn(t)| ≤ |zn−1(t)| + |ξnref
(t)|

< k2n−2 + |ξnref
(t)| =: Xn−1 (63)

These bounds are defined recursively in the sense that X2

depends on X1, X3 on X2 and X1, etc. Thus, for a given set
of parameters it is straight forward to compute worst case
bounds on the system states. From the point of view of the
control design we think of the worst case state constraints
as a non-linear function of the controller parameters

Z := (k1, . . . , k2i, c1, . . . , cn)
X := X(Z), X = (X1, . . . , Xn)

The goal of tuning the control parameters is a multi-criteria
constrained optimisation problem:

Find controller parameters Z, subject to constraints
(36), (42), ..., (54), and (55) that maximises the
multi-criteria cost function X(Z).

Although this constrained optimisation problem is difficult
it is quite tractable using modern numerical optimisation
algorithms. (Consider trying to solve the original constrained
nonlinear control problem using optimal control techniques.)
An important property of the proposed methodology is that
it is easy to find feasible values for the controller parameters
Z by choosing very small values for those parameters. The
nice algebraic form of the constraints (36), (42), ..., (54), and
(55) is crucial in this process.

Remark 3.1: To simplify the optimisation procedure, it is
possible to consider a single cost criterion

Φ(Z) := XT WX, (64)

where W > 0 is a positive-definite weight matrix.
The approach taken to tune the controller parameters

guarantees that the achieved bounds are optimised to ensure
that they are tight worst case bounds. It is clear that some of
the arguments used to estimate the bounds on the reference

trajectories, ξ(i+1)ref
, lead to sub-optimal bounds on the

system states. However, in general, it is expected that the
achieved closed-loop state bounds will be reasonably close
to those obtained using optimal control design. Thus, given
a good solution to the optimisation problem, the domain
of validity D in Theorem 2.3 is a large subset of the
possible domain of validity. The aggressiveness of the barrier
functions will govern how abruptly the state constraints are
applied during the closed-loop evolution of the system.

IV. SIMULATIONS

Simulations for a simple 4th-order integrator cascade are
presented to support our results. The system’s equations of
motion are given by

ξ̇1 = ξ2

...

ξ̇4 = u (65)

The constraints on the system’s states are as follows

ξ2 ≤ 2.5, ξ3 ≤ 12, ξ4 ≤ 700 (66)

The design constants are numerically tuned as follows

c1 =
0.5
π

, c2 = 1, c3 = 50, c4 = 1, k1 = 1, k2 = 2,

k3 = 3, k4 = 5.61, k5 = 1, k6 = 354.5, k7 = 10

The closed-loop system is simulated in Matlab/Simulink
using the fixed step Dormand-Prince solver option with a
step size of 0.005.

Figures 1 and 2 clearly show that ξ2, ξ3, and ξ4 all
remain within the constraints expressed by (66), irrespective
of the initial condition. Note the ramp-like response of the
system which provides a perfect example of how a system
with velocity constraints, such as that of non-acrobatic and
non-fighter types of aircraft, should respond to a change-
in-position command. Also note the near optimal velocity
obtained, ξ2, which can be pushed closer to its true bound
by further tweaking the design constants. This is where
backstepping is most proficient as it can provide the high
gains required to push the system states as close to their
maximum limits as possible for optimal reasons.

V. CONCLUSIONS

The problem of stabilization for a class of feedback
linearizable systems with state constraints has been consid-
ered. Such systems are very common in practice due to
physical/performance limitations. The main contribution of
this paper is the extension of the backstepping methodology
to asymptotically stabilise such systems. Future research will
focus on extending the proposed approach to a more general
class of nonlinear systems.
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Fig. 1. Closed-loop system response with initial condition:
ξ1(0) = −10, ξ2(0) = −1.5, ξ3(0) = −0.05, ξ4(0) = −2.5
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Fig. 2. Closed-loop system response with initial condition:
ξ1(0) = −100, ξ2(0) = 1.5, ξ3(0) = −4, ξ4(0) = −50
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