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Abstract—We propose a model reduction algorithm which
combines the SVD and Krylov-based techniques. It is a two-
sided projection method where one side carries the SVD
(Gramian) information and the other side the Krylov in-
formation. While the SVD-side depends on the observability
gramian, the Krylov-side is obtained via iterative rational
Krylov steps. The reduced model is asymptotically stable
and matches the moments of the original system at the
mirror images of the reduced system poles; hence it is the
best H2 approximation among all reduced models having
the same reduced system poles. Numerical results proves the
effectiveness of the proposed approach.

I. INTRODUCTION

In this paper, we consider a single-input/single-output

(SISO) linear time invariant (LTI) system G(s) given in
state space form as:

G(s) :
{

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t),

� (1)

G(s) :=
[

A B
C 0

]
,

where A ∈ R
n×n, B ∈ R

n, and CT ∈ R
n. In (1),

x(t) ∈ R
n is the state, u(t) ∈ R is the input, and y(t) ∈ R

is the output ofG(s). The transfer function ofG(s) is given
by G(s) = C(sI − A)−1B. Following traditional abuse
of notation, we note that both the underlying dynamical

system and its transfer function are denoted by G(s). In
the sequel, we will assume that the full-order model G(s)
is asymptotically stable, i.e. Real(λi(A)) < 0 for i =
1, . . . , n; and is minimal, i.e. both reachable and observable.
On the other hand, we call a dynamical system stable, if
it has no poles in the right-half plane but has poles on the

imaginary axis.

In many applications; see [26] for a recent collection of

such benchmark problems, the system dimension n is quite
large, while the number of inputs m and outputs p usually
satisfy m, p � n, making the computations infeasible due
to memory, time limitations, and numerical ill-conditioning.

The goal of model reduction is, then, to produce a much

smaller order system Gr(s) with state-space form:

Gr(s) :
{

ẋr(t) = Arxr(t) + Bru(t)
yr(t) = Crx(t),

� (2)

Gr(s) :=
[

Ar Br

Cr 0

]
,

S. Gugercin is with Department of Mathematics, Virginia Tech., Blacks-
burg, VA, USA, gugercin@math.vt.edu.

where Ar ∈ R
r×r, Br ∈ R

r, and CT
r ∈ R

r (with r � n),
such that the reduced systemGr(s) will have approximately
the same response (output) as the original system to any

given input u(t), i.e. yr(t) approximates y(t) well.
In the sequel, we will construct the reduced order models

Gr(s) through projection. In other words, we construct
matrices V ∈ R

n×r and Z ∈ R
n×r such that ZT V = Ir

and the reduced order model Gr(s) in (2) is then obtained
as

Ar = ZT AV, Br = ZT B, and Cr = CV. (3)

The corresponding oblique projector is given by VZT .

The model reduction algorithms we will consider can be

put under three categories, namely

(a) SVD (Gramian) based methods,
(b) Krylov (moment matching) based methods, and
(c) SVD-Krylov based methods.
The Hankel singular values, which are the singular values

of the Hankel operator associated with G(s), are the key
elements of the SVD-based model reduction algorithms.

They play the same role as that of the singular values in the

optimal 2-norm approximation of constant matrices. Bal-
anced Truncation [32], [31], is the most common approach
in this category. When applied to asymptotically stable

systems, it preserves asymptotic stability and provides an

a priori bound on the approximation error. However, for
large-scale settings, exact balanced truncation is expensive
to implement because it requires dense matrix factoriza-

tions. The resulting computational complexity is O(n3) and
the storage requirements are O(n2). Therefore, in large-
scale settings, one uses approximate low-rank versions of

balanced truncation; see, for example, [21], [33], [27], [7],

which reduce the cost to O(n2) and the storage to O(nr).
For more detail on the efficient implementation of balancing

related model reduction in the large-scale settings, see [21],

[7], [8], [37], [1], [38]. Hankel Norm Approximation [15],
and Balanced Singular Perturbation Approximation [28] are
two other common model reduction techniques belonging

to this category.

Krylov based methods are aimed at matching the so-

called moments of G(s) at certain points in the complex
plane. The kth moment of G(s) at a point σ0 ∈ C is the

kth derivative of G(s) at σ0. Hence the goal is to construct

a reduced model Gr(s) that matches certain number of
moments of G(s) at selected interpolation points. Under
this category, we list the Arnoldi [5] and Lanczos proce-

dures [29], and rational Krylov method [16], [34], [12],
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[13]. Compared to the SVD-based methods, these methods

are numerically more reliable and can be implemented

iteratively; the number of computations is of O(nr2) and
the storage requirement is of O(nr). Also, the asymptotic
stability of the reduced model can be obtained through

restarting [17], [25]. But there exists no a priori error
bounds. However, recently in [20], [22], a global error
expression has been developed for Krylov-based methods.
Recently much research has been done to obtain a model

reduction algorithm which connects the SVD and Krylov

based methods; see, for example, [1], [25], [2], [14], [21],

[23]. The goal of these works is to combine the theoretical
features of the SVD based methods such as stability, global

error bounds, with the efficient numerical implementation

of the Krylov-based methods. In this paper, we propose a

model reduction algorithm which achieves this goal. The

method is a two-sided projection method where one side

reflects the Krylov part of the algorithm, and the other

reflects the SVD (Gramian) part. The reduced model is

asymptotically stable, solves a restricted H2 minimization

problem and matches certain moments. Numerical results

prove the effectiveness of the algorithm.

II. SOME PRELIMINARIES

As stated above, the proposed method carries both

gramian (SVD) and moment matching (Krylov) informa-

tion. Hence, in this section, we review some basic facts

related to these concepts.

A. System Gramians

Given a dynamical system G(s) as in (1), P and Q,
the solutions to the following continuous-time Lyapunov

equations

AP + PAT + BBT = 0, (4)

AT Q + QA + CT C = 0 (5)

are called reachability and observability gramians, respec-
tively. Under the assumption that G(s) is asymptotically
stable and minimal, P,Q ∈ R

n×n are unique symmetric

positive definite matrices. Gramians play a crucial role in

model reduction as balanced truncation amounts to finding

a state space transformation so that in this new co-ordinate

system, the two gramians are diagonal and equal. In this

transformed basis, states that are difficult to reach are

simultaneously difficult to observe. Then the reduced model

is simply obtained by truncating the states which are both

difficult to reach and observe.

B. Krylov-based model reduction

Given G(s) as in (1), the moment matching problem is
to find a reduced model Gr(s) that interpolates G(s) as
well as a certain number of its derivatives (called moments)

at some selected points σk in the complex plane. In other

words, the problem is to find Ar, Br, and Cr so that

(−1)j

j!
djG(s)

dsj

∣∣∣∣
s=σk

= C(σkI − A)−(j+1)B =

Cr(σkIr − Ar)−(j+1)Br =
(−1)j

j!
djGr(s)

dsj

∣∣∣∣
s=σk

for k = 1, . . . , K and for j = 1, . . . , J . Here K is the

number of interpolation points σk and J is the number of
moments to be matched at each σk. The quantity C(σkI−
A)−(j+1)B is called the jth moment of G(s) at σk. If

σk = ∞, the moments are called Markov parameters and
are given by CAjB for j = 0, 1, 2, . . .. The problem
described above is sometimes called the multi-point ra-

tional interpolation problem. In the projection framework,

i.e. Gr(s) is obtained as in (3), the problem was first
treated by Skelton et. al. in [10], [41], [40]. Grimme [16]
showed how one can obtain the required projection in a

numerically efficient way using the rational Krylov method

of Ruhe [34], hence showed how to solve moment matching

(multi-point rational interpolation) problem using Krylov
projection methods in an effective way.
For a matrix F ∈ C

n×n, a vector g ∈ C
n, and a point

σ ∈ C, we define the Krylov space of index j:

Kj(F,g;σ) := Im([ g Fg F2g · · · Fj−1g ])
if σ = ∞

Kj(F,g;σ) := Im([ (σI − F)−1g · · · (σI − F)−jg ])
if σ �= ∞

The following theorem [16] shows how to solve the multi-

point rational interpolation problem by Krylov projection:

Theorem 1: [16] If

Im(V) = span [Kj1(A,B;σ1) · · · KjK
(A,B;σK)]

and Im(Z) =
Im

[KjK+1(A
T ,CT ;σK+1) · · · Kj2K

(AT ,CT ;σ2K)
]

with ZT V = Ir, then the reduced order modelGr(s) in (2)
matches jk number of moments ofG(s) at the interpolation
point σk for k = 1, . . . , 2K, i.e. Gr(s) interpolates G(s)
and its first jk − 1 derivatives at σk.

Theorem 1 states that for Krylov-based model reduction, all

one has to do is to construct matrices V and Z as above.
Efficient implementation of the rational Krylov method can

be found in [16]; for more details on Krylov-based model

reduction, see [12], [16], [20], [3], [4].

III. AN ITERATIVE SVD-KRYLOV ALGORITHM

As mentioned above, we will construct the reduced

model Gr(s) using an oblique projection as in (3). For the
proposed algorithm, the matrix Z will have the following
specific form:

Z := QV(VT QV)−1 (6)

where Q is the observability gramian as defined in (5) and
V spans a certain rational Krylov subspace as in Theorem 1.
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Choice of V will be explained below. Clearly, ZT V = Ir,

as desired. Note that since Q is symmetric, (VT QV)−1 =
(VT QV)−T . Hence Gr(s) is given by:

Gr(s) =
[

Ar Br

Cr 0

]

=
[

(VT QV)−1VT QAV (VT QV)−1VT QB
CV 0

]
(7)

Obviously, the quality of the approximant Gr(s) critically
depends on the choice of the rational Krylov subspace V.
What interpolation points (shifts) σk should one choose

to form V? Choice of interpolation points is the most
crucial question in Krylov-based model reduction. Until

very recently, selection of interpolation points has been

usually an ad-hoc process. A systematic way of choosing

the shifts has been proposed by Gugercin and Antoulas

[22], [20]. Even though this selection strategy worked quite

efficiently as shown in [22], [20], it is not an optimal choice.

In this note, we will choose the interpolation points

and, hence, construct V based on the following important
theorem, an extension of Theorem 3, p. 86 in Gaier’s

monograph [11] to continuous time.

Theorem 2: Given a stable SISO transfer function G(s)
as in (1), and fixed stable reduced poles α1, . . . , αr, define

Gr(s) :=
β0 + β1s + · · · + βr−1s

r−1

(s − α1) . . . (s − αr)
.

Then ‖G − Gr‖H2
is minimized if and only if

G(s) = Gr(s) for s = −ᾱ1,−ᾱ2, . . . ,−ᾱr. (8)

Note that (8) can be rewritten as

G(s) = Gr(s) for s = −α1,−α2, . . . ,−αr.

since the poles, {αi} occur in complex conjugate pairs. The-
orem 2 states that if Gr(s) interpolates G(s) at the mirror
images of the poles of Gr(s), then Gr(s) is guaranteed
to be an optimal approximation of G(s) with respect to
the H2 norm among all reduced order systems having the

same reduced system poles {αi}, i = 1, . . . , r. See [39],
[24], [35], [30] and references there in, for general optimal
H2 approximatiom problem.

Theorem 2 classifies an optimal shift selection strategy:
Interpolation points as the mirror images of the poles of

Gr(s), i.e. as the mirror images of the eigenvalues of
Ar. However, one cannot simply set σi = −λi(Ar) since
these reduced poles are not known a priori. To achieve
this goal, we propose to run the rational Krylov method

successively; that is we run iterative rational Krylov steps

where at the (k+1)st step the interpolation points are chosen
as the mirror images of the eigenvalues of Ar from the

kth step. This forms the matrix V at each step. Then, the
corresponding Z matrix is obtained from the formula (6).
Here is a sketch of the proposed algorithm:

Algorithm 1: An Iterative SVD-Krylov Based Model
Reduction Method:

1) Make an initial shift selection σi, for i = 1, . . . , r.
2) V = Im

[
(σ1I − A)−1B, · · · , (σrI − A)−1B

]
3) Z = QV(VT QV)−1

4) while (not converged)

a) Ar = ZT AV,
b) σi ←− −λi(Ar) for i = 1, . . . , r
c) V = Im

[
(σ1I − A)−1B, · · · , (σrI − A)−1B

]
d) Z = QV(VT QV)−1

5) Ar = ZT AV, Br = ZT B, Cr = CV

6) Gr(s) =
[

Ar Br

Cr 0

]
.

It is clear that upon convergence, there holds σi =
−λi(Ar), for i = 1, . . . , r; and hence Gr(s) interpolates
G(s) at the mirror images of the reduced poles, as desired.
The following theorem lists the important properties of

the proposed algorithm:

Theorem 3: Given an asymptotically stable, reachable

and observable dynamical system G(s) =
[

A B
C 0

]
,

let the reduced model Gr(s) be obtained by Algorithm
1, Iterative SVD-Krylov Based Model Reduction Method.

Then, Gr(s) is asymptotically stable. Also, let α1, . . . , αr

denote the poles ofGr(s).Gr(s) interpolatesG(s) at −αi,

for i = 1, . . . , r, and therefore minimizes the H2 error∥∥∥G − Ĝ
∥∥∥
H2

among all rth order reduced models Ĝ(s)
having the same poles α1, . . . , αr.

PROOF: For brevity, we give only a sketch of the proof.

Obviously, without loss of generality, we can assume that

Q = I. Then, Z = V with VT V = Ir. Multiplying (5) by

VT from left and V from right proves that Ar is stable.

To prove that Ar is asymptotically stable, i.e., it has no
poles on the imaginary axis, we use contradiction. After

some manipulations, it follows that the assumption that

Ar has a pole on the imaginary axis leads to G(s) being
unreachable, hence a contradiction. The key observation in

proving this result is the fact Gr(s) interpolates G(s) at
−λi(Ar), i.e. the result depends on the specific way of
obtaining V through iterative rational Krylov steps in the
proposed algorithm. The second part of the theorem follows

from Theorem 2.

Some remarks are in order.

Remark 1: The reduced order models of the form (7)
have appeared in the work of Skelton et. al. in [10], [41],
[40]. In [41] and [40], the dual projection is used where Q
is replaced by P andV is chosen as the observability matrix
of order r leading to the so-called q-cover realizations. On
the other hand, in [10], these results were generalized to the

case where V were replaced by a rational Krylov subspace.
However, the proposed algorithm is different from these

approaches in the specific way we construct V, through
iterative rational Krylov steps. Indeed, in these works [10],

[41], [40], the reduced model was only guaranteed to be
stable, not asymptotically stable; i.e. Gr(s) might have a
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pole on the imaginary axis even though the original model

G(s) does not. However, the proposed approach guarantees
asymptotic stability of Gr(s). Moreover, optimality in the
H2 sense does not hold in [10], [41], [40], since this

optimality requires the interpolation condition (8).

Remark 2: In the discrete-time case, one can apply the
same projection in (7) with replacingQ by the observability
gramian of the corresponding discrete-time systems, i.e. in

the discrete-time case Q will be the solution to the Stein
equation AT QA + CT C = Q. This leads to the least-
squares model reduction approach of Gugercin and An-
toulas [23]. Unlike the continuous-time case, regardless of

the choice of V, Gr(s) is guaranteed to be asymptotically
stable, i.e., in this case, | λi(Ar) |< 1. These are the precise
reasons that [23] proposed, first, transforming a continuous-

time system into discrete-time, applying the least-squares

reduction in discrete-time, and then transforming back to

continuous time. However, in our proposed approach, we

will achieve asymptotic stability while staying in continuous

time. In addition, we will have the optimality in the H2

sense due to (8).

We have implemented Algorithm 1 for many different large-

scale systems. In each of our numerical examples, the

algorithm worked very efficiently and has always converged

after a small number of steps. Even though these results

suggested that Algorithm 1 is both efficient and reliable,

conditions that guarantee convergence are not yet fully

understood. This issue is currently under investigation.

A. Initial Shift Selection

For the proposed algorithm, the rate of convergence and

the final reduced model depend on the initial shift selection.

In this section, we discuss this issue. But, first, we would

like to state that for almost all of our simulations, a random
initial shift selection resulted in a satisfactory reduced
model.
It is clear that one should make the initial shift selection

in the region where the mirror images of the spectrum

of A lies. This comes from the fact that at the end,

we will have interpolation points as the mirror images

of the reduced system poles, and, as in the eigenvalue

computations, these reduces poles will somehow reflect the

original pole distribution. One can easily find the eigenval-

ues of A with the smallest and largest real and imaginary
parts. Then we suggest choosing shifts in this region. For

example, let the eigenvalues of A be all real and lie in

the interval [−10,−0.1]. Then one should make an initial
shift selection inside the region [0.1, 10]. We would like
to note that the task of computing the eigenvalues of A
with the smallest/largest real and imaginary part can be

achieved effectively using an implicitly restarted Arnoldi

(IRA) algorithm [36].

Another initialization strategy is the shift selection strat-

egy proposed by Gugercin and Antoulas in [22], [20].

Based on a H2 error expression, it was proposed choosing

σi = −λi(A) where λi(A) are the original poles with big

residuals. It is shown in [22], [20] that this selection of

interpolation points works quite well, hence one can initiate

Algorithm 1 with this selection. However, once more, we

state that, with an initial random choice, the proposed

method leads to reduced order models better than those

obtained by balanced truncation as shown in Section IV.

IV. NUMERICAL EXAMPLES

In this section, we apply the proposed algorithm to a

dynamical system and compare its performance with that

of balanced truncation. In this example, G(s) denotes
the FOM, Gbal(s) the reduced model due to balanced
truncation and GIQRK(s) the reduced model due to the
proposed algorithm, Algorithm 1.

A. CD Player Model

The original model, obtained by finite elements, describes

the dynamics between the lens actuator and the radial arm

position of a portable CD player. The model has 120 states,

i.e., n=120, with a single input and a single output. For

more details on this system, see [20], [3], [18], [9].

First, we examine convergence behavior of Algorithm

1. Towards this goal, we reduce the order to r = 6 and
r = 20 using Algorithm 1. Initial shifts are complex
and selected randomly in the rectangular region over
the complex plane with real part of the shifts bounded

by [−maxi (Real(λi(A))) ,−mini (Real(λi(A)))]
and the imaginary parts of the shitfs bounded

by [mini (Imag(λi(A))) ,maxi (Imag(λi(A)))], for

i = 1, . . . , n. At each step of the iteration, we compute the
H2 error due to the current estimate and plot this error

vs iteration index. The results are shown in Figure 1. The

figure illustrates that for both cases r = 6 and r = 20
(1) at each step of the iteration, the H2 norm of the error

is reduced and (2) The algorithm converges after a small
number of step, 3 steps for these cases. We note that these
properties seem to be valid in general, and as stated before

are under investigation.

0 1 2 3 4 5 6 7 8 9
10

−1

10
0

10
1

Evolution of the H2 error

k: Number of the iterations

 ||
 G

 −
 G

r ||
2

r=20
r=6

Fig. 1. H2 norm of the error system vs the number of iterations for CD
Player Model
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Next, we compare the performance of Algorithm 1 with

that of balanced truncation. Recall that balanced truncation

is well known as leading to small H∞ and H2 error

norms, see [3], [18]. Using both balanced truncation and

the proposed approach, we reduce the order to r as r varies
from 2 to 30; and for each r value, we compare the H2

and H∞ error norms due to balanced truncation and due
to Algorithm 1. For Algorithm 1, the initial interpolation

points are chosen randomly as explained above. Figure 2

shows the H2 errors vs r. It is clear that after r = 18, the
proposed algorithm leads to a smaller H2 error and hence

outperforms balanced truncation. Indeed, this is true for all

the r values as shown in Figure 3. This figure depicts the
difference between the H2 errors due to two algorithms, i.e.

depicts ‖G(s) − Gbal(s)‖H2
− ‖G(s) − GIQRK(s)‖H2

vs

r. As one can see, the H2 error for balanced truncation is

always bigger. Hence, the proposed algorithm consistently

leads to smaller H2 error. We would like note that this

is achieved by a random initial shift selection. We would

like to also note that we achieve this better performance

by solving only one Lyapunov equation. Since the iteration

converges in a small number of steps, the cost due to the

Krylov side is small; overall cost of the proposed method

is about the half of the cost of the balanced truncation.

5 10 15 20 25 30

10
−1

10
0

10
1

10
2

H
2
 norm of the error system vs the reduced order

r: order of the reduced system

 ||
 G

 −
 G

r ||
2

|| G − G
IQRK

||
2

|| G − G
bal

||
2

Fig. 2. H2 norm of the error system vs r for CD Player Model

We make the same analysis for theH∞ error as well.H∞
error vs the reduced order r for both methods are plotted
in Figure 4, and the difference between the H∞ errors, i.e.
‖G(s) − Gbal(s)‖H∞−‖G(s) − GIQRK(s)‖H∞

is plotted

in Figure 5. These figures show that Algorithm 1 yields

satisfactory H∞ performance as well, . However, unlike

the H2 case, there are some r values for which balanced
truncation is slightly better. Even though the algorithm

has optimality in the H2 sense, good H∞ performance is
expected since as recently shown in [6], moment matching

at the mirror images of the reduced system poles is the right

choice for the H∞ performance as well.

5 10 15 20 25 30

10
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10
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10
−2

10
−1

10
0

10
1

|| 
G

 −
 G
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l|| 2 −

 ||
 G

 −
 G

IQ
R

K
|| 2

r: order of the reduced system

Difference betwwen || G − G
bal

||
2
 and || G − G

IQRK
||

2

Fig. 3. ‖G(s) − Gbal(s)‖H2
−‖G(s)−GIQRK(s)‖H2 vs r for CD

Player Model
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 norm of the error system vs the reduced order

r: order of the reduced system

 ||
 G

 −
 G

r ||
∞

|| G − G
IQRK

||∞
|| G − G

bal
||∞

Fig. 4. H∞ norm of the error system vs r for CD Player Model
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Fig. 5. ‖G(s) − Gbal(s)‖H∞ − ‖G(s) − GIQRK(s)‖H∞ vs r for
CD Player Model
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V. CONCLUSIONS

We have proposed a model reduction algorithm which

combines the SVD and Krylov-based methods. It is a

two-sided projection method where one side carries the

SVD (Gramian) information and the other side the Krylov

information. Krylov part of the projection is obtained

via iterative rational Krylov steps. The reduced model is

asymptotically stable and matches the moments of the

original system at the mirror images of the reduced system

poles; hence it is the best H2 approximation among all

reduced models having the same poles. Numerical results

proves that the method is very effective and yields results

better than balanced truncation. Even though the proposed

approach has always been observed to converge, this issue

is still under investigation. Also, a modified version of the

proposed approach is currently under investigation to solve

the optimalH2 problem, not only the restrictedH2 problem.
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