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Abstract— We introduce a general framework for treating
channels with memory and feedback. First, we generalize
Massey’s concept of directed information [7] and use it to
characterize the feedback capacity of general channels. Second,
we present coding results for Markov channels. Third, a
dynamic programming framework for computing the capacity
of Markov channels with output feedback is presented.

I. INTRODUCTION

This paper presents a general framework for proving
coding theorems for channels with memory and feedback.
The problem of optimal channel coding goes back to Shan-
non’s original work [8]. The channel coding problem with
feedback goes back to early work by Shannon, Dobrushin,
and others [9], [3]. Because of increased demand for wireless
communication and networked systems there is a renewed
interest in this problem. Feedback can increase the capacity
of a noisy channel, decrease the complexity of the encoder
and decoder, and reduce latency.

Recently Verdú and Han presented a very general formu-
lation of the channel coding problem without feedback [12].
Specifically they provided a coding theorem for finite alpha-
bet channels with arbitrary memory. They worked directly
with the information density and provided a Feinstein-like
lemma for the converse result. Here we generalize that
formulation to the case of channels with feedback. In this
case we require the use of code-functions as opposed to
codewords. A code-function maps a message and the channel
feedback information into a channel input symbol.

We first convert the channel coding problem with feedback
into a new channel coding problem without feedback. The
channel inputs in this new channel are code-functions. Unfor-
tunately the space of code-functions can be quite complicated
to work with. We show that we can work directly with
the original space of channel inputs by making explicit the
relationship between code-function distributions and channel
input distributions. This relationship allows us to convert a
mutual information optimization problem over code-function
distributions into a directed information optimization prob-
lem over channel input distributions. We then show that
for Markov channels this latter optimization can be solved
using a dynamic programming formulation. The concept of
directed information was introduced by Massey [7].

Due to space limitations we do not present proofs here.
Complete details can be found in [11].
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II. DIRECTED INFORMATION

Let A and {At} be random elements in the finite set A.
Similarly let B and {Bt} be random elements in the finite
set B. Let AT and BT represent the T -fold product spaces.
We use “log” to represent logarithm base 2.

A stochastic kernel on B given A is a function PB|A(·|·)
such that: (1) PB|A(·|a) is a probability measure on B for
each fixed a ∈ A and (2) PB|A(b|·) is a measurable function
on A for each fixed b ∈ B. We will use the notation
P (dB | a) to represent the measure PB|A(· | a). We use
the notation X −Y −Z to denote that the random elements
X,Y, Z form a Markov chain.

Definition 2.1: We are given an ordered sequence of
random variables A1, ..., AN with joint measure PAN . Let
I = {i1, ..., iK} ⊆ {1, ..., N} where 1 ≤ i1 < i2 < ... <
iK ≤ N . Let Ic = {1, ..., N} \ I . Let AI = (Ai1 , ..., AiK

).
Define AIc

similarly. Then the directed stochastic kernel of
AI with respect to AIc

is

�PAI |AIc (dAI | aIc

) =
K⊗

k=1

PAik
|Aik−1(dAik

| aik−1).

For each aIc

the directed stochastic kernel
�PAI |AIc (dAI | aIc

) is a well defined measure. For J ⊂ I it
is generically true that

∑
aI\J∈AI\J

�PAI |AIc (aI\J , aJ | aIc

)
�= �PAJ |AIc (aJ | aIc

). For example, given P (dA1, dA2, dA3)
with the obvious time ordering:

∑
a1∈A

�P (a1, a3 | a2)
=

∑
a1∈A (P (a3 | a1, a2)P (a1)) . This does not equal

P (a3 | a2) = �P (a3 | a2) unless A1 − A2 − A3 forms a
Markov chain.

Definition 2.2: The directed information is defined as

I(AI → AIc

) = D(PAI ,AIc | �PAI |AIc PAIc ) (1)

where D(· | ·) is the divergence and PAI ,AIc (dAI , dAIc

) =
�PAIc |AI (dAIc | aI) ⊗ �PAI |AIc (dAI | aIc

) and
�PAI |AIc PAIc (dAI , dAIc

) = �PAI |AIc (dAI | aIc

) ⊗
PAIc (dAIc

).
We can recover Massey’s definition of directed informa-

tion [7] by applying definition 2.2 to AI = AT and AIc

=
BT with time-ordering: A1, B1, A2, .... Then I(AT → BT )
=

∑T
t=1 I(At; Bt | Bt−1). Unlike the chain rule for mutual

information the superscript on A in the summation is “t”
and not “T”. From definition 2.2 one can easily show:
I(AT → BT ) =

E

[
log

PAT |BT (AT | BT )
�PAT |BT (AT | BT )

]
= E

[
log

�PBT |AT (BT | AT )
PBT (BT )

]
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The first equality shows that the directed information is the
ratio between the posterior distribution and a “causal” prior
distribution.

Note that I(AT ;BT ) = E
[
log

�P (BT | AT )�P (AT | BT )
P (BT )P (AT )

]
=

I(AT → BT ) + I(BT → AT ). If there is no feedback
then At − At−1 − Bt−1 forms a Markov chain. Hence
I(BT → AT ) =

∑T
t=1 I(At;Bt−1 | At−1) = 0. There is no

“information” flowing from the receiver to the transmitter.
We can conclude that I(AT ;BT ) ≥ I(AT → BT ) with
equality if and only if there is no feedback [7].

III. CHANNELS WITH FEEDBACK

Here we formulate the feedback channel coding prob-
lem. A channel is a family of stochastic kernels
{P (dBt | at, bt−1)}T

t=1 where T may be infinity. These chan-
nels are nonanticipative because the conditioning includes
only at, bt−1. A message set is a set W = {1, ...,M}.
A channel code-function is a sequence of T deterministic
measurable maps {ft}T

t=1 such that ft : Bt−1 → A which
takes bt−1 	→ at. Let fT = {ft}T

t=1. Denote the set of
all code-functions by FT = {fT : fT is a code-function}.
A channel code or encoder, is a set of M channel code-
functions denoted by fT [w], w ∈ W . For message w at time
t with channel feedback bt−1 the channel encoder outputs
ft[w](bt−1). A channel code without feedback, is a set of M
channel codewords denoted by aT [w], w ∈ W . For message
w at time t the channel encoder outputs at[w] independent
of the past channel outputs bt−1. A channel decoder is a
map g : BT → W taking bT 	→ w. The decoder waits till
it observes all the channel outputs before reconstructing the
input message.

To compute the different “information” mea-
sures we need to determine the joint measure:
PAT ,BT (dAT , dBT ) =

⊗T
t=1PAt|At−1,Bt−1(dAt|at−1, bt−1)

⊗ PBt|At,Bt−1(dBt|at, bt−1). To compute the joint measure
we need to specify the kernels {P (dAt | at−1, bt−1)}T

t=1.
These kernels are determined by specifying an encoder.

A. Interconnection of Code-Functions to the Channel

Now we are ready to interconnect the pieces: channel,
code-functions, encoder, and decoder. We follow Dobrushin’s
program and define a joint measure over the variables of
interest that is consistent with the different components [4].
We will define a new channel without feedback that connects
the code-functions to the channel outputs.

Let PF T be a distribution on FT . For example PF T

may be a distribution that places mass 1/M on each of
M different code-functions. Given a distribution on code-
functions PF T , a channel {P (dBt | at, bt−1)}T

t=1, and the
deterministic relations at = ft(bt−1) we need to con-
struct a new channel that interconnects the random vari-
ables FT to the random variables BT . Call this channel
{Q(dBt | f t, bt−1)}T

t=1. We use “Q” to denote the new
joint measure Q(dFT , dAT , dBT ) that we will construct.
The following three reasonable properties should hold for
our new channel.

Definition 3.1: A measure Q(dFT , dAT , dBT ) is consis-
tent with a code-function distribution PF T , the relations
at = ft(bt−1), and channel {P (dBt | at, bt−1)}T

t=1 if

(1) There is no feedback to the code-functions in the new
channel: The measure on FT is chosen at time 0. Thus
it cannot causally depend on the Bt’s. Specifically we
require that Ft−F t−1−Bt−1 be a Markov chain under
Q. Thus Q(dFt | F t−1 = f t−1, Bt−1 = bt−1) =
P (dFt | f t−1) Q − a.s.

(2) The channel input is a function of the past outputs: For
each t, At = Ft(Bt−1) Q − a.s.

(3) The new channel preserves the properties of the under-
lying channel: Q(dBt | F t = f t, At = at, Bt−1 =
bt−1) = P (dBt | at, bt−1) Q − a.s.

Next we show there exists a unique consistent measure Q.
Lemma 3.1: Given PF T , the channel

{P (dBt | at, bt−1)}T
t=1, and the relations at = ft(bt−1)

there exists a unique consistent measure Q(dFT , dAT , dBT )
on FT × AT × BT . Furthermore the channel from FT to
BT for each t = 1, ..., T is determined Q-a.s.:
Q(dBt|F t = f t, Bt−1 = bt−1) = P (dBt|f t(bt−1), bt−1)
A distribution PW on W induces a measure PF T on FT :
Corollary 3.1: A distribution PW on W , a channel code

{fT [w]}M
w=1, and channel {P (dBt|at, bt−1)}T

t=1 uniquely
define a measure Q(dW, dAT , dBT ) on W ×AT × BT .

B. Channel Codes and Channel Capacity

Let the distribution PW on the message set W be the
uniform distribution.

Definition 3.2: A (T, M, ε) channel code over time hori-
zon T consists of M code-functions, a channel decoder
g, and an error probability satisfying: 1

M

∑M
w=1 Pr(w �=

g(bT ) | w) ≤ ε. A (T, M, ε) channel code without feed-
back over time horizon T consists of M codewords, a
channel decoder g, and an error probability satisfying:
1
M

∑M
w=1 Pr(w �= g(bT ) | w) ≤ ε.

Definition 3.3: R is an ε-achievable rate if, for every
δ > 0 there exists, for sufficiently large T , a (T,M, ε)
channel code with rate log M

T > R − δ. The maximum
ε−achievable rate is the called the ε−capacity and denoted
Co

ε . The operational channel capacity is defined as the
maximal rate that is achievable for all 0 < ε < 1 and is
denoted Co. Analogous definitions for Co,nfb

ε and Co,nfb

hold for the case without feedback.
The superscript “o” and “nfb” represent the words “opera-
tional” and “no feedback.”

Definition 3.4: A channel input distribution is a sequence
of kernels {P (dAt | at−1, bt−1)}T

t=1. A channel input
distribution without feedback is a channel input distribu-
tion with the further condition that for each t the kernel
P (dAt | at−1, bt−1) is independent of bt−1. (Specifically
P (dAt | at−1, bt−1) = P (dAt | at−1, b̃t−1) ∀bt−1, b̃t−1.)

When computing the capacity of a channel it will turn
out that we will need to know the convergence properties of

the random variables 1
T log

PAT ,BT (AT ,BT )

�PAT |BT PBT (AT ,BT )
. This is the

normalized information density discussed in [12]. If there are

3214



reasonable regularity properties, like information stability,
then these random variables will converge in probability to
a deterministic limit. In the absence of any such structure
we are forced to follow Verdú and Han’s lead and define the
following “floor” and “ceiling” limits [12].

The limsup in probability of a sequence of random vari-
ables {Xt} is defined as the smallest extended real number
α such that ∀ε > 0 limt→∞ Pr[Xt ≥ α + ε] = 0. The
liminf in probability of a sequence of random variables {Xt}
is defined as the largest extended real number α such that
∀ε > 0 limt→∞ Pr[Xt ≤ α − ε] = 0.

Let�i(aT ; bT ) = log
PAT ,BT (aT ,bT )

�PAT |BT PBT (aT ,bT )
. For a sequence of

joint measures { PAT ,BT }∞T=1 let I(A → B) =
lim infin prob

1
T
�i(AT ;BT ) and I(A → B) =

lim supin prob
1
T
�i(AT ;BT ).

Lemma 3.2: For a sequence of joint measures
{PAT ,BT }∞T=1 we have I(A → B) ≤
lim infT→∞

1
T I(AT → BT ) ≤ lim supT→∞

1
T I(AT → BT ) ≤ I(A → B).

Let DT = {{P (dAt | at−1, bt−1)}T
t=1} be the

set of all channel input distributions. Let Dnfb
T =

{P (dAt | at−1, bt−1)}T
t=1} be the set of all channel input

distributions without feedback. We now define the mutual
information optimization problems. For finite T let CT =
supDT

1
T I(AT → BT ) and Cnfb

T = sup
Dnfb

T

1
T I(AT →

BT ) = sup
Dnfb

T

1
T I(AT ;BT ). For the infinite horizon

case let C = sup{Dt}∞
t=1

I(A → B) and Cnfb =
sup

{Dnfb
t }∞

t=1

I(A → B) = sup
{Dnfb

t }∞
t=1

I(A;B).
Verdú and Han proved the following theorem for the case

without feedback [12].
Theorem 3.1: For channels without feedback Co,nfb =

Cnfb.
In a certain sense we already have the solution to the cod-

ing problem for channels with feedback. Specifically lemma
3.1 tells us that the feedback channel problem is equivalent
to a new channel coding problem without feedback. This new
channel is from FT to BT and has channel kernels defined
in lemma 3.1. Thus we can directly apply theorem 3.1 to
this new channel.

This can be a very complicated problem to solve. We
would have to optimize the mutual information over distribu-
tions on code functions. The directed information optimiza-
tion problem can often be simpler. One reason is that we
can work directly on the original AT ×BT space and not on
the FT ×BT space. The second half of this paper describes
a stochastic control approach to solving this optimization.
In the next section, though, we present the feedback coding
theorem.

IV. CODING THEOREM FOR CHANNELS WITH FEEDBACK

Theorem 4.1: For channels with feedback Co = C.
We first give a high-level summary of the issues involved.

The converse part is straightforward. For any channel code
and channel we know by lemma 3.1 that there exists a unique
consistent measure Q(dFT , dAT , dBT ). From this measure

we can compute the induced channel input distribution
{Q(dAt | at−1, bt−1)}T

t=1. Now {Q(dAt | at−1, bt−1)}T
t=1 ∈

DT but it need not be the supremizing channel input dis-
tribution. Thus the directed information under the induced
channel input distribution may be less than the directed
information under the supremizing channel input distribution.
This is how we will show Co ≤ C.

For the direct part we take the optimizing channel input
distribution {P (dAt | at−1, bt−1)}T

t=1 and construct a distri-
bution on code-functions PF T . We then prove the direct part
of the coding theorem for the channel from FT to BT by
the usual techniques for channels without feedback. The next
lemma shows that the directed information measures are the
same for both the “FT − BT ” channel and the “AT − BT ”
channel.

Lemma 4.1: For every consistent joint measure
Q(dFT , dAT , dBT ) the following holds

QF T ,BT (FT , BT )
QF T QBT (FT , BT )

=
QAT ,BT (AT , BT )

�QAT |BT QBT (AT , BT )
Q − a.s.

hence I(FT ;BT ) = I(AT → BT ) for each finite T .
Furthermore, if given a sequence of consistent measures
{Q(dFT , dAT , dBT )}∞T=1 we have I(F ;B) = I(A → B).

Now we can prove the feedback channel coding theorem
4.1. We first prove the converse part. Then we prove the
direct part.

a) Converse Theorem: Choose a (T, M, ε) channel
code {fT [w]}M

w=1. Place a prior probability 1
M on each code-

function fT [w]. By corollary 3.1 this defines a consistent
measure Q(dW, dAT , dBT ). The following is a generaliza-
tion of the Verdú-Han converse [12].

Lemma 4.2: Every (T, M, ε) channel code satisfies ε ≥

QAT ,BT

(
1
T

log
QAT ,BT (AT , BT )

�QAT |BT QBT (AT , BT )
≤ 1

T
log M − γ

)

− 2−γT ∀γ > 0
Theorem 4.2: The channel capacity Co ≤ C.

b) Direct Theorem: We will prove the direct theorem
via a random coding argument. The following is a general-
ization of Feinstein’s lemma [5].

Lemma 4.3: Fix a time T and 0 < ε < 1. Fix a channel
{P (dBt | bt−1, at)}T

t=1. Then for all γ > 0 and channel
input distributions {P (dAt | at−1, bt−1)}T

t=1, there exists an
(T, M, ε) channel code for the channel that satisfies ε ≤

PAT ,BT

(
1
T

log
PAT ,BT (AT , BT )

�PAT |BT PBT (AT , BT )
≤ 1

T
log Mγ

)

+ 2−γT .
Theorem 4.3: All rates less than C are achievable.
By combining theorems 4.2 and 4.3 we can conclude

theorem 4.1. Specifically C is the feedback channel capacity.
It should be clear that if we restrict ourselves to channels
without feedback then we recover the original coding theo-
rem by Verdú and Han [12].

3215



V. MARKOV CHANNELS AND THE CANONICAL MARKOV

CHANNEL

In this section we formulate the Markov channel feedback
capacity problem. We then provide a channel coding theo-
rem. Finally we introduce the canonical Markov channel.

As before let A,B be spaces with a finite number of
elements representing the channel input and channel output,
respectively. Furthermore let S be a finite state space. Let
St, At, Bt be measurable random elements taking values in
S,A,B respectively.

There is a natural time-ordering on the random variables
of interest:

W,S1, A1, B1, S2, ..., ST , AT , BT , Ŵ (2)

First, at time 0 a message W is produced and the initial
state S1 drawn. The order of events in each of the T epochs
is described in (2). At beginning of t-th epoch the channel
input symbol At is placed on the channel by the transmitter,
then Bt is observed by the receiver, then the state of the
system evolves to St+1, and then finally the receiver feeds
back information to the transmitter. At the beginning of the
t + 1 epoch the transmitter uses the feedback information to
produce the next channel input symbol At+1. Finally at time
T , after observing BT , the decoder outputs the reconstructed
message Ŵ .

Definition 5.1: A Markov channel consists of an initial
state distribution P (dS1), the state transition stochastic
kernels {P (dSt+1 | st, at)}T−1

t=1 , and the channel output
stochastic kernels {P (dBt | st, at)}T

t=1. If the stochastic
kernel P (dSt+1 | st, at) is independent of at for each
t = 1, ..., T −1 then we say the channel is a Markov channel
without ISI (intersymbol interference.)
Note that we are assuming the kernels {P (dSt+1 | st, at)}
and {P (dBt | st, at)} are stationary (independent of time.)

In order to compute any “information” measure we will
need the joint measure:

P (dST , dAT , dBT ) =
T⊗

t=1

(P (dBt|st, at)

⊗P (dAt|st, at−1, bt−1) ⊗ P (dSt|st−1, at−1)).

To complete the description of the joint measure we
will need to interconnect a channel input distribution,
{P (dAt | st, at−1, bt−1)}, to the channel.

We will restrict the channel input distribution for the
Markov channel to be a sequence of stochastic kernels of the
form: {P (dAt | at−1, bt−1)}. Specifically, we only allow the
encoder access to channel output feedback. This will allow
us to use the coding results for the general channel discussed
in sections 3 and 4.

A. Coding Theorem for Markov Channels

One can convert any Markov channel into a general
channel.

Lemma 5.1: Given a Markov channel,
{P (dBt | st, at), P (dSt+1 | st, at)} we have �P (bT | aT )

=
∑

sT
�P (sT , bT | aT ) =

∑
sT

�P (sT | aT ) �P (bT | sT , aT ).
Here the directed probabilities are with respect to the
time-ordering given in (2).

If we have a Markov channel without ISI then
�P (bT | aT ) =

∑
sT P (sT ) �P (bT | sT , aT ).

Because we can convert any Markov channel with output
feedback into a general channel of the form studied earlier
in this paper we can define the operational channel capacity,
Co, for the Markov channel with feedback in exactly the
same way we did in definition 3.3. We can also use the same
definitions of capacity, C, as before. Thus we can directly
apply theorem 4.1 to prove:

Theorem 5.1: For Markov channels we have Co = C.

B. The Sufficient Statistic Πt and the Canonical Markov
Channel

Here we introduce the canonical Markov channel
associated with a given Markov channel. Comput-
ing I(At;Bt | Bt−1) requires knowing the measure
P (dAt, dBt). The state St does not show up explicitly in
I(At;Bt | Bt−1). We can estimate the state St from the
information in At−1, Bt−1. Define the sufficient statistics:
Πt(·) = PSt|(At−1,Bt−1)(· | At−1, Bt−1) ∈ P(S). Here
P(S) represents the space of all measures on S. Note that
statistic Πt depends on information from both the transmit-
ter and the receiver. Furthermore under any channel input
distribution St − Πt − (At−1, Bt−1) forms a Markov chain
for each t.

Lemma 5.2: There exists a function ΦΠ such that Πt+1 =
ΦΠ(Πt, At, Bt).

We now define the canonical Markov channel,
{P (dΠt+1 | πt, at), P (dBt | πt, at)}, associated with the
Markov channel {P (dSt+1 | st, at), P (dBt | st, at)}. By
lemma 5.1 we can convert this Markov channel into an equiv-
alent general channel {P (dBt | at, bt−1)}. For this channel
P (bt | at, bt−1) =

∑
st

P (bt | st, at) P (st | at, bt−1) =∑
st

P (bt | st, at) πt(st) = P (bt | πt, at). Thus
Bt − (At,Πt) − (At−1, Bt−1) forms a Markov chain.
The new state Πt evolves as:

P (πt+1 ∈ Ω | πt, at) =
∑

{bt such that ΦΠ(πt,at,bt)∈Ω}

P (bt | πt, at)

for any Borel measurable set Ω ⊂ P(S).
The next lemma shows that the use of {Πt} can simplify

the form of the directed information.
Lemma 5.3: I(FT → BT ) = I(AT → BT ) =∑T
t=1 I(At,Πt;Bt | Bt−1)

Proof: The first equality follows from lemma 4.1. The
second equality follows from noting that I(AT → BT ) =∑T

t=1 I(At;Bt | Bt−1) and

I(At;Bt | Bt−1) = I(At,Πt;Bt | Bt−1)
+I(At−1;Bt | Πt, At, B

t−1)
−I(Πt;Bt | At, Bt−1)

= I(At,Πt;Bt | Bt−1)
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Because Πt is a function of At−1, Bt−1 we see
that I(Πt;Bt | At, Bt−1) = 0. Because At−1 −
(Πt, At, B

t−1) − Bt is a Markov chain we see that
I(At−1;Bt | Πt, At, B

t−1) = 0. �
In summary, every Markov channel with feedback that

depends only on the channel outputs can be converted into
canonical Markov channel with state Πt. The canonical
Markov channel has the property that Πt is a function of
the channel inputs and channel outputs only. Any residual
“randomness” in St is captured by Πt.

Most existing results in the literature examine non-ISI
Markov channels. Note, though, that even if the original
Markov channel {P (dSt+1 | st, at)} does not have ISI it is
generically the case that the corresponding canonical Markov
channel {P (dΠt+1 | πt, at)} does have ISI. The channel
input distribution has two roles: transmitting information
about the message and probing the state of the channel. This
phenomena is well known in the theory of partially observed
stochastic control and is called the dual effect [2]. The ISI
facilitates probing of the state.

VI. MARKOV CHANNELS WITH OUTPUT FEEDBACK

Here we formulate the following optimization problem for
Markov channels as an infinite horizon average cost problem:
supD∞ lim infT→∞

1
T I(AT → BT ) =

sup
D∞

lim inf
T→∞

1
T

T∑
t=1

I(At,Πt;Bt | Bt−1). (3)

To compute I(At,Πt;Bt | Bt−1) we need to know the
measure: P (dΠt, dAt, dBt | bt−1) =

P (dBt | πt, at)⊗ P (dAt | πt, b
t−1)⊗ P (dΠt | bt−1). (4)

By lemma 5.2 we know that the pair Πt, B
t−1 is a function

of the encoder’s information pattern (At−1, Bt−1). Thus the
stochastic kernels {P (dAt | πt, b

t−1)} constitute a valid
channel input distribution.

To formulate the optimization in (3) as a stochastic control
problem we need to specify the state space, the control
actions, and the running cost. On first glance it may ap-
pear that the encoder should choose control actions of the
form P (dAt) based on its information pattern At−1, Bt−1.
From (4) we can see that this decision would only need
to based on Πt, B

t−1. Unfortunately we cannot write the
running cost in terms of actions of the form P (dAt). To
see this observe that the argument under the expectation in
I(At,Πt;Bt | Bt−1) = E

[
log P (Bt | At,Πt)

P (Bt | Bt−1)

]
can be written

as

log
P (bt | at, πt)
P (bt | bt−1)

= log
P (bt | at, πt)∫

P (bt | ãt, π̃t)P (dãt | π̃t, bt−1)P (dπ̃t | bt−1)
.

(5)
This depends on PAt|Πt,Bt−1(· | ·, bt−1) and not
PAt|Πt,Bt−1(· | πt, b

t−1).
To treat this issue we take the view that the decoder

chooses a control u(dA, dΠ) in the control space U =

P(A×P(S)). The space U is a Polish space (i.e. a complete,
separable metric space.)

At time t the decoder’s state is given by its information
pattern: (Bt−1, U t−1). The policy at time t is given by µt :
(bt−1, ut−1) 	→ ut(dAt, dΠt) ∈ U . Note that because the
encoder has access to bt−1 it too can compute the control
ut. The dynamics are given by

P
(
(bt, ut) | (bt−1, ut−1), ut

)
= P (bt | bt−1, ut)

=
∫

P (bt | at, πt, b
t−1, ut)P (dat, dπt | bt−1, ut)

=
∫

P (bt | at, πt)ut(dat, dπt)

The cost at time t is given by

ct

(
(bt−1, ut−1), ut

)
=

∫
P (dbt|πt, at)ut(dat, dπt) log

P (bt|at, πt)∫
P (bt|ãt, π̃t)ut(dãt, dπ̃t)

(6)
In order for this cost to be consistent with (4) and (5)
the decoder must choose a control action ut such that
the marginal ut(dΠt) = Pµ(dΠt | bt−1, ut−1). Here Pµ

represents the measure under the control policy {µt}. Note
that the only information in (bt−1, ut−1) relevant to choosing
the control ut is Pµ(dΠt | bt−1, ut−1). Thus we can simplify
the state of the stochastic control problem.

Denote the decoder’s estimate of the state of the canonical
Markov channel by: Γd

t (dΠt) = Pµ(dΠt | Bt−1, U t−1) ∈
P(P(S)). At time t the estimate Γd

t will be the simplified
state of our stochastic control problem. Thus the control law
can be rewritten as

µt : P(P(S)) → U taking γd
t 	→ ut(dAt, dΠt) ∈ U(γd

t )

where the control constraint is

U(γd) =
{
u(dA, dΠ) ∈ U : u(dΠ) = γd(dΠ)

}
.

Note that for each γd the control constraint space U(γd) is
Polish.

The following lemma ensures that Γd
t (·) is well defined

and can be determined independently of the policy {µt} in
place. That is Pµ(dΠt | bt−1, ut−1) = P (dΠt | bt−1, ut−1).

Lemma 6.1: There exists a function ΦΓd such that Γd
t+1 =

ΦΓd(Γd
t , Bt, Ut) for Ut ∈ U(Γd

t ). Thus P (dΠt | bt−1, ut−1)
can be determined independently of the policy in place.

For any Borel measurable set Ω ⊂ P(P(S)) and ut ∈
U(γd

t ) the dynamics are given by

P (γd
t+1 ∈ Ω | γd

t , ut)

=
∫
P (γd

t+1 ∈ Ω|γd
t , ut, bt, at, πt)P (dbt, dat, dπt|γd

t , ut)

(a)
=

∫
P (γd

t+1 ∈ Ω|γd
t , ut, bt)P (dbt|πt, at)ut(dat|πt)γd

t (dπt)

where (a) follows from lemma 6.1.
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Finally we redefine the running cost (6) for our simplified
state: c(γd

t , ut) =∫
P (dbt | πt, at)ut(dat, dπt) log

P (bt | at, πt)∫
P (bt | ãt, π̃t)ut(dãt, π̃t)

.

For any policy {µt} satisfying the control constraints
we see that equation (4) factors Pµ(dΠt, dAt, dBt | bt−1)
= P (dBt | πt, at) ⊗ Pµ(dAt | πt, b

t−1) ⊗ Pµ(dΠt | bt−1).
Let µt(bt−1) = (µ1, µ2(b1), ..., µt(bt−1)). Then
Pµ(dΠt | bt−1) = P (dΠt | bt−1, µt−1(bt−2)) and
Pµ(dAt | πt, b

t−1) =

µt(Pµ(dΠt | bt−1))(dAt | πt) = Pµ(dAt | πt, γ
d
t ) (7)

is a valid channel input distribution.
Thus under Pµ(AT , BT , UT ) we have

Eµ
[
c
(
Γd

t , µt(Γd
t )

)]
= Eµ

[∫
P (dbt | at, πt)µt(Γd

t )(dat, dπt)

× log
P (bt | at, πt)∫

P (bt | ãt, π̃t)µt(Γd
t )(dãt, dπ̃t)

]

= Eµ

[∫
P (dbt | at, πt)Pµ(dat, dπt | Γd

t )

× log
P (bt | at, πt)∫

P (bt | ãt, π̃t)Pµ(dãt, dπ̃t | Γd
t )

]

= I(At,Πt;Bt | Γd
t )

Finally by (7) we see I(At,Πt;Bt | Γd
t ) =

I(At,Πt;Bt | Bt−1).
In summary, at the end of the t − 1-th epoch the receiver

observes Bt−1 and feeds this back to the transmitter. At
the beginning of the t-th epoch the encoder computes Πt

and Γd
t and the decoder computes Γd

t . The pair (Πt,Γd
t )

can be viewed as the state of the encoder and Γd
t can be

viewed as the state of the decoder. The evolution of Γd
t and

Πt are described in lemmas 6.1 and 5.2 respectively. Both
the encoder and decoder know the policy {µt} and hence
both can determine the control action Ut(·, ·) = µt(Γd

t ). The
encoder, which has computed πt, then randomly draws an
At from the distribution Ut(dAt | πt) and places it on the
channel.

We now present the infinite horizon average cost verifica-
tion theorem. First note that the cost 0 ≤ c

(
γd

t , ut

) ≤ log |B|
is bounded. The state space P(P(S)) and the constrained
actions spaces U(γd) are all Polish.

Theorem 6.1: If there exists a bounded number V ∗, a
bounded function w : γd 	→ w(γd) ∈ IR, and a policy µ∗

achieving the supremum for each γd in the following average
cost optimality equation (ACOE):

V ∗+w(γd) = sup
u∈U(γd)

(
c(γd, u) +

∫
w(γ̃d)P (dγ̃d|γd, u)

)
(8)

then the supremizing µ∗ corresponds to the optimal channel
input distribution for the optimization given in (3) and V ∗

is the feedback capacity.

Proof: See theorems 6.2 and 6.3 of [1].
Presenting conditions for the existence of a solution to

the ACOE will take us too far afield. A good survey can
be found in [1]. Note that the ACOE, equation (8), can be
viewed as an implicit “single-letter characterization” of the
capacity of the Markov channel.

VII. CONCLUSION

In this paper we presented a general coding theorem for
channels with feedback. To prove this theorem we used
Massey’s concept of directed information. We showed the
equivalence of the channel with feedback to another channel
without feedback. We then examined the class of Markov
channels with output feedback. We showed that the problem
of feedback coding for Markov channels can be cast as a
partially observed optimal stochastic control problem. Con-
sequently one can now use the tools of exact and approximate
dynamic programming to compute the capacity of a large
class of Markov channels with feedback.
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