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Abstract— We establish summation-type conditions to en-
sure the uniform convergence of discrete-time systems, pa-
rameterized in the sampling time. The main results are
analogous to previous results obtained in the domain of
continuous-time systems and that we have referred to as “in-
tegral conditions”. The sufficient conditions that we present
here can also be interpreted as conditions for convergence of
series. Our main results are also useful for design of sampled-
data controllers via approximate models; for illustration, we
present two results on control design reminiscent of common
problems arising in identification and adaptive control.

I. INTRODUCTION

In general the analysis tools that are tailored for purely
continuous-time models and which aid in (continuous-time)
control design fail to guarantee the stability of the computer
controlled system that is, involving the sampler and holders
which introduce hybrid dynamics.

A prescriptive framework for control design for sampled-
data control systems has been introduced in [16], [17] and, re-
cently, extended to the case of systems of difference inclusions
in [14]. At the basis of this framework is the formulation of
parameterized discrete-time systems that is, whose dynamics
depend on the sampling period. Considering parameterized
systems is fundamental for different reasons: from a practical
viewpoint, approximate models are easily computed while ex-
act models are rarely available for nonlinear systems; besides,
parameterizing the models in the sampling period leads to more
general representations than models relying on fixed sampling
periods; from a theoretical viewpoint, relying on the framework
of [16], [17], [14] this allows to lay the conditions on the
approximate discrete-time models in order to conclude uniform
asymptotic stability (in a semi-global practical sense) of the
sampled-data system without knowledge of exact models.

In this paper we consider discrete-time systems parameter-
ized in the sampling time T that is, systems of the form:

xk+1 = FT (k, xk) (1)

where T ∈ (0, T ∗) for some T ∗ > 0. Our results establish
uniform global asymptotic stability of the origin based on so-
called “summability” conditions. Inscribed in the mentioned
framework, our main results are useful in design of sampled-
data control systems.

Such conditions are alternative to the well known Lya-
punov conditions, involving difference equations. Summability
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conditions are the discrete-time counterpart of the integral
conditions originally presented in [19, Appendix] for contin-
uous time systems and which establish uniform asymptotic
stability. An advantage of the summability conditions over
classical Lyapunov theory is that the appropriate conditions
may be easily inferred in particular cases where finding a strict
Lyapunov function may become considerably hard (e.g., in
adaptive control, tracking, time-varying stabilization, etc.). The
summability conditions presented here can also be regarded as
conditions for convergence of series.

We demonstrate the utility of our main lemmas by ad-
dressing the problem of studying the adaptive stabilization
of a discrete-time adaptive systems. The examples that we
present are reminiscent of the so-called speed-gradient sys-
tem (cf. [12], [2]) and the closed-loop system appearing in
Model Reference Adaptive Control (MRAC) (cf. [5], [4]).
However, as it will be clear from our analysis the results for
the continuous time case, which are well known, may not
be directly “transcripted” into the parameterized discrete-time
context. In particular the important property of strict positivity
of the continuous-time system is lost when applying the Euler
discretization.

The rest of the paper is organized as follows. In the following
section we introduce some notations and definitions that we use
throughout. In Section III we present our main results, both for
asymptotic and exponential stability. In Section IV we present
their application into the MRAC problem mentioned above and
we conclude with some remarks in Section V.

II. PRELIMINARIES

Throughout the paper we denote by Z the set of integer
numbers and by R the set of reals. |·| stands for the 1-norm
of vectors, i.e. |x| :=

∑
i |xi|. A function α : R≥0 → R≥0

is said to be of class K (α ∈ K), if it is continuous, strictly
increasing and zero at zero; α ∈ K∞ if, in addition, it is
unbounded. For an arbitrary r ∈ R we use the notation
�r� := max

z∈Z,z≤r
z. Given strictly positive real numbers L, T

we use the following notation:

�L,T :=
⌊

L

T

⌋
. (2)

The solution of system (1) at time k, starting at initial time
k◦ and emanating from the initial condition x◦ = x(k◦), is
denoted as φx

T (k, k◦, x◦) or φx
T if k◦, x◦ are clear from the

context.
In what follows, the qualifier “uniformly” refers to the initial

states and the initial continuous times t◦ := k◦T .
Definition 1 We say that system (1) is uniformly forward
complete (UFC), if there exist σ1, σ2 ∈ K∞ and T ∗, c > 0
such that for all k◦ ≥ 0, x(k◦) = x◦, with x◦ ∈ R

n, and
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T ∈ (0, T ∗) we have

|φx
T (k, k◦, x◦)| ≤ σ1(|x◦|) + σ2(T (k − k◦)) + c (3)

for all k ≥ k◦. �
Definition 2 The system (1) is uniformly semiglobally
bounded, i.e. USB, (resp. uniformly globally bounded UGB),
if there exist κ ∈ K∞ and c, such that for any ∆ > 0 there
exists T ∗ > 0 (there exists T ∗ > 0) such that k◦ ≥ 0,
x(k◦) = x◦ with |x◦| ≤ ∆ and T ∈ (0, T ∗) (x◦ ∈ R

n

and T ∈ (0, T ∗)) implies

|φx
T (k, k◦, y◦)| ≤ κ(|x◦|) + c , (4)

for all k ≥ k◦. �
Definition 3 The parameterized time-varying system (1) is:
(i) uniformly semiglobally stable, i.e. USS, (resp. uniformly
globally stable) if the bound in (4) holds with c = 0 ;
(ii) semiglobally practically uniformly asymptotically stable
(SP-UAS) if there exist κ ∈ K∞ and for any pair of positive
numbers (∆, ν) there exists T ∗ > 0 such that:

(a) the system is USS;
(b) for each σ > 0, there exists L > 0 such that

|φx
T (k, k◦, x◦)| ≤ max{σ, ν} (5)

for all k ≥ k◦ + �L,T , k◦ ≥ 0, all |x◦| ≤ ∆ and all
T ∈ (0, T ∗);
(iii) uniformly globally asymptotically stable (UGAS) if there
exists T ∗ > 0 such that:

(a) the system is UGS;
(b) for each σ > 0, there exists L > 0 such that

|φx
T (k, k◦, x◦)| ≤ σ ∀k ≥ k◦ + �L,T (6)

for all k◦ ≥ 0, all x◦ ∈ R
n and all T ∈ (0, T ∗);

(iv) semiglobally practically uniformly exponentially stable
(SP-UES) if for any pair of strictly positive real numbers
(∆, ν), there exist T ∗ > 0, κ, λ such that

|x◦| ≤ ∆ =⇒ |φx
T (k)| ≤ max{κ |x◦| e−λT (k−k◦), ν}

(7)
for all k ≥ k◦ ≥ 0, and all T ∈ (0, T ∗);
(v) uniformly globally exponentially stable (UGES) if there
exist T ∗ > 0, κ, λ such that for all x◦ ∈ R

n and all
k ≥ k◦ ≥ 0 it holds that |φx

T (k)| ≤ κ |x◦| e−λT (k−k◦). �

III. MAIN RESULTS

A. Conditions for UGAS

Our first lemma establishes uniform asymptotic stability for
the case when UGS can be established by other means (cf.
inequality (9) ).

Lemma 1 If system (1) is UGS and there exist: a constant
T ∗ > 0, a positive definite continuous function γ(·) and, for
each r, ν > 0 there exist βrν > 0 such that

T
∞∑

k=k◦

[γ(|φx
T (k)|) − ν] ≤ βrν (8)

for all k◦ ≥ 0, x◦ ∈ Br and T ∈ (0, T ∗) then, the origin is
UGAS. �
Proof. Since the system is UGS there exists α ∈ K∞ such that

max
k≥k◦

|φx
T (k)| ≤ α(|x◦|) (9)

for all k◦ ≥ 0, x◦ ∈ R
n and T ∈ (0, T ∗). We only need

to prove uniform global attractivity. This follows from the
following.
Claim 1 For any δ > 0 there exists L > 0 and k′ ∈ [k◦, k◦ +
�L,T ] such that |φx

T (k′)| ≤ δ.

Claim 2 Inequality (9) implies that for each σ there exists δ >
0 such that

|φx
T (k′)| ≤ δ =⇒ |φx

T (k)| ≤ σ ∀k ≥ k′ .

So we see that Claims 1 and 2 imply that for any r, σ > 0 there
exists L > 0 such that (5) holds.
Proof of Claim 1. Suppose the claim does not hold. Then, there
exists δ > 0 such that for all L > 0 and k′ ∈ [k◦, k◦ + �L,T ]
we have |φx

T (k′)| > δ. In other words, for all k ∈ Z≥k◦ ,
|φx

T (k)| > δ .
Let γm := γ(δ). Let ν := γm

2 generate βrν such that (8)
holds and let L := βrν

ν + T ∗. We obtain that βrν = (L −
T ∗)ν ≤ (L − T )ν. We also have that

|φx
T (k)| > δ , k ≥ k◦ =⇒

∞∑
k=k◦

γ(|φx
T (k)|) >

k◦+�L,T∑
k=k◦

γ(|φx
T (k)|) ≥

⎛
⎝k◦+�L,T∑

k=k◦

γm

⎞
⎠

= 2ν�L,T .

On the other hand,

k◦+�L,T∑
k=k◦

γ(|φx
T (k)|) =

k◦+�L,T∑
k=k◦

[γ(|φx
T (k)|) − ν] +

k◦+�L,T∑
k=k◦

ν

≤ βrν

T
+ �L,T ν .

So from the above we conclude that

2�L,T ν ≤
k◦+�L,T∑

k=k◦

γ(|φx
T (k)|) ≤ βrν

T
+ �L,T ν

≤ ν(L − T )
T

+ �L,T ν

< 2�L,T ν

which is a contradiction. 	
Proof of Claim 2. Inequality (9) implies that, for all k′ ≥ k◦,

max
k≥k′

|φx
T (k)| ≥ |φx

T (k)| ∀k ≥ k′ .

Given σ > 0 define δ := α−1(σ). If |φx
T (k′)| ≤ δ then it

follows, again from inequality (9), that

max
k≥k′

|φx
T (k)| ≤ σ

which implies that |φx
T (k)| ≤ σ for all k ≥ k′. 	

This completes the proof of the Lemma. �
B. Conditions for UGES

We show next that the conditions of Lemma 1 maybe
strengthened to guarantee exponential stability. Roughly, we
show that if the bound in (9) is assumed to hold with linear
gain and the bound in (8) holds with ν = 0 and γ(s) = sp,
exponential convergence follows.
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Lemma 2 If for system (1) there exist: p ≥ 1, T ∗ > 0, η > 0
and c such that for all k ≥ k◦, all x◦ and all T ∈ (0, T ∗),

max
k≥k◦

|φx
T (k)| ≤ η |x◦| (10)(

T
∞∑

k=k◦

|φx
T (k)|p

)1/p

≤ c |x◦| (11)

then,

|φx
T (k)| ≤ κ |x◦| e−λT (k−k◦) ∀ k ≥ k◦

where κ := max{ε, σ∗}, ε ≥ ηexp

(
L

cpp

)
, λ = 1/cpp and

σ∗ :=
ηc

(L − 1)1/p
exp

(
L

cp

)
< ∞ .

�
Proof . For each k ≥ k◦ define wk :=

∞∑
i=k

|φx
T (i)|p. The

bounds in (10), (11) imply respectively, that for any k ≥ k◦ ≥
0 we have

max
i≥k

|φx
T (i)|p ≤ ηp |φx

T (k)|p (12)

wk ≤ cp

T
|φx

T (k)|p . (13)

From (13) we have

wk+1 − wk ≤ −Twk

cp
∀ k ≥ 0 (14)

hence wk tends exponentially fast to zero (see e.g. [16]) more-
over, defining λw := 1/cp we have

wk ≤ w◦e−λwT (k−k◦) , w◦ := wk◦ . (15)

Next, we observe that for any integer ∆ > 0 we have

∆ |φx
T (k + ∆)|p ≤

k+∆∑
�=k

max
i≥�

|φx
T (i)|p . (16)

Let L > 0 in (2) be such that L ≥ cp + 1, hence �L,T ≥ cp

T
.

Define ∆ := �L,T then, using (12) and (16) we obtain

�L,T |φx
T (k + �L,T )|p ≤ ηp

k+�L,T∑
i=k

|φx
T (i)|p ≤ ηpwk .

(17)
Using (15) in the inequality above and then, (13) with k = k◦,
we get that

|φx
T (k + �L,T )|p ≤ ηpcp

T�L,T
|x◦|p e−λwT (k−k◦)

≤ ηpcp

L − 1
|x◦|p e−λwT (k−k◦) . (18)

Notice that the last inequality in (18) is equivalent to (this may
be more clear by replacing k with k′ = k + �L,T )

|φx
T (k)| ≤

ηc |x◦|
(L − 1)1/p

exp

(
�L,T λwT

p

)
exp

(
−λwT

p
(k − k◦)

)

for all k ≥ k◦ + �L,T and since T�L,T λw ≤ L/cp we have
|φx

T (k)| ≤ σ∗ |x◦| e−λT (k−k◦) for all T ∈ (0, T ∗). On the
other hand, it follows, using (10) and the definition of ε that

|φx
T (k)| ≤ ε |x◦| e−λT (k−k◦) (19)

for all k ∈ [k◦, k◦ + �L,T ].
�

C. Corollaries for non-parameterized systems

Two corollaries follow for discrete-time systems with fixed
sampling rate, i.e.

xk+1 = F (k, xk) . (20)

Corollary 1 If for system (20) there exist a function α ∈ K∞,
a positive definite continuous function γ(·) and, for each r,
ν > 0 there exist βrν > 0 such that (8) and (9) hold with fixed
T = T ∗ = 1 and for all k◦ ≥ 0, x◦ ∈ Br then the origin is
UGAS. �
Corollary 2 If for system (20) there exist p ≥ 1, η > 0 and
c > 0 such that for all k ≥ k◦ and all x◦, (11) holds with
T = T ∗ = 1. Then, there exist κ and λ > 0 such that

|φx(k)| ≤ κ |x◦| e−λ(k−k◦) ∀ k ≥ k◦ .

�
The proofs follow by fixing, in the proofs of Lemma 1 and
Lemma 2 �L,T = L and, for the former, βr,ν = (L− 1)ν. For
Corollary 2 notice that wk defines a Lyapunov function so the
proof is direct.

IV. APPLICATIONS TO DESIGN OF SAMPLED-DATA

CONTROL SYSTEMS

We present two case-studies in controlled sampled-data sys-
tems. Based on [17], [16] the control approach consists in de-
signing a discrete-time controller for an approximate discrete-
time model of the plant. Stability of the sampled-data system
follows, under appropriate conditions, from the stability of the
approximate discrete-time system (cf. [17]). In the case-studies
below we use our main results to show uniform asymptotic
stability for the Euler approximate model in closed-loop.

A. Persistency of excitation revisited

The examples that we address are reminiscent of problems
arising in adaptive control and identification. The main condi-
tions are stated in terms of the so-called property of persistency
of excitation (PE) which, for the locally integrable function
ψ : R≥0 → R, means that there exist µ and τ > 0 such
that ∫ t+τ

t

ψ(s)2ds ≥ µ ∀ t ≥ 0 .

While persistency of excitation was introduced in the iden-
tification of discrete-time systems (cf. [1]), for the purposes
of the present paper we reformulate the PE definition to the
case of parameterized systems and introduce another property
tailored for nonlinear systems. The latter is a discrete-time
counter part of the so-called uniform δ persistency of excitation
(Uδ-PE) along trajectories introduced in2 [19]. See also [15]
for a similar property in the discrete-time context.

2The definition of Uδ-PE has evolved from its original form introduced
in [10] into different versions but without loosing its original meaning.
Here we refer to the definition given in [19] even though in that reference
the terminology “along trajectories” is not employed. See the more recent
paper [9] for an account of different definitions.
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Consider a parameterized discrete-time system xk+1 =
FT (k, xk) with solutions φx

T (k) and a function ϕ : Z≥0 ×
R

n → R≥0.
Definition 4 (Discrete-time Uδ-PE along trajectories) Let
T ∗ > 0. The function ϕ is said to be uniformly δ-persistently
exciting along the trajectories φx

T (k) if for each δ > 0 there
exist positive numbers µ and L such that for all T ∈ (0, T ∗)
and all j ∈ Z≥0,

min
j∈[k,k+�L,T ]

|φx
T (j)| ≥ δ =⇒ T

j+�L,T∑
k=j

ϕ(k, φx
T (k)) ≥ µ .

(21)
�

For the case when ϕ does not depend on the state, we use the
following stronger property (cf. [13]).
Definition 5 (Discrete-time persistency of excitation) Let ϕ :
Z≥0 → Z≥0 be a function produced by sampling a function
ψ : R≥0 → R≥0 at rate T . The function ϕ is said to be
persistently exciting (PE) if there exist positive numbers µ, L
and T ∗ such that for all T ∈ (0, T ∗) and all j ∈ Z≥0,

T

j+�L,T∑
k=j

ϕT (k) ≥ µ . (22)

�
The following properties of PE functions are useful. Firstly,
notice that the Cauchy-Schwartz inequality implies that

µ

T
≤

j+�L,T∑
k=j

ϕT (k) ≤
⎛
⎝j+�L,T∑

k=j

ϕT (k)2

⎞
⎠

1/2

�
1/2
L,T .

Hence, defining µ′ := µ2

L , we have

j+�L,T∑
k=j

ϕT (k)2 ≥ µ′

T
.

Secondly, for any i ≥ 0, define

IL,T :=
{

k ∈ [i, i + �L,T ] : ϕT (k)2 ≥ µ′

2T�L,T

}
(23)

and let card(IL,T ) denote the cardinal of IL,T so, in general
card(IL,T ) is an integer which depends on T but in the specific
way imposed by (2). In particular, for each fixed L, card(IL,T )
grows at most linearly as T decreases. On the other hand,
card(IL,T ) ≥ card(IL,T∗) for all T ∈ (0, T ∗). The following
claim follows closely [7, Lemma 2].

Claim 3 Let φM > 0 be such that |ϕT (k)| ≤ φM for all
k ≥ 0 and all T ∈ (0, T ∗); let ϕT be PE according to
Definition 5. Then, for each T ∗ > 0 there exists σ > 0
such that card(IL,T ) > σ for all T ∈ (0, T ∗). Moreover an
estimate for σ is

σ :=
µ′�L,T∗

2φ2
ML − µ′ .

B. A nonlinear example

The first case-study concerns the stabilization of

ẋ = −p(t, x)u (24)

where p : R≥0 × R → R is continuous and x �→ p(t, x)
is locally Lipschitz uniformly in t. We address the problem of
stabilizing (24) under sampled feedback.

Assuming that p(t, x) is uniformly δ persistently exciting
(Uδ-PE) along the trajectories of (24) (cf. [19]) it can be shown,
following the latter reference, that the feedback u(t, x) :=
p(t, x)x renders the closed-loop system with (24) uniformly
globally asymptotically stable. Leaving aside that x ∈ R, the
uniform asymptotic stability problem for the system (24) is a
generalization of the problem studied in [12] and it has been
solved, in the continuous time context, in [9]. Based on the
framework of [16], [17], we propose a discrete-time controller
for the Euler discretization of (24) such that the closed-loop
system be uniformly globally asymptotically stable. To show
the latter property we rely on Lemma 1.

Proposition 1 Consider the Euler discretization of (24), i.e.

xk+1 = xk − Tp(k, xk)uk (25)

and let uk := p(k, xk)xk. Assume that p is uniformly
bounded, that is, there exists pM > 0 such that |p(k, x)| ≤
pM for all k ∈ Z≥0 and x ∈ R. Let T ∗ > 0 be such that
p2

MT ∗ < 2. Then, the closed-loop system (25) is uniformly
globally asymptotically stable. �
Proof. The closed-loop system is

xk+1 = xk − TϕT (k, xk)xk (26)

where we defined ϕT (k, xk) = p(k, xk)2 and, correspond-
ingly, φM := p2

M . Consider the Lyapunov function V (x) :=
x2 and define, along the trajectories of (25), vk := V (φx

T (k)).
The difference equation for vk, using (25) yields

vk+1 − vk ≤ −2TϕT (k, φx
T (k))φx

T (k)2

+ T 2ϕT (k, φx
T (k))2φx

T (k)2

which, defining α := 2−φMT ∗ > 0, implies that there exists
α > 0 such that

vk+1 − vk ≤ −αTϕT (k, φx
T (k))φx

T (k)2 ≤ 0 (27)

for all k ≥ k◦ ≥ 0 and all T ∈ (0, T ∗). This implies that
vk ≤ vk◦ for all k ≥ k◦ and, for any L > 0, T ∈ (0, T ∗),
k ≥ k◦ and all j ∈ [k, k + �L,T ], |φx

T (k + �L,T )| ≤ |φx
T (j)|.

Hence, evaluating the sum on both sides of (27), from k to
k + �L,T we obtain that

vk+�L,T +1−vk ≤ −α T

k+�L,T∑
j=k

ϕT (j, φx
T (j))φx

T (k+�L,T )2 .

(28)
Fix ν > 0 arbitrarily. Let δ :=

√
ν generate, via the

assumption on discrete-time Uδ-PE, µ and L > 0 such that
(21) holds. Define k∗ := min{k ≥ k◦ : |φx

T (k)| ≤ δ},
k∗ = ∞ if |φx

T (k)| > δ for all k ≥ k◦ and k∗ = 0 if
|φx

T (k◦)| ≤ δ. Then, we have

∞∑
k=k◦

k+�L,T∑
j=k

TϕT (j, φx
T (j))φx

T (j)2 =

k∗−�L,T∑
k=k◦

k+�L,T∑
j=k

TϕT (j, φx
T (j))φx

T (j)2
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+
∞∑

k=k∗−�L,T +1

k+�L,T∑
j=k

TϕT (j, φx
T (j))φx

T (j)2

≥
∞∑

k=k◦

(
φx

T (k + �L,T )2 − ν
)
µ

−
∞∑

k=k∗−�L,T +1

(
φx

T (k + �L,T )2 − ν
)
µ . (29)

On the other hand, using vk ≤ vk◦ , we see that

∞∑
k=k◦

(
vk+�L,T +1 − vk

)
=

k◦+�L,T +1∑
k=k◦

vk ≤ [�L,T + 1]vk◦

(30)
From (28), (29) and (30) we obtain that
∞∑

k=k◦

(
φx

T (k+�L,T )2−ν
)

≤ 1
µ

(
�L,T + 1

α
+ �L,T

)
|x◦|2

(31)
which, again by virtue of the fact that φx

T (k)2 ≤ φx
T (k◦)2,

implies that
∞∑

k=k◦

(
φx

T (k)2 − ν
)

≤ 1
µ

(
�L,T + 1

α
+ 2�L,T

)
|x◦|2 .

(32)

Hence, defining γ(s) := s2 and, for each r > 0,

βrν :=
L(1 + 2α) + T ∗

µα
r2 ,

we see that (8) holds. The result follows invoking Lemma 1. �
C. A linear example

The second example stems from Model Reference Adaptive
Control (cf. [5], [4]). Consider the adaptive system in the input-
output representation

ė = ϕ(t)�θ + u (33)

where θ is a vector of unknown parameters and ψ is piecewise
continuous. It is desired to stabilize (33) via a sampled adaptive
feedback and an update adaptive law. To that end, we consider
the Euler discretization of (33), with sampling rate T , i.e.
defining ϕk := ϕT (k),

ek+1 = ek + Tϕ�
k θk + Tuk . (34)

with the certainty-equivalence feedback

uk := −ϕ�
k θ̂k − aek , a > 0 (35)

and the “speed-gradient” adaptive law

θ̂k+1 = θk − Tϕkxk . (36)

The closed-loop system of (34), (35) and (36) yields[
ek+1

θk+1

]
=

[
(1 − Ta) Tϕk

−Tϕk 1

] [
ek

θk

]
, z :=

[
e
θ

]
. (37)

Proposition 2 There exist T ∗ sufficiently small and µ′, L
sufficiently large such that, if ϕT is PE with such T ∗, µ′ and
L and |ϕk − ϕk−1| ≤ TφM , the Euler approximate model
(34) in closed loop with (34), (35) and (36), is UGES for all
T ∈ (0, T ∗). �

In general, (see e.g. [11], [4] and, for the discrete-time case,
[15]), the closed-loop system in MRAC is nonlinear and time-
varying, even when the uncontrolled plant is linear. This is
reflected in that, typically, ϕk is a function that depends both
on k and x; see [15]. In the result that we present here, we
consider that ϕT depends only on time, this can be justified
by proceeding as in [18], [3] redefining the regressor function
along trajectories. Consequently, the imposed PE condition
must hold uniformly in the system trajectories; see [7] for a
detailed discussion on this.

In [15] it has been investigated the stability of general
MRAC under discrete-time delta persistency of excitation; the
result from that reference is the counterpart to that presented in
[8] (see also [19] where UGAS of nonlinear MRAC systems
was shown for the first time). In this note, we contribute w.r.t.
[15] by giving convergence rates for the linear 2-dimensional
system.

Proof of Proposition 2. We proceed to show, via Lemma 2
that the origin of (37) is uniformly globally asymptotically
stable. To that end, we first consider the function VT (k, z) :=
|z|2 − εϕk−1eθ with ε := αθ + T and αθ > 0. Observe
that this function is positive definite and radially unbounded
for sufficiently small αθ , T ∗ and wM ; indeed, we have

c1 |z|2 ≤ VT (k, z) ≤ c2 |z|2 (38)

with c1 := (1− 0.5(αθ + T ∗)φM ) and c2 := (1 + 0.5(αθ +
T ∗)φM ) which are clearly independent of T . Note that c1 > 0
for a proper choice of αθ hence, In the sequel, we assume that
this is the case.

Denoting the right hand side of equality (37) by FT (k, z)
and evaluating the first difference equation of VT (k, z), we
obtain that

∆VT := VT (k, FT (k, z)) − VT (k, z)
= −T (2a − εϕ2

k)e2 − εTϕ2
kθ2

+T 2e
(
[a2 + ϕ2

k − εa]e − [2aϕk − εϕ3
k]θ

)
+T 2ϕ2

kθ2 − εeθ(ϕk − ϕk−1 − ϕkaT ) . (39)

Proof of UGB: We first observe that under the assumptions of
the proposition, εeθ(ϕk − ϕk−1 + ϕkaT ) ≤ (1/2)[T 2θ2 +
ε2φ2

M (1 + a)2e2]. Define αe := a − (αθ + T ∗)φ2
M −

(1/2)ε2φ2
M (1 + a)2 which is positive for sufficiently small

values of ε and sufficiently large values of a. Let O(Tn) |z|2
upperbound the remaining terms of undefined or positive sign
of order Tn with n ≥ 2, in (39). Then,

∆VT ≤ −T (αee
2 + αθϕ

2
kθ2) + O(Tn) |z|2 . (40)

In particular, ∆VT ≤ cVT where c ≥ O(Tn)/c1 for all T ∈
(0, T ∗). From [6, Proposition 5] we obtain that the system is
uniformly forward complete, that is, there exist σ1, σ2 ∈ K∞,
and σ3 > 0 such that

|φz
T (k)| ≤ σ1(|z◦|) + σ2( T (k − k◦) ) + σ3 (41)

for all k ≥ k◦ ≥ 0.
Define vk+1 := VT (k, F1T (k, φz

T (k))) and vk :=
VT (k, φz

T (k)). Let L, µ′, IL,T be generated by the assumption
of persistency of excitation of ϕk and let σ come from Claim
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3. Define δ := µ′

2L , then,

j+�L,T∑
k=j

∆vk ≤ −Tαe

j+�L,T∑
k=j

|φe
T (k)|2 − Tαθ

∑
IL,T

∣∣ϕkφθ
T (k)

∣∣2

+ O(Tn)
j+�L,T∑

k=j

|φz
T (k)|2 . (42)

Let �L,T be sufficiently large so that there exist k∗
1 , k∗

2 ∈ IL,T

such that |φe
T (k∗

1)| > 0 and
∣∣φθ

T (k∗
2)

∣∣ > 0. Then, using the

fact that δ ≤ µ′

2T�L,T
, we obtain that

v�L,T +j+1 − vj ≤ −T (αe |φe
T (k∗

1)|2 + αθδσ
∣∣φθ

T (k∗
2)

∣∣2)
+�L,TO(Tn) max

k∈[j, j+�L,T ]
|φz

T (k)|2 .

(43)

Notice that αe, αθ , δ and σ are independent of T .
We continue with the proof of UGB. To show contradiction,

assume that the solutions grow unboundedly. Using (41) we
obtain that |φz

T (k)| ≤ γ(|z◦|) with γ(s) := σ1(s) +
σ2( T ∗�L,T ) + σ3 for all k ∈ [j, j + �L,T ] and any j ≥ k◦.
Defining k∗ := max{k∗

1 , k∗
2} and α := min{αe, αθδσ} it

follows that

v�L,T +j+1 − vj ≤ −Tα |φz
T (k∗)|2 + �L,TO(Tn)γ(|z◦|)2 .

(44)
From this and the fact that the solutions grow unboundedly as
j → ∞, there exist k∗, j sufficiently large such that

v�L,T +j+1 − vj ≤ −T
α

2
|φz

T (k∗)|2 ≤ 0

which implies that vj and therefore |φz
T (j)|, cannot grow to

infinity.
Proof of stability: ULS follows from (40) by restricting the
set of initial conditions. This and UGB imply that the system
is uniformly globally stable. Moreover, in view of (38) there
exists η > 0 such that maxk≥k◦ |φz

T (k)| ≤ η |zk◦ | .
Proof of uniform convergence: Since the system is UGS and
maxk≥k◦ |φz

T (k)| ≤ c |zk◦ | we may reconsider (43) with
k∗
1 = k∗

2 = j + �L,T to write

v�L,T +j+1 − vj ≤ −T
(

αe |φe
T (j + �L,T )|2

+ αθδσ
∣∣φθ

T (j + �L,T )
∣∣2) +

�L,TO(Tn) |φz
T (j + �L,T )|2 .

It follows that for sufficiently large αe and σ (hence for large
a, �L,T and µ′) and sufficiently small T ∗, there exists a > 0,
independent of T such that for all T ∈ (0, T ∗), and all j ≥ 0,

v�L,T +j+1 − vj ≤ −Ta |φz
T (j + �L,T )|2 .

The latter implies that

∞∑
k=k◦

|φz
T (k)|2 ≤ c2

Ta
|z◦|2 +

k◦+�L,T∑
k=k◦

|φz
T (k)|2

≤
[ c2

Ta
+ �L,T c

]
|z◦|2 (45)

The result follows from the UGS property with linear gain, (45)

and Lemma 2 with p = 2 and c =
1√
T

[c2

a
+ ηL

]1/2

. �

V. CONCLUSIONS

We have presented sufficient conditions for uniform global
asymptotic and exponential stability for parameterized time-
varying discrete-time systems. Our conditions are analogous to
integral conditions for continuous-time systems and may be re-
garded as conditions for series convergence. We demonstrated
the utility of our main results in the analysis of systems ap-
pearing in adaptive control and identification; in particular, the
Euler discretization of a system appearing in model reference
adaptive control.

REFERENCES
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