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Abstract— We discuss and compare two approaches for
model reduction of large-scale unstable systems on parallel com-
puters. The first method proceeds by computing the additive de-
composition of the transfer function via a block diagonalization,
followed by a reduction of the stable part of the system using
techniques based on state-space truncation. The second method
employs a representation of the controllability and observability
Gramians of an unstable systems in terms of the Gramians
of the stabilized system where the particular stabilization is
obtained via the solution of dual algebraic Bernoulli equations.
Based on these Gramians, balanced truncation is then applied in
the usual manner. All core computational steps in these methods
can be efficiently solved on parallel computers by means of
diverse variants of the Newton iteration for the sign function.
Numerical experiments on a cluster of Intel Xeon processors
show the numerical and parallel performances of these methods.

I. INTRODUCTION

Consider the transfer function matrix (TFM)

G(s) = C(sI − A)−1B + D, (1)

with A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n, D ∈ R

p×m,
and In the identity matrix of order n; and the associated,
not necessarily minimal, realization of a linear time-invariant
(LTI) system,

ẋ(t) = Ax(t) + Bu(t), t > 0, x(0) = x0,
y(t) = Cx(t) + Du(t), t ≥ 0,

(2)

with x0 ∈ R
n being the initial state of the system. Here,

the number of state variables n is also known as the order
or the state-space dimension of the system. For simplicity
we assume hereafter that the spectrum of A is dichotomic
with respect to the imaginary axis, i.e., Re(λ) �= 0 for
all eigenvalues λ of A. The case with eigenvalues on the
imaginary axis could be treated as well with the methods
described in this paper by employing a spectral shift, but
this would add some distracting technicalities.

Model reduction means to find an LTI system,

˙̂x(t) = Âx̂(t) + B̂u(t), t > 0,

ŷ(t) = Ĉx̂(t) + D̂u(t), t ≥ 0,
(3)
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of reduced-order r, such that r � n, and the TFM

Ĝ(s) = Ĉ(sI − Â)−1B̂ + D̂

“approximates” G(s). The reduced-order system has the
potential to replace the original one in many subsequent
computations.

Model reduction of large-scale LTI systems is necessary
in control of multibody (mechanical) systems, manipulation
of fluid flow, circuit simulation, VLSI chip design, in par-
ticular when modeling the interconnect via RLC networks,
simulation of MEMS and NEMS (micro- and nano-electro-
mechanical systems), weather forecast, circuit simulation,
VLSI design, and air quality simulation, among others. (See,
e.g., [1], [2] and the references therein.) State-space dimen-
sions n of order 102–104 are common in these applications.
Numerically reliable methods for model reduction, as those
described later, require O(n3) flops (floating-point arithmetic
operations) and storage for O(n2) real numbers. Thus, there
are important benefits to be obtained from the application of
parallel computing techniques.

Traditional (absolute error) methods for model reduction
based on state-space truncation or projected dynamics in-
clude balanced truncation (BT) methods, singular pertur-
bation approximation (SPA) methods, and optimal Hankel-
norm approximation (HNA) methods [1], [3]. None of these
methods can be applied directly to unstable systems (i.e.,
TFMs with poles in the right half plane) though this type
of systems occurs quite often, in particular if stabilization is
the computational task to solve. Unstable systems also ap-
pear in controller reduction: controllers are often themselves
unstable LTI systems — thus the task of controller reduction
leads to model reduction of this class of systems [4]. Usu-
ally, unstable poles cannot be neglected when modeling the
dynamics of the system, and therefore should be preserved
in the reduced-order system in some sense.

Here we describe parallel implementations of two different
approaches for model reduction of unstable systems. The
first method requires an additive decomposition of the TFM
and consists of two stages: first, G(s) is decomposed as
G(s) = G−(s) + G+(s), where G−(s) is stable and G+(s)
is unstable. Next, any appropriate model reduction method
for stable systems (e.g., BT, SPA, or HNA) is applied to G−

in order to obtain a reduced-order system Ĝ−; the reduced-
order system is then synthesized by

Ĝ(s) = Ĝ−(s) + G+(s). (4)

This approach is advantageous in controller reduction where
it is needed to guarantee the stabilization property of the
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controller. Of course, if the number of unstable poles is
dominating, the potential for reducing the model is limited.
However, in many applications, in particular those coming
from semi-discretization of parabolic or hyperbolic partial
differential equations, the numbers of unstable poles is very
low compared to the number of stable poles. On the other
hand, if the number of unstable poles is not as low as in
these applications, one would certainly also like to reduce the
unstable part of the system. Several approaches to generalize
the concept of balanced truncation to unstable systems can
be found in the literature. We will focus here on a method
described in [5]; for a discussion of earlier attempts at
extending balanced truncation to unstable systems we refer
the reader also to [5]. The method we will use is based
on a representation of the Gramians of the unstable system
which is always well-defined whenever A has no eigenvalues
on the imaginary axis. These Gramians are computable in
a two step approach where, first, a particular stabilization
of the system is performed. In the second step, the Grami-
ans are computed as the controllability and observability
Gramians of the stabilized system in the usual way, from the
solutions of two dual Lyapunov equations. The stabilization
procedure requires the solution of dual algebraic Bernoulli
equations, i.e., homogeneous algebraic Riccati equations.
Other methods for model reduction of unstable systems based
on coprime factorization of the transfer function (see, e.g.,
[4] and the references therein) will not be discussed in this
paper; work on comparing these approaches for large-scale
systems is in progress.

The outline of the paper is as follows: In Sections II and III
we describe the approaches for model reduction of unstable
systems. Next, in Section IV, we review the basics of the sign
function and how this matrix function provides a solution to
all major computational steps involved in these methods. The
iterative schemes for the matrix sign function are specially
appealing in that they are easy to parallelize using existing
parallel libraries for dense linear algebra. In particular, a few
details of a parallelization using ScaLAPACK [6] and the
contents of our parallel model reduction library PLiCMR
are discussed in Section V. The examples in Section VI
report the numerical accuracy and parallel efficiency of
both approaches. Finally, some concluding remarks follow
in Section VII.

Throughout the paper we use Λ (M) to refer to the
spectrum (set of eigenvalues) of a matrix M ; C

−, C
+

denote, respectively, the open left and right half planes;
and j =

√−1, so that jR stands for the imaginary axis.
Also, when the order is clear from the context, we drop the
subindex denoting the order of the identity matrix, as in I .

II. MODEL REDUCTION VIA ADDITIVE
DECOMPOSITION

In this section we describe the two stages (and major
computations) which compose the first approach considered
here for model reduction of unstable systems: additive de-
composition of the TFM, followed by BT model reduction
of the stable part.

A. Additive Decomposition of a TFM

Following [7], we perform an additive decomposition of
G(s) by computing a state-space transformation T ∈ R

n×n

such that

(Ã, B̃, C̃, D̃) := (T−1AT, T−1B,CT,D), (5)

and

Ã =

[
A11 0
0 A22

]
, B̃ =

[
B1

B2

]
, C̃ = [ C1 C2], (6)

with Λ (A11) = Λ (A) ∩ C
−, A11 ∈ R

k×k, Λ (A22) =
Λ (A) ∩ C

+, A22 ∈ R
n−k×n−k. Thus,

G(s) = C(sI − A)−1B + D = C̃(sI − Ã)−1B̃ + D̃

=
{
C1(sI − A11)

−1B1 + D
}

+
{
C2(sI − A22)

−1B2

}
=: G−(s) + G+(s)

is a decomposition of G(s) into a stable TFM, G−(s), and
an unstable one, G+(s).

B. BT Model Reduction of a stable TFM

Let (A,B,C,D) := (A11, B1, C1, D) be the realization
associated with the stable TFM G−(s) in (4). BT methods
are strongly related with the controllability Gramian Wc and
the observability Gramian Wo of the LTI system, which are
given by the solutions of the dual Lyapunov equations

AWc + WcA
T + BBT = 0,

AT Wo + WoA + CT C = 0.
(7)

As A is stable, Wc and Wo are positive semidefinite, and
therefore there exist factorizations Wc = ST S and Wo =
RT R.

Consider now the singular value decomposition (SVD)

SRT = [U1 U2]

[
Σ1 0
0 Σ2

] [
V T

1

V T
2

]
, (8)

where the matrices are partitioned at a given dimen-
sion r such that Σ1 = diag (σ1, . . . , σr), Σ2 =
diag (σr+1, . . . , σn), σj ≥ σj+1 ≥ 0 for all j, and σr >
σr+1.

The square-root (SR) BT algorithms determine the
reduced-order model as

Â = TlATr, B̂ = TlB,

Ĉ = CTr, D̂ = D,
(9)

using the projection implied by the matrices

Tl = Σ
−1/2
1 V T

1 R and Tr = ST U1Σ
−1/2
1 . (10)

SR BT algorithms provide a realization Ĝ which satisfies the
theoretical error bound

‖∆a‖∞ = ‖G − Ĝ‖∞ ≤ 2

n∑
j=r+1

σj , (11)

where ‖G‖∞ denotes the L∞- or H∞-norm of a rational
matrix-valued function. This allows an adaptive choice of the
state-space dimension r of the reduced-order model once the
HSVs are known.
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III. MODEL REDUCTION VIA BALANCED
REALIZATION

In [5], the following definition for the controllability and
observability Gramians of unstable systems is given:

Ŵc :=
∫ ∞
−∞(jω − A)−1BBT (jω − A)−H dω,

Ŵo :=
∫ ∞
−∞(jω − A)−HCT C(jω − A)−1 dω,

(12)

where MH denotes the complex conjugate transpose of the
matrix M . It is shown in [5] that this definition is consistent
with the usual one in the stable case and that most of the
properties of the Gramians known in the stable case carry
over to the unstable case. For instance, the LTI system
(3) is controllable and observable if and only if Ŵc and
Ŵo, respectively, are positive definite. Based on this fact a
balanced realization and balanced truncated reduced-order
model are computable in complete analogy to the stable
case. Hence, if Ŵc and Ŵo are known, a model reduction
procedure based on (8)–(10) can be applied to (3). It is also
shown that the error bound (11) holds for the reduced-order
model computed in this way.

In order to compute Ŵc, Ŵo, in a first step we need to
solve the dual algebraic Bernoulli equations (ABEs)

AT X + XA − XBBT X = 0, (13)

AY + Y AT − Y CT CY = 0 (14)

for X,Y ∈ R
n×n. The solutions of these ABEs — if they

exist — are usually not unique. Here we are interested in
the “stabilizing” solutions X− and Y − such that Ac := A−
BBT X− and Ao := A − Y −CT C are both stable.

Due to its nature as an algebraic Riccati equation (ARE),
it is not surprising that the solution theory of the ABE can
be derived from that of the ARE. Using Theorem 7.5.1 and
Section 8.3 of [8], together with the observation that X = 0,
Y = 0 are symmetric solutions of the ABEs (13)–(14), we
obtain the following result.

Proposition 1 (Extremal ABE solutions): Consider the
ABE (13) with (A,B) controllable. Then there exist
symmetric solutions X+ ≥ 0, X− ≤ 0 of (13) with
X− ≤ X ≤ X+ for all solutions X of (13).

Moreover, X− is the unique solution satisfying Λ (A −
BBT X−) ⊂ C

+ ∪ jR and X+ is the unique solution
satisfying Λ (A−BBT X+) ⊂ C

− ∪ jR. If Λ (A)∩ jR = ∅,
then X− is the unique anti-stabilizing solution and X+ is
the unique stabilizing solution of the ABE.
An analogous result holds for the ABE (14) provided (A,C)
is observable (i.e., (AT , CT ) is controllable).

It can then be shown (see [5]) that with the stabilizing
solutions of the ABEs (13) and (14), the Gramians in (12) are
given by the solutions of the dual stable Lyapunov equations

AcŴc + ŴcA
T
c + BBT = 0,

AT
o Ŵo + ŴoAo + CT C = 0.

(15)

Here, Ac and Ao are again stable and therefore there exist
Ŝ and R̂ such that Ŵc = ŜT Ŝ and Ŵo = R̂T R̂.

Summarizing, a computational procedure for balanced
truncation of unstable systems requires first to solve the

ABEs (13) and (14), then to compute Ŝ, R̂ via (15) so that
the reduced-order model is then obtained using (8), (9), and
(10) with S and R replaced by Ŝ and R̂.

Remark 1: The Gramians Ŵc, Ŵo in (12) can also be
computed in an alternative way using the additive decompo-
sition of G described in Section II and then computing the
Gramians of the stable systems given by (A11, B1, C1, D)
and (−A22, B2, C2, 0) separately [5]. This is computation-
ally more complex than the approach based on the ABEs
and we therefore do not pursue this any further.

IV. THE MATRIX SIGN FUNCTION AND
APPLICATIONS

In this section we briefly summarize the sign function
and the classical Newton iteration for its computation. We
also describe how to employ the sign function in order to
decompose a TFM, and we give a survey of specialized
variants of the Newton iteration which can be employed to
solve certain matrix equations.

A. Background on the Sign Function

Consider a matrix H ∈ R
s×s with Λ (H)∩jR = ∅, and let

H = S
[

J−

0
0

J+

]
S−1 be its Jordan decomposition, where

the Jordan blocks in J− ∈ R
t×t and J+ ∈ R

(s−t)×(s−t)

contain, respectively, the eigenvalues of H in the open left
and right half of the complex plane. The matrix sign function
of H is defined as sign (H) := S

[
−It

0
0

Is−t

]
S−1. For an

overview of many definitions of the sign function, see [9].
Applying Newton’s root-finding iteration to H2 = Is,

where the starting point is chosen as H , we obtain the
Newton iteration for the matrix sign function:

H0 ← H, Hj+1 ← 1

2
(Hj + H−1

j ), j = 0, 1, 2, . . . . (16)

Under the given assumptions, the sequence {Hj}∞j=0 con-
verges to sign (H) = limj→∞ Hj [10] with a locally
quadratic convergence rate. As the initial convergence may
be slow, acceleration techniques are often used; e.g., deter-
minantal scaling:

Hj ← cjHj , cj = |det (Hj)|− 1
s .

For a discussion of several scaling strategies, see [9].
We next illustrate the use of the sign function in order

to compute a pair of similarity transformations defined by
Q ∈ R

n×n and V ∈ R
n×n which, respectively, separate the

stable/anti-stable eigenspectrum of A, and block diagonalize
the resulting matrix. As a result, T := QV is the state-
space transformation to be used in (5) for the additive
decomposition of (A,B,C,D).

B. Spectral division of matrices

The sign function is an efficient numerical tool for spectral
division. Specifically, in order to separate the eigenspectrum
of A along the imaginary axis, we only need to compute a
rank-revealing QR (RRQR) factorization of In − sign (A) as

In − sign (A) = QRP, R =

[
R11 R12

0 0

]
,
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where P is a permutation matrix, rank (I − sign (A)) =
rank (R) = k, and R11 ∈ R

k×k is upper triangular. (Note
that k is also the number of stable eigenvalues in A.) The
similarity transformation defined by Q then satisfies that

Ā := QT AQ =

[
A11 A12

0 A22

]
, (17)

where Λ (A11) = Λ (A) ∩ C
−, A11 ∈ R

k×k, Λ (A22) =
Λ (A)∩C

+, A22 ∈ R
n−k×n−k; in other words, Q separates

the stable and the anti-stable parts of Λ (A).

C. Block diagonalization

Consider now the block triangular matrix Ā from (17).
The goal here is to find a similarity transformation that sets
A12 to zero. Thus, we need to find V such that

Â := V −1ĀV = V −1QT AQV

=

[
Ik −U
0 In−k

] [
A11 A12

0 A22

] [
Ik U
0 In−k

]

=

[
A11 0
0 A22

]
.

A little manipulation shows that U ∈ R
k×n−k is the solution

of the Sylvester equation

A11U − UA22 + A12 = 0. (18)

Also, as Λ (A11) ∩ Λ (A22) = ∅, equation (18) has a
unique solution [11] which can be computed with the method
described in the following paragraph.

D. Solving Sylvester and Lyapunov Equations

The Sylvester equation (18) can be solved using a sign
function-based procedure. Given that A11 and −A22 are
stable matrices, this iterative procedure, already derived in
[10], proceeds as follows:

E0 ←A11, Ej+1 ← 1
2

(
Ej + E−1

j

)
,

F0 ←A22, Fj+1 ← 1
2

(
Fj + F−1

j

)
,

W0←A12, Wj+1← 1
2

(
Wj + E−1

j WjF
−1
j

)
,

j = 0, 1, 2, . . . .

(19)

At convergence, limj→∞ Ej = −Ik, limj→∞ Fj = In−k,
and the solution U = 1

2 limj→∞ Wj .
For an efficient implementation of this iteration on modern

computer architectures and numerical experiments reporting
efficiency and accuracy, see [12].

The Lyapunov equations in (7) and (15) are special cases
of the Sylvester equation. Therefore, these equations can
be solved using a simplified variant of the iterative scheme
in (19). Now, consider, e.g., the first Lyapunov equation in (7)
and its factorized solution Wc = ST S. In model reduction, S
is often a numerically rank deficient matrix. In such a case,
an efficient variant of the Newton iteration proposed in [13]
delivers a full-rank factor Sf , so that SfST

f ≈ ST S = Wc.
Specifically, this variant is formulated as follows:

A0←A, Aj+1← 1√
2

(
Aj + A−1

j

)
,

S0←B, Sj+1←RsΠs,
j = 0, 1, 2, . . . ,

(20)

where Rs and Πs are obtained at each iteration from the
RRQR decomposition:

1√
2

[
Sj , A−1

j Sj

]T
= Qs

[
Rs

0

]
Πs.

On convergence, Sf = 1√
2

limj→∞ Sj can reliably substitute
S. This iteration is in general cheaper to compute than the
one for the Cholesky factor. Besides, the use of a full-
rank factor allows significant computational savings in the
subsequent computations (8)–(10) of model reduction.

E. Solving ABEs with the Sign Function

ABEs of the form (13)–(14) can be solved using the
following coupled iteration

A0←A, Aj+1← 1
2

(
Aj + A−1

j

)
,

F0 ←BBT , Fj+1 ← 1
2

(
Fj + A−1

j FjA
−T
j

)
,

G0←CT C, Gj+1← 1
2

(
Gj + A−T

j GjA
−1
j

)
,

j = 0, 1, 2, . . . .

(21)

The solutions are then obtained from the full-rank linear
least-squares problems (see [14], [10], [15])[

F∞
In − AT

∞

]
X =

[
A∞ + In

0n

]
,

[
G∞

In − A∞

]
Y =

[
AT

∞ + In

0n

]
,

where M∞ = limj→∞ Mj , M ∈ {A,F,G}.

V. IMPLEMENTATION DETAILS

The methods for model reduction basically require ma-
trix operations such as the solution of linear systems and
matrix equations (Sylvester, Lyapunov and ABE), and the
computation of matrix products and matrix decompositions
(QR, SVD, etc.). The variants of the Newton iteration
described earlier only require operations such as matrix
products and matrix inversion. All these operations are basic
dense matrix algebra kernels parallelized in ScaLAPACK and
PBLAS. Using these libraries, we have developed parallel
model reduction routines, integrated into the PLiCMR library
(http://spine.act.uji.es/∼plicmr).

The kernels in the PLiCMR library allow model reduc-
tion of stable and unstable large-scale systems, with state-
space order up to O(104), on parallel distributed-memory
platforms. Currently, the library includes the following com-
putational routines for model reduction of stable systems:

Absolute error methods:
pab09ax (BT), pab09bx (SPA), pab09cx (HNA).

Relative error methods:
pab09hx (Balanced Stochastic Truncation),
pab09px (Balanced Positive Real Truncation).

For unstable systems, the library contains two more com-
putational routines:

– Additive decomposition: pab09ex. For model reduc-
tion apply any of the abovementioned routines to the
stable part of the system.

– Balanced truncation: pab09fx. This implements the
method described in Section III.
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VI. NUMERICAL EXPERIMENTS

All the experiments presented in this section were per-
formed on a cluster of np = 16 nodes using IEEE double-
precision floating-point arithmetic (ε ≈ 2.2204e−16). Each
node consists of an Intel Pentium Xeon processor@2.4
GHz with 1 GByte of RAM. We employ a BLAS library
specially tuned for this processor that achieves around 3,800
Mflops (millions of flops per second) for the matrix product
(routine DGEMM) [16]. The nodes are connected via a Myrinet
multistage network and the MPI communication library is
specially developed and tuned for this network. The perfor-
mance of the interconnection network was measured by a
simple loop-back message transfer resulting in a latency of
18 µsec. and a bandwidth of 1.4 Gbit/sec.

In the experiments we compare additive decomposi-
tion followed by the SR BT method (implemented using
pab09ex+pab09ax) with the method described in Sec-
tion III (using pab09fx). All the Newton-type iterative
schemes were accelerated using appropriate variants of de-
terminantal scaling.

In the evaluation we employ an example of order n
with m = p = n/10 inputs and outputs, and 95% stable
poles; k = n · 0.95. The matrix A is generated as A =
UT diag(−k, . . . ,−1, 1, . . . , n − k)U , where U is an n × n
random orthogonal matrix. Matrices B, C, and D of the
appropriate dimensions are generated following a random
uniform distribution. The system is reduced to r = n/10.

A. Numerical Accuracy

We first evaluate the numerical behaviour of the methods.
There are several measures that can help to asses the quality
of the methods. Among these, we use the following relative
residuals of the equations that are solved in the methods:

• Sylvester equation:

RS =
‖A11U − UA22 + A12‖F

(‖A11‖F + ‖A22‖F )‖U‖F + ‖A12‖F
.

• Lyapunov equations:

RLc
= ‖AWc+WcAT +BBT ‖F

2(‖A‖F ‖Wc‖F )+‖BBT ‖F

,

RLo
= ‖AT Wo+WoA+CT C‖F

2(‖A‖F ‖Wo‖F )+‖CT C‖F

.

• ABEs:

RBc
= ‖AT X+XA−XBBT X‖F

2(‖A‖F ‖X‖F )+‖X‖2
F
‖BBT ‖F

,

RBo
= ‖AY +Y AT −Y CT CY ‖F

2(‖A‖F ‖Y ‖F )+‖Y ‖2
F
‖CT C‖F

.

Tables I and II report, among other data, these residuals.
All relative residuals are below the order of the machine
precision and the convergence of the Newton-type iterations
is fast: between 8 and 12 iterations were required in all
cases. For the approach based on additive decomposition,
the low decoupling residual shows that the sign function
experienced no trouble to separate the stable/unstable parts
of this example. For the second approach, based on prior
stabilization of the system, all eigenvalues of the closed-loop

Convergence sign (A) ‖A12 − A11‖F /‖A‖F =1.08e−17
Decoupling residual ‖A2,1‖F /‖A‖F =2.71e−15

Convergence Sylvester max(‖E8 + Ik‖F /
√

k,
‖F8 + In−k‖F /

√
n − k)=6.35e−18

Residual Sylvester RS = 1.11e−16

Convergence Lyapunov ‖A9 + Ik‖F /
√

k=2.67e−18
Residual Lyapunov RLc

= 9.94e−17
Residual Lyapunov RLo

= 8.64e−17

TABLE I

ACCURACY OF THE INVOLVED COMPUTATIONS FOR MODEL REDUCTION

BASED ON SECTION II; RANDOM MODEL OF ORDER n=500.

Convergence ABE ‖A11 − A10‖F /‖A‖F = 4.14e − 15
Residual ABE RBc

= 9.72e − 18
Residual ABE RBo

= 3.56e − 18

Stability max(Re(Λ(A − BBT X))) = −1.00
max(Re(Λ(A − Y CT C))) = −1.00

Convergence Lyapunov ‖A11 + In‖F /
√

n = 5.22e − 22
Residual Lyapunov RLc

= 3.80e − 17

Convergence Lyapunov ‖A11 + In‖F /
√

n = 2.70e − 22
Residual Lyapunov RLo

= 4.60e − 17

TABLE II

ACCURACY OF THE INVOLVED COMPUTATIONS FOR MODEL REDUCTION

BASED ON SECTION III; RANDOM MODEL OF ORDER n=500.

matrices A − BBT X and A − Y CT C are stable, as shown
by the largest real parts of the closed-loop poles.

As a measure of the quality of the reduced-order systems,
we also compare the frequency responses of the TFM of the
original system and those of the reduced-order realizations.
In order to do so, the TFMs are evaluated at frequencies jw,
with w composed of 500 samples logarithmically distributed
in the interval [1.0e−5,1.0e+5].

Figure 1 reports in the left-hand side plot the frequency
response of the original system and those of the reduced-
order realizations computed by both methods. The plot in
the right-hand side of this figure shows the absolute error in
the frequency response, measured by ‖G(jω)− Ĝ(jω)‖2 =
σmax(G(jω)− Ĝ(jω)). In this second plot, the error bound
of the solid line corresponds to the theoretical error bound for
the SR BT method applied to the stable part of the system.
Both figures show that the dynamics of the original system
is closely reproduced by the reduced-order realizations.

B. Performance

A second major criterion to appreciate the efficacy of the
methods is the amount of time required for the reduction
of the system. In this subsection we evaluate the model
reduction algorithm using a system of order n = 1, 200.

Figure 2 reports the execution time of both approaches. A
first observation from the figure is that the algorithm based
on additive decomposition, pab09ex+pab09ax, requires
half the time required by algorithm pab09fx. For example,
reducing the system using a single node via algorithms
pab09ex+pab09ax and pab09fx requires, respectively,
about 4.5 and 9.5 minutes. Parallel execution on 8 nodes
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Fig. 1. Frequency response (left) and frequency response error (right); Random model of order n = 500.
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Fig. 2. Execution time; Random model of order n = 1, 200.

reduces these times to scarcely a little bit more than 1 and
2 minutes, respectively. On the other hand, pab09fx has
the potential to compute smaller reduced-order models than
pab09ex+pab09ax if the number of unstable poles of the
LTI system is large. Moreover, there is more parallelism
in algorithm pab09fx which, e.g., achieves speed-ups of
1.57 and 4.46 for 2 and 8 nodes, respectively. For this same
number of nodes, algorithm pab09ex+pab09ax delivers
speed-ups of 1.53 and 4.19. The speed-ups in both algorithms
are not remarkably high as the order of the largest system
that can be reduced using a single processor considered here
is n = 1, 200. A larger system would surely provide higher
speed-ups.

VII. CONCLUSIONS

We have evaluated two efficient parallel model reduction
algorithms for unstable systems. All major computational
problems that appear in the algorithms can be solved using
Newton-type iterative schemes for the sign function. Exper-
imental results with a random unstable system report both
approaches as numerically reliable.

These model reduction algorithms are particularly simple
to parallelize and perform efficiently on distributed-memory

platforms. The scalability of the algorithms is ensured by
that of the underlying iterative schemes. Thus, large-scale
unstable systems can be reduced by employing a proportional
amount of computational resources.
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