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Abstract— Of significant interest in the practical application
of data association algorithms to target tracking in cluttered
environments is how to determine track-loss in the absence of
truth data. An approach is laid out for Kalman filter based
data association algorithms where sample gated measurement
count distributions are compared to theoretical measurement
count distributions of the “tracking” or “track-lost” regimes
to determine the regime of filter operation for single-target
tracking applications. The comparisons are done via a pair
of Kolmogorov-Smirnov tests. Among the advantages of this
method are that confidence intervals are associated with the
track regime tests, and that the number of samples required
to discriminate between regimes can be determined adaptively.
Simulation results for the method are provided.

I. INTRODUCTION

Real-world sensors often report more than one mea-
surement that may be from a given target. These may
either be measurements of the desired target or “clutter”
measurements. Clutter refers to detections or returns from
nearby objects, clouds, electromagnetic interference, acoustic
anomalies, false alarms, etc. Due to measurement origin
uncertainty, the estimate will eventually diverge from the
true track in data association algorithms. Although there is a
continuum of estimator behavior, the operation of these filters
is often divided into two regimes, non-divergent (“tracking”)
and divergent (“track-lost”). Typically the emphasis is more
on detecting the transition between regimes (“track-loss”)
than on defining the regimes.

In simulation, two metrics that are commonly used to
define the transition between these two regimes are [14]:
1) the normative distance of the estimate from the truth
becoming repeatedly larger than some threshold, and 2)
repeated failure of the truth measurement to “gate”. Gating
is a commonly used method of limiting the number of
measurements processed by considering only those within
some normative distance of the predicted measurement. In
practice, neither of these metrics is applicable, as neither the
true state nor truth measurement is known. However, there
are differences between the regimes that can be exploited to
build track-loss metrics that do not require knowing the true
state or truth measurements [8], [10].

Among other methods, detection of track-loss in the
absence of truth data has been done for the Probabilistic
Data Association Filter (PDAF) by testing the normality
of “effective” innovations in the state space [10], and by
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applying a Neyman-Pearson decision rule to the comparison
of sample variances of “effective” innovations to theoretical
predictions of these variances for the two track regimes [12].
However, the innovations covariance is a complex, non-
linear, and time-varying stochastic function of the target
dynamics, data association algorithm, clutter density, gate,
etc., so unique innovations-based tests must be developed
for each data association algorithm.

Many common data association algorithms share a Kalman
Filter (KF) structure (where the truth measurements are
assumed to be Gaussian distributed about the predicted mea-
surement) and the assumption of uniformly distributed clutter
measurements. In single target tracking, before divergence
of the filter the gated measurements then are a mixture of
the truth and clutter measurements, while after divergence
the gated measurements are solely clutter measurements. In
this paper, the empirical (cumulative) distribution function
of the gated (sample) measurement count is compared to a
theoretical cumulative density function of the measurement
count in each track regime, via Kolmogorov-Smirnov (KS)
tests of fit. The KS tests use a single measure of deviation
to make a determination of whether the sample is consistent
with the hypothesis of a given theoretical distribution. In
concert, these tests comprise a track-loss detector. Using
this measure of deviance to determine the tracking regime
has several advantages beyond an indication of when track-
loss may be imminent, or has occurred. It provides an
intuitive metric for assessing the difficulty of the tracking
problem, and confidence intervals are associated with the
assignments of the data to a given regime. Additionally, the
number of samples required for good test performance can
be determined adaptively.

This paper is organized as follows. In Section II, Kalman
filters for linear time invariant (LTI) systems, as well as
data association and gating, are reviewed. In Section III, the
cumulative distribution functions of the gated measurement
count, required to use the KS test, are developed. In Sec-
tion IV, the Kolmogorov-Smirnov tests of fit are discussed. In
Section V, the implementation of the two-sided Kolmogorov-
Smirnov test of fit as a track-loss detector is detailed, and an
adaptive method of determining the number of samples to use
for good track regime determination is outlined. Simulation
results and conclusions are presented in Sections VI and VII.

II. DATA ASSOCIATION

In this section, a linear time invariant (LTI) model of the
system to be tracked and the discrete-time KF are reviewed.
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Additional measurement origin uncertainties beyond those
considered by the KF are then discussed.

A. System Dynamics

Consider the discrete-time LTI system with target state
dynamics x(k) and measurements z(k) governed by

x(k + 1) = F x(k) + G w(k)
y(k) = H x(k)
z(k) = H x(k) + J v(k)

= y(k) + J v(k)

where F, G, H, and J are assumed known, and w and
v are zero-mean Gaussian white noise vectors with known
covariances Q = E [ww′] and R = E [vv′], respectively.

B. Kalman Filter

For the LTI system, the discrete-time KF equations are

Predicted covariance:

P(k|k − 1) = F P(k − 1|k − 1) F′ + G Q G′

Predicted state:

x̂(k|k − 1) = F x̂(k − 1|k − 1)

Covariance of the innovations:

S(k) = H P(k|k − 1) H′ + R

Kalman gain:

K(k) = P(k|k − 1) H′ S(k)−1

State estimate:

x̂(k|k) = x̂(k|k − 1) + K(k) ν(k)

where ν(k) = {z(k) − H x̂(k|k − 1)} is the innovation.

Estimate error covariance:

P(k|k) = P(k|k − 1) − K(k) S(k) K(k)′

= {I − K(k) H} P(k|k − 1).

C. Handling Additional Measurement Uncertainties

In the data association problem, additional measurement
uncertainties are considered beyond those in the Kalman
filter (which are due strictly to Gaussian white noise in
the measurements and states). The PDAF [1], Mixture Re-
duction [14], and Mean-Field Event-Averaged Maximum
Likelihood Estimator [6] (among others) use the structure
of the Kalman filter with the following common changes to
accommodate data association: i) there is a probability PD,
PD ≤ 1, that the measurement for a given target will be
detected, ii) there are clutter measurements with density λ
uniformly distributed throughout the measurement field, and
iii) in order to limit the number of measurements considered,
all available measurements are gated, keeping only those
measurements that fall into a validation volume (gate) about

the predicted measurement ẑ(k) = H x̂(k|k − 1). The χ2

gating test for a measurement zi(k) is

νi(k)′ S(k)−1 νi(k) ≤ γ

where νi(k) = {zi(k)−H x̂(k|k−1)}, and γ is the χ2 gate
sizing parameter measured in standard deviations squared.
Under the assumption that the truth measurement is Gaussian
distributed about the predicted measurement, the probability
of gating the truth measurement, PG, is a function of γ:

PG =
∫ γ

0

γnz/2−1 exp{−γ/2}
2nz/2 Γ(nz/2)

dγ , γ ≥ 0

where Γ(·) is the gamma function. All measurements vali-
dated by this test are inside a hyper-ellipsoid with volume

Vk = cnz γnz/2 |S(k)|1/2 (1)

where nz is the dimension of the measurement vector and
cnz is the volume of a nz-dimensional unit hyper-sphere,

cnz = πnz/2/ Γ(nz/2 + 1) .

The data association problem is then to use information from
all the gated measurements to update the target track.

III. GATED MEASUREMENT COUNT DISTRIBUTIONS

Defining track-loss as the transient between non-divergent
and divergent filter operation, it can be detected by noting
when the regime of operation switches from tracking to
track-lost. Mathematical definitions of the two regimes can
be constructed in terms of cumulative distribution functions
(cdfs) of the gated measurement counts. With the appropri-
ate assumptions, the regime cdfs can be determined exactly.

A. Distribution for the Truth Measurements

In the tracking regime it is commonly assumed that
the actual covariance of the truth innovations are well
approximated by the predicted innovations covariance, and
are thus Gaussian distributed with covariance S(k). Under
this assumption, the number of truth measurements mtru

k

in a volume as in (1) is Bernoulli distributed, with prior
probability density function (pdf ):

f(0) = 1 − PDPG

f(1) = PDPG .

B. Distribution for the Track-Lost Regime

Under the assumption of uniform clutter distribution, the
number of clutter measurements mcl

k in the volume Vk

conditioned on the track-lost regime is Poisson distributed [1]
with prior pdf

fL(mcl
k )=

(λVk)mcl
k exp(−λVk)
mcl

k !
, mcl

k = 0, 1, 2, . . .

and prior cdf

FL(mcl
k )=

mcl
k∑

i=0

(λVk)i exp(−λVk)
i!

, mcl
k = 0, 1, 2, . . . . (2)
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Fig. 1. Regime cdf s for PD = 1, PG = 0.8931, λVk = 0.2.

C. Distribution for the Tracking Regime

Since the distributions of clutter and truth measurements
are independent, the prior pdf for the mixture of truth and
clutter measurements mmix

k = mtru
k + mcl

k inside the gate
conditioned on the tracking regime is

fT(mmix
k ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

f(mtru
k = 0) f(mcl

k = mmix
k )

+ f(mtru
k = 1) f(mcl

k = mmix
k − 1) ,

mmix
k =1, 2, . . .

f(mtru
k = 0) f(mcl

k = 0) , mmix
k =0 .

The prior cdf is then

FT(mmix
k ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mmix
k −1∑
i=0

(λVk)i exp(−λVk)
i!

+ (1 − PDPG)
(λVk)mmix

k exp(−λVk)
mmix

k !
,

mmix
k = 1, 2, . . .

(1 − PDPG) exp(−λVk) , mmix
k = 0 . (3)

Figure 1 shows tracking (FT) and track-lost (FL) regime
measurement count cdfs for PD = 1, PG = 0.8931, and
λVk = 0.2.

IV. KOLMOGOROV-SMIRNOV TESTS OF FIT

A. Overview

If x1, x2, . . . , xn are independent observations of a ran-
dom variable with cumulative distribution function F (x)
which is unknown, and the null hypothesis is

H0 : F (x) = F0(x)

then any test of the hypothesis is a goodness-of-fit test [16].
If the hypothesis is completely specified (such as being
normal with known mean and variance), then it is a simple
hypothesis. The many variants of the Kolmogorov-Smirnov

(KS) test are simple goodness-of-fit tests. KS tests determine
whether the sample is from the hypothesized distribution
with a specified confidence interval using the maximum
deviation between the hypothesis and sample distribution
functions as the metric. While originally developed for con-
tinuous distributions, KS tests can be extended for use with
discontinuous distributions, and are known to be conservative
if the function F (x) is discrete [3].

B. One-Sided and Two-Sided KS Tests for Continuous F (x)

Given n ordered observations of x such that

x(1) ≤ x(2) ≤ . . . ≤ x(n),

the empirical sample cdf is defined [16]

Sn(x) =

⎧⎨
⎩

0, x < x(1)
r
n , x(r) ≤ x < x(r+1)

1, x(n) ≤ x .

If F0(x) is the true, fully specified cumulative distribution
function from which the observations in the sample are
drawn, then from the strong law of large numbers

lim
n→∞P {Sn(x) = F0(x)} = 1 .

The positive one-sided measure of deviation is defined [7]

D+
n = sup

x
{Sn(x) − F0(x)} .

Similarly, the negative one-sided measure of deviation is

D−
n = sup

x
{F0(x) − Sn(x)}

and the two-sided measure of deviation is

Dn = sup
x

|Sn(x) − F0(x)| = max
{
D+

n , D−
n

}
. (4)

The distributions of D+
n , D−

n , and Dn can be calculated
both in the asymptotic limit as n → ∞ and for finite
values of n [2], [5], [16]. Amazingly, these distributions are
independent of the distribution F0(x) for continuous cdfs
[5]. Denoting D∗

n as any of the D+
n , D−

n , or Dn measures of
deviance and d∗n(α) any of the corresponding d+

n (α), d−n (α),
or dn(α) critical values associated with significance level α
(probability of incorrectly rejecting the hypothesis), then if
Sn(x) is drawn from F0(x) [16]

P {D∗
n ≥ d∗n(α)} = α (5)

where 100(1 − α) is the confidence interval (CI), so that

P {F0(x)−d∗n(α)≤ Sn(x)≤ F0(x)+d∗n(α), for all x}=1−α .

C. Critical Value d∗n(α)

For every fixed value of d∗(α) ≥ 0, in the limit [5], [7]

lim
n→∞P

{
n1/2 D∗

n ≥ d∗(α)
}

= α (6)

where for the two-sided test

α = 1 − 2
∞∑

j=1

(−1)j−1 exp{−2j2d(α)2}
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and for the positive and negative one-sided tests

α = 1 − 2
∞∑

j=1

(−1)j−1 exp{−2j2d+(α)2} .

because the distribution of D−
n is (by symmetry) identical to

the distribution of D+
n .

There exist methods [4] and tables [9], [16] for determin-
ing d∗n(α). Equivalent to (5) is [16]

P
{
n1/2 D∗

n ≥ n1/2 d∗n(α)
}

= α ,

so noting that in the limit d∗(α) = n1/2 d∗n(α) provides an
asymptotic approximation for d∗n(α). Then for the two-sided
test some important example asymptotic approximations of
dn(α) are [16]

dn,n→∞(α) = 1.3581n−1/2 for α = 0.05 (7)

dn,n→∞(α) = 1.6276n−1/2 for α = 0.01 .

There are also closed-form solutions for finite values of n,
but it is more convenient to tabulate the critical values via
one of several common recursion relations [4]. For the two-
sided test, let c > 0 be an integer. Then from [2], [7]

P
{
Dn <

c

n

}
=

n!
nn

exp(n) R0,n(c)

where Ri,k(c) is defined for all integers i, all non-negative
integers k, and integers c = 1, 2, . . . , n as

R0,0(c) = 1
Ri,0(c) = 0 for i �= 0
Ri,k(c) = 0 for |i| ≥ c

Ri,k+1(c) = exp(−1)
∑2c−1

s=0 Ri+1−s,k(c) 1
s! for |i| ≤ c − 1

Using this recursion, the critical value dn(α) = c
n of

the distribution of Dn can be determined [2] for a given
confidence probability (1 − α) = n!

nn exp(n) R0,n(c).
It should be noted that critical values determined with the

asymptotic approximations are always conservative, that is

P {Dn ≥ dn,n→∞(α)} ≤ α ,

and this is true also for one-sided critical values determined
in this way. Thus critical values determined with recursion
relations are preferable, especially for small n where the
approximation is most conservative. The asymptotic and
recursive distributions are generally in good agreement for
n ≥ 80 [16].

D. One-Sided and Two-Sided KS Tests for Discrete F (x)

Technically, the relation (5) only applies to continuous
functions, and the measurement count cdfs are discrete.
However, the KS test can be applied to discrete distributions
using (either exact or asymptotic) critical values d∗n derived
for continuous distributions, and the results are known to be
always conservative [3]. Alternatively, critical values can be
determined with discrete function recursion relations [3].

E. Sample Sizes and Confidence Intervals

Choosing the CI and the sample size n fixes the crit-
ical value dn(α). From (7), a sample size of 100 would
have a CI of 95% (probability of 0.95) that the sample
cumulative distribution function would everywhere be within
dn(α) = 0.13581 of the true distribution function.

V. IMPLEMENTING THE TWO-SIDED KS TEST FOR

TRACK-LOSS DETECTION

Once cdfs for the total number of gated measurements
for both the tracking and track-lost regimes are determined,
it is possible to use either as the null hypothesis to perform a
KS test. Measurement counts can then be sampled at several
contiguous timesteps and these samples used to construct the
necessary empirical cdf . It is desirable to test the empirical
cdf using KS tests for both regimes, since higher confidence
can be placed in an overall track regime detector (TRD)
if the tests assign the empirical sample cdf as being from
exactly one regime. While there are advantages to using one-
sided KS tests, the TRD is implemented here using the
two-sided KS test to reduce sensitivity to parameter errors
in the theoretical regime cdfs. Special notice can be taken
of possible or impending track-loss in cases where either the
tracking regime KS test rejects the null hypothesis or the
track-lost regime KS test accepts the null hypothesis. Track-
loss is detected when the paired tracking and track-lost KS
regime tests respectively agree that the filter is no longer in
the tracking regime and is in the track-lost regime. However,
there are issues that must be addressed in order to construct
a regime test.

A. Modeling Issues

It is clearly not possible to sample measurement counts at
several timesteps and achieve the exact cdf for the tracking
regime. If each sample is drawn from an identical volume,
then the assumption about PG is violated. On the other
hand, if each sample is drawn from a volume such that
PG is constant, then the assumption of identical, Poisson
distributed clutter samples is violated. Further, the filter
estimates x̂(k + 1|k) and S(k) have data dependent errors
which guarantee that the desired PG will not match the true
PG regardless.

On the other hand, provided that the clutter density model
proposed is accurate (λ is known and constant), then by
using a constant-volume gate in the track-lost regime test,
the samples can be drawn according to the track-lost cdf .
However, these conditions on λ may not be met in practice.
The robustness of the TRD to modeling errors is a sub-
ject of on-going and future work. Some simulation results
evaluating robustness will be presented in Section VII.B.

B. Choosing the Track Regime Detector Gating Volumes

Gating for the TRD should not be confused with gating
for the data association algorithm. There are advantages to
sampling using different gating strategies for the KS test. One
strategy is as follows. For the track-lost regime, determine
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the average gate volume over the previous n timesteps
k − n + 1, k − n + 2, . . . , k to be used in the detector,

Vc =
k∑

j=k−n+1

Vj

n
= cnz γ

nz/2
best Σn , (8)

where

Vj = cnz γ
nz/2
best |S(j)|1/2

Σn =
k∑

j=k−n+1

|S(j)|1/2

n
,

and Sj are the n innovations variances in the sampling
interval. Then re-gate all the measurements zi(·) from those
n timesteps with constant gate volume Vc. Re-gating using

νi(j)′
(

Vj

Vc

)2

S(j)−1 νi(j) ≤ γbest (9)

preserves the shapes of the gating volumes due to the
individual innovations covariances, while achieving constant-
volume gates Vc. The track-lost regime cdf in (2) can then
be calculated using Vk = Vc. This gating strategy will be
referred to hereafter as the constant-volume gate (CG).

Nothing constrains the gating parameter γbest in (8) and
(9) to be the same as the gating parameter for the data
association algorithm (where γ is likely to be as large as
processing power will allow). As will be seen, the choice of
the gating parameter γbest (and thus the gating volume Vc)
here is a degree of freedom used to maximize the power of
the regime tests to reject the alternative hypothesis.

As noted before, it is not possible to sample across several
timesteps and achieve the exact cdf for the tracking regime.
However, provided that both λ(k) and |S(k)| are “well-
behaved” (i.e., have means that vary slowly and variances
that are a small fraction of the mean), then the conflicting
requirements for the gate volume can be handled by gating
with a time-varying volume at each timestep using

νi(j)′ S(j)−1 νi(j) ≤ γbest (10)

(where once again, nothing constrains the gating parameter
γbest in (10) to be the same as the gating parameter for the
data association algorithm), but then assuming a constant
volume gate in the tracking regime cdf (3) by again using
Vk = Vc. This gating strategy will be referred to hereafter as
the non-constant volume gate (NG). The NG should only
be used to test the tracking regime hypothesis, while the CG
should be used to test the track-lost regime hypothesis.

C. Power of the Test

When one regime cdf F0(x) is used as the null hypothesis
H0, the power of the KS test for H0 with respect to the
alternative H1 is the probability that samples drawn from
F1(x) will be rejected [16]. If β is the probability that
samples from F1(x) will be accepted, then the power is
(1 − β). If the samples are drawn from the alternative
distribution F1(x), then

P {D∗
n ≥ d∗n(α)} = 1 − β

defines the power of the test (to reject the hypothesis that
the samples are from F0(x)).
D. Maximizing the Asymptotic Power of the Test

There are methods of calculating the exact power of the
test with respect to the alternative [4], [15], but due to
the discrete cdfs involved it is not clear how to use these
methods to devise an algorithm to search for the “optimum”
value of γbest (for given sample size n and significance α)
that will yield the global maximum power.

The following heuristic argument is provided to maximize
the power for the two-sided KS test with respect to the
alternative in an asymptotic sense (similar arguments can
also be made for the positive and negative one-sided tests).
Those interested in a rigorous discussion of the concepts
should consult [13]. First, propose two continuous cumu-
lative distribution functions, and choose one of them as the
null hypothesis. If the samples are drawn from the alternative
F1(x), then from the strong law of large numbers

lim
n→∞P {Sn(x) = F1(x)} = 1 ,

and thus from (4) define

∆F = lim
n→∞Dn = sup

x
|F1(x) − F0(x)| .

Since the power is P {Dn ≥ dn(α)}, and dn(α) is indepen-
dent of Dn, F0(x), and F1(x), in an asymptotic sense the
power is maximized when ∆F is maximized.

Turning to the discrete track regime distributions, the
expected number of gated measurements in the tracking
regime is always greater than or equal to the number in the
track-lost regime (see Figure 1), so a non-negative difference
measure between regime cdfs can be defined

∆F (mk, γ) = FL(mk) − FT(mk) ≥ 0 , (11)

mk = 0, 1, 2, . . . .

Then from (2), (3), (8), and (11),

∆F (mk, γ) = PDPG
(λVc)mk exp(−λVc)

mk!
≥ 0 , (12)

γ ≥ 0, mk = 0, 1, 2 , . . .

where Vc and PG are both functions of the gating parameter.
If the factorial in (12) is generalized to the Gamma function
Γ(mk + 1), then real values of mk can be considered,

∆F (mk, γ) = PDPG
(λVc)mk exp(−λVc)

Γ(mk + 1)
≥ 0 ,

γ ≥ 0 , mk ≥ 0 .

For fixed values of γ, ∆F (mk, γ) is maximized for any given
value of γ when mk = E[mk] = λVc. Further, defining

∆Fmax = sup
γ

∆F (λVc, γ)

= sup
γ

PDPG
(λVc)λVc exp(−λVc)

Γ(λVc + 1)
≥ 0

where PDPG is monotonically increasing in γ and

(λVc)λVc exp(−λVc)
Γ(λVc + 1)

is monotonically decreasing in γ

3101



means that there is exactly one global maximum, which
occurs at γ = γbest. Thus for a given set of system
parameters, clutter density, gating probability, experimentally
determined innovations covariance, etc., it is possible to
determine and use the gating parameter associated with the
the most powerful test in an asymptotic sense.

E. Some Important Trends of the Track Regime Detector

∆F (λVc, γ) is a function of λΣn, nz , and γ. The param-
eters λ and Σn are lumped together as a single parameter
because Σn increases or decreases as λ does. A plot of
∆F (λVc, γ) vs. γ for various values of nz and λΣn is
shown in Figure 2. The general trends, as demonstrated by
the four curves, are: i) as λΣn decreases, ∆Fmax and γbest

increase, and ii) as nz increases, ∆Fmax decreases while γbest

increases. The implications are that it is “easier” to determine
the regime of operation when the clutter density is lower, as
the maximum difference between the two regimes, ∆Fmax , is
larger. Further, the optimum γ becomes larger both for lower
clutter densities and higher measurement dimensions.

F. Adapting the Sample Size and Confidence Interval

The power of the test can also be increased by increasing
the number of samples used to construct the empirical
cdf , since if the samples are drawn from a distribution
F1(x) �= F0(x), then from the strong law of large numbers

lim
n→∞P {Sn(x) = F0(x)} = 0.

There are, however, a series of trade-offs involved in the
selection of n. Increasing n increases the likelihood that
an alternative regime hypothesis will be rejected, but it
will also increase the time necessary to detect track-loss
as well as increase the likelihood of incorrectly rejecting
the correct hypothesis due to modeling errors. Hence, using
an arbitrarily large value of n is undesirable. Testing the
empirical cdf using both regime hypotheses allows for an
adaptive algorithm to be used for selecting n.

Similarly, there is a tradeoff in the choice of the CI.
Choosing a larger CI in general increases the number of
samples necessary to discriminate between the two regimes,
and thus the time to detect track-loss will be longer. But
choosing a smaller CI in general increases the chances that
at any given timestep there will be a threshold for n, above
which both regime hypotheses are rejected and below which
both regime hypotheses are accepted. This is because the
“granularity” between the critical values, dn+1(α) − dn(α),
is larger for smaller CIs.

An elementary set of rules for an adaptive algorithm is as
follows. A desired CI and initial value of n are selected.
Then if the TRD: i) assigns the sample to both regimes,
increase n, ii) assigns the sample to exactly one regime,
retain n, iii) assigns the sample to neither regime, decrease n.
If this strategy fails to determine a value of n which uniquely
assigns the empirical cdf to a regime, the CI should be
increased.
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Fig. 2. Curves of ∆F (λVc, γ) vs. γ for various nz and λΣn.

VI. SIMULATION RESULTS

Under the assumptions of Gaussian distributed truth mea-
surements in the tracking regime and uniformly distributed
clutter measurements in both regimes, the TRD will work
with any data association method provided that there is an
estimate of the innovations covariance. Thus the following
PDAF example makes an excellent stand-in for KF-based
data association methods in general.

A. Illustrative PDAF Example

The kinematic model system (with timestep δ)

x(k + 1) =
[

1 δ
0 1

]
x(k) +

[
δ2/2

δ

]
w(k)

y(k) =
[

1 0
]

x(k)

is the standard zero-order hold discrete approximation to a
continuous double-integrator system. This model is imple-
mented in a PDAF with

δ = 0.1, λ = 0.2,

Q = q = 500, R = r = 0.5 .

A four standard deviation target tracking gate and a unity
probability of truth measurement detection:

γ = 16 ⇒ PG = 0.99994
PD = 1

yields

Vk = cnz γnz/2 |S(k)|1/2 = 8 |S(k)|1/2 .

This system gives an experimentally measured average gating
volume (averaged over many tracks) of

Vpdaf−T = 6.2195

for the tracking regime, and

Vpdaf−L = 478.3304

for the track-lost regime. The data for individual tracks was
generated by running the PDAF filter for 1000 timesteps
without track-loss (as defined by the truth measurement never
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Fig. 3. Innovations variance S(k) before and after track-loss.

failing to gate for more than 5 timesteps), then forcing track-
loss by making PD = 0 at timestep k = 1001. The filter
was then allowed to run for 1000 timesteps in the track-lost
regime. For the example system, this is a tracking problem
of “moderate” difficulty using the PDAF [11], [14].

Figure 3 is a plot of the innovations variance S(k) of
an example target track, over approximately 50 timesteps
before and after track-loss is forced at timestep 1001. During
the first timesteps after track-loss, S(k), and thus the target
tracking gate, spike repeatedly and then explode to orders
of magnitude larger than in the tracking regime. This is
typical behavior for a KF-based data association filter after
track-loss. Thus even over short horizons, the distribution of
|S(k)|1/2 in the track-lost regime typically has a large skew-
ness and variance, and a constant volume gate is necessary
to test the track-lost regime hypothesis.

Figures 4 and 5 show the results of two different TRDs
using CI = 95% with fixed n = 5 and n = 50, respectively,
on an example target track; again track-loss is forced at
timestep 1001. Looking at Figure 4, before track-loss the
TRD for n = 5 does not consistently assign the track to
exactly one regime, and thus n is too small. Looking at
Figure 5, the TRD for n = 50 consistently assigns the track
solely to the tracking regime, and 40 timesteps after track-
loss it begins to consistently assign the track solely to the
track-lost regime. The 22 timesteps after track-loss when the
TRD rejects both regime hypotheses is a good indicator of
possible track-loss. Using the same data, the adaptive TRD
described earlier “converges” near n = 50, but with track-
loss detected more quickly than for the fixed n TRD of
Figure 5 because n is reduced when both regime hypotheses
are rejected, thus considering less information from near the
track-loss transition.

B. Robustness of the Track Regime Detector

The tracking regime (NG) portion of the TRD is
sensitive to modeling error introduced by the steady-state
innovations covariance assumption. Noting that the expected
number of clutter measurements in the gate is λVk [1], the
modeling errors occurring from large-value outliers in |S(k)|
(and thus Vk) tend to dominate all other sources of error.
Large outliers occur when the track is “almost” lost and then
recovered, such as around timestep 950 in Figure 3.

Another view of this can be seen in Figure 6, which shows
results of both regime tests on tracking regime data of a target
track from the PDAF example system. The regime cdfs are
offset slightly horizontally to improve legibility. The tests
were performed using CI = 95% on n = 500 measurement
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Fig. 4. Results of TRD for CI = 95%, n = 5.
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Fig. 5. Results of TRD for CI = 95%, n = 50.

count samples from the tracking regime (dn(α) = 0.0604
using the continuous recursion method), with Σn = 0.8875,
resulting in γbest = 2.6 and Vc = 2.8620. The average
data association gating volume over the 500 timesteps was
7.0997, 14% larger than Vpdaf−T, indicating the track was
“almost” lost at least once over this interval. The resulting
outliers in |S(k)|1/2 bias Vc to be larger, effectively shifting
the theoretical tracking regime cdfs FT and FL to the right
toward larger mk. The result is that both of the regime
hypotheses are rejected, similar to the interval from timestep
1018 to 1039 in Figure 5. However, adapting n as described
in Section V.F handles this problem, as when n is reduced
to n = 200 (and thus dn(α) increased to 0.0952), then the
tracking regime hypothesis is uniquely accepted.

The track-lost regime (CG) portion of the TRD is
sensitive only to modeling errors in λ. The sensitivity to
errors caused by using a theoretical clutter density, λtheory,
which is different than the actual clutter density, λactual, is
dependent on the gating volumes of the two regimes, and
clearly track-lost regime data begins to resemble the tracking
regime cdf as λactualVc → λtheoryVk + PDPG. Since the
impact of errors in λtheory scales with Vc and the trend for
KF-based data association algorithms is for Vc to grow larger
after track-loss, it is preferable to err on the high side when
choosing λtheory, again effectively shifting the theoretical
tracking regime cdfs FT and FL to the right toward larger
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mk and thus biasing the TRD in favor of accepting the
track-lost regime hypothesis.

Figure 7 shows results of both the tracking and track-
lost regime tests, this time for track-lost regime data
from the PDAF example system. However, the theoreti-
cal regime cdfs were calculated for both regimes using
λtheory = 0.85 λactual, which biases the TRD toward
accepting the tracking regime hypothesis. The tests were
performed using CI = 95% on n = 50 measurement
count samples from the track-lost regime (dn(α) = 0.1884
using the continuous recursion method), with Σn = 9.7145,
resulting in γbest = 2.2 and Vc = 28.8177. Even this −15%
error in λtheory does not result in falsely rejecting the track-
lost regime hypothesis in this example.
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Fig. 7. Track-lost regime data: CI = 95%, n = 50, γbest = 2.2.

VII. CONCLUSIONS

A track regime detector for Kalman filter based data
association algorithms was developed that determines the
filter operating regime (tracking or track-lost) based on the
statistics of the number of measurements present in two track
regime detection gates, assuming uniform clutter measure-
ment density. Approximations for the tracking regime of
the measurement count distribution inside a data-dependent
gating volume as well as an exact formulation for the track-
lost measurement count distribution inside a constant gating

volume were derived. Once the measurement count distribu-
tions of the two regimes are available, Kolmogorov-Smirnov
tests can be performed on empirical cdfs constructed from
data sampled by these two gating strategies over consecutive
timesteps to determine whether the filter is operating in a
given regime with a given degree of confidence. Additionally,
the gating parameter for the most powerful test in an asymp-
totic sense can be determined. Information from the resulting
track regime detector can be used to adaptively determine the
number of consecutive timesteps to sample from, in order to
make the test both indicate track-loss as quickly as possible
and also uniquely assign the track (where possible) to either
the tracking or track-lost regime. Good performance of the
track-loss detector was demonstrated for a PDAF example.
The robustness of the track regime detector to variations in
clutter measurement density and gating volumes has been
initially addressed through the adaptive nature of the detector.
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