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Abstract— One efficient approximate solution of the bido-
main equations, which are used as a mathematical model
of the heart tissue electrical properties, has been described.
Moreover, the selected algorithm for discretization of partial
differential equations, consisting of the method of separation
of variables and modal analysis technique, results in the state-
space representation of cardiac electrical activities, which makes
the model suitable for applications of modern control theory.
Also, the finite-dimensional model reveals the connection to
the older models of defibrillation - simple circuit equivalents.
Finally, an optimal controller designed for the generalized
version of a simple parallel resistor-capacitor circuit has been
applied to one- and three-mode expansions of the bidomain
model.

I. INTRODUCTION

There is more than one reason why ventricular fibrillation
has been recognized as a very challenging problem for
both experimental and theoretical research: 1) It represents
the most dangerous and life-threatening form of all cardiac
arrhythmias 2) The process is not spontaneously reversible
3) In order to avoid sudden cardiac death, it is essential
to proceed with an immediate application of an electric
countershock therapy known as defibrillation. The extensive
work in the field of defibrillation over the past two decades
has been published in many studies and research articles,
as listed in [1]. From there it becomes clear that all scien-
tific efforts have been and still are oriented towards better
understanding of electrical activities in the cardiac tissue in
the presence of strong electric fields, with the main purpose
of improving defibrillation therapies and increasing levels of
their efficiency and safety.

The first mathematical models used to study defibrillation
were simple electrical circuit equivalents ([2]), with a parallel
resistor capacitor (RC) circuit as the most important one.
They resulted from the endeavor to model the transmem-
brane voltage time course caused by different defibrillation
waveforms. The models were used by the researchers to
study the efficacy of different defibrillating pulses, and
despite their simplicity, in several cases, predictions based
on calculations with simple electrical circuit equivalents have
been confirmed experimentally [3].

However, the advancements in the equipment and methods
for obtaining measurements in the clinical and laboratory set-
tings gave a clear indication that defibrillation and reentry are
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affected not by cell channel effects only, but by the cardiac
tissue structure as well. The need to create a model capable
of predicting regions of alternating transmembrane potential
(virtual electrodes) throughout the heart has resulted in so-
called bidomain models ([4]),[5]) currently considered as the
most complete description of cardiac electrical activities.

So far different variations of the bidomain model have
been considered in numerous studies, but no analytical
solutions for any realistic conditions have been reported. The
applied approximate methods are usually finite difference
([5], [6]), finite element techniques [4], or just in some cases
spectral methods (most often the finite Fourier transform,
as in [7]). Regardless of the type and capacity of hardware
resources used, the large amount of computer time needed to
complete bidomain simulations has been reported, with the
exception of spectral methods applications [7].

In this article, the method of eigenfunction expansion will
be used for discretization of the bidomain equations. This
method is fundamentally identical to the finite transform
methods, since in both cases the system response is repre-
sented as series of suitable eigenfunctions. However, it will
be shown that the method of eigenfunction expansion allows
for computing the eigenfunctions, while the finite transform
methods must start with an assumed set of eigenfunctions, as
presented in [7]. The method of separation of variables, as a
general technique which leads to a particular eigenfunction
expansion or transform, will be incorporated as well. In
addition, it will be possible to get the model of the system
in the state-space form (as in [8]), which is well known as
the most suitable for control applications.

Once the state-space version of the bidomain model was
derived, it became clear that the bidomain model can be
interpreted as a circuit consisting of an infinite number of
simple parallel RC models, connected through the same
input. This finding might be the missing link between
two seemingly completely different classes of mathematical
models of defibrillation. Also, it is obvious that the so far
unexplained success of simple RC circuit models can be
better understood.

The complexity of cardiac activities in myocardium during
fibrillation and defibrillation has certainly been one of the
main causes for the apparent delay in development of control
applications for defibrillation. In this article, the advantage
has been taken of the already mentioned connection between
the finite dimensional bidomain model and the parallel RC
circuit equivalent. First, the framework for a new model
for optimal cardiac defibrillation based on simultaneous
minimization of energy consumption and defibrillation time
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requirements, has been introduced. Finally, the necessary
modifications have been done so that the same controller
can be applied to the one mode expansion as the simplest
form of the bidomain model.

II. BIDOMAIN MODELS

The full version of the bidomain model consists of two
coupled, second order nonlinear partial differential equations,
governing the electrical potentials induced in the intracellular
and extracellular domains of the myocardium. Intracellular
and extracellular domains refer to the space inside and
outside the cells. In the most general form, the multi-
dimensional bidomain model is given by the following set
of equations:

∇ (Gi∇Φi) = βIm−Iext
i ;∇ (Ge∇Φe) = −βIm−Iext

e (1)

Im = Cm
dΦm

dt
+ Iion(Φm, t); Φm = Φi − Φe (2)

In these equations, the subscripts i, e, refer to the intracel-
lular and extracellular domains, respectively. The parameters
used in (1)-(2) are: electric potentials Φ [V], specific con-
ductivity tensors in the myocardium per unit length G [S/m],
transmembrane current density per unit area Im [A/m2],
membrane surface-to-volume ratio β [m−1], the membrane
capacitance per unit area Cm [F/m2], the volume density
of the externally applied current to the system Iext [A/m3],
the ionic current density per unit area Iion [A/m2], and the
transmembrane potential Φm [V].

The ionic current term in excitable tissue deserves special
attention, because once the voltage increases to a certain
threshold value, an active tissue response will be initiated.
In that case, Iion(Φm, t) in (2) must be replaced by an ap-
propriate nonlinear model. When the passive tissue response
is observed, the membrane can be represented as a linear
resistor-capacitor circuit, since Iion = GmΦm, where Gm

[S/m2] represents the specific membrane conductance in the
passive tissue.

The passive version of the bidomain model lacks the
ability to predict the postshock response. According to [9],
the approximation of the full bidomain model by its passive
form is justified by the fact that the initial phase of the
cardiac response to external stimuli is predominantly the
period of virtual electrodes formation. This situation has also
been explored in a particular experimental setting. Based
on these considerations, the passive bidomain model of
a three-dimensional volume of the myocardium, with the
assumption of uniform fiber direction aligned with the z
axis (in this case, the conductivity tensors are diagonal,
with the elements denoted by gT and gL, both in [S/m],
representing specific macroscopic electrical conductivities of
the myocardium perpendicular to and parallel to fiber axis,
respectively), could be adopted as a very good basis for initial
further analysis:

∂2Φm

∂x2
+

∂2Φm

∂y2
+

∂2Φm

∂z2
−Φm−∂Φm

∂t
=−β1

∂2Ψ
∂z2

+κ1γe−κ3γi

(3)

β2

(
∂2Ψ
∂x2

+
∂2Ψ
∂y2

)
+β3

∂2Ψ
∂z2

=β4

(
∂2Φm

∂x2
+

∂2Φm

∂y2

)
−κ2γe−κ2γi

(4)
It should be emphasized that the model (3)-(4) has been
obtained from the passive form of the bidomain model given
by (1) and (2) by means of scaling and linear transforma-
tions [10]. One of the variables in the new model is the
transmembrane potential Φm, introduced earlier in (2), and
the other one an auxiliary potential Ψ with no simple physical
interpretation: Ψ = Φi + (geL/giL)Φe.

When an isolated piece of tissue is observed, meaning that
the tissue is surrounded by air (non-conductor), simple no-
flux boundary conditions are usually applied at the tissue-
air borders. For models in Cartesian coordinate system,
the natural way to proceed is to assume a two- or three-
dimensional slice of tissue, with a, b, and c as its dimensions
in the x, y, and z directions, respectively.

In the preceding equations, β1 ÷ β4, and κ1 ÷ κ3 are
all constants, and γi and γe represent scaled source terms,
defined as γi = Iext

i /(βGm) and γe = Iext
e /(βGm).

III. EIGENFUNCTION SELECTION FOR THE
BIDOMAIN MODEL

The modified version of the bidomain model defined
by (3)-(4), and non-flux boundary conditions for Φm and Ψ,
adopted earlier for the purpose of analysis and simulations in
this paper, is linear, with homogeneous boundary conditions.
Therefore, to make the separation of variables possible, the
only needed modification is to temporarily take out the
input terms from the partial differential equations. Also, it is
apparent that the solution to the eigenvalue problem will be
valid for nonlinear bidomain model as well.

In order to make the separation of variables procedure
succeed, it may be reasonable to seek solutions of the partial
differential equations in the following form:

Φm(x, y, z, t) = X(x)Y (y)Z(z)T (t) (5)

Ψ(x, y, z, t) = X(x)Y (y)Z(z)W (t) (6)

Two expressions (5) and (6) impose a constraint on the result
such that both Φm and Ψ must be expressed in terms of the
same eigenfunctions (or spatially dependent mode shapes)
X(x), Y (y), and Z(z), whereas their time dependent parts
(modes), T (t) and W (t) are different functions in general.
However, it will be shown that in the zero input case, the
modes are proportional and that implies their identity for
the purpose of separation of variables. The main results of
solving the bidomain model under consideration via modal
analysis can be stated as follows:

Theorem 3.1: The Bidomain system of equations (3)-(4),
accompanied by Neumann boundary conditions for both
variables Φm and Ψ, admits a solution in the following form:

Φm(x, y, z, t)=
∞∑

p,q,r=0

Xp(x)Yq(y)Zr(z)Tpqr(t) (7)

Ψ(x, y, z, t)=
∞∑

p,q,r=0

Xp(x)Yq(y)Zr(z)Wpqr(t) (8)
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where Tpqr(t) and Wpqr(t) satisfy the differential-algebraic
system of equations given by:

Ṫpqr =−
(

p2π2

a2
+

q2π2

b2
+

r2π2

c2
+1

)
Tpqr−β1

r2π2

c2
Wpqr−

− 8
abc

κ1

∫ a,b,c

0

γe(x,y,z,t)Xp(x)Yq(y)Zr(z)dxdydz+

+
8

abc
κ3

∫ a,b,c

0

γi(x,y,z,t)Xp(x)Yq(y)Zr(z)dxdydz (9)

0=−β4

(
p2π2

a2
+

q2π2

b2

)
Tpqr+

+
[
β2

(
p2π2

a2
+

q2π2

b2

)
+β3

r2π2

c2

]
Wpqr− 8

abc
κ2×

×
∫ a,b,c

0

(γe(x,y,z,t)+γi(x,y, z, t))Xp(x)Yq(y)Zr(z)dxdydz (10)

and Xp(x), Yq(y), and Zr(z) are eigenfunctions given by:

Xp(x)=Apcos
(√−λ x

)
; λ=−p2π2

a2
; p=0, 1,. . .,∞ (11)

Yq(y)=Aqcos
(√−µ y

)
; µ=−q2π2

b2
; q=0, 1,. . .,∞ (12)

Zr(z)=Arcos
(√

−(ν+1) z
)

; ν =−r2π2

c2
−1; r=0, 1,. . .,∞

(13)
In (11)-(13), λ, µ and ν denote eigenvalues, and Ap, Aq , and
Ar are constants.

Proof: Consider the bidomain model given by (3)-(4)
with Neumann boundary conditions for both Φm and Ψ. The
selected approach for obtaining its state-space representation
consists of two main steps:

1) Eigenfunction computation via the method of separa-
tion of variables.
In order to apply the separation of variables method,
the inputs in (3)-(4) must be set to zero (γe = γi = 0).
Two cases will be considered while substituting (5),(6)
into (3)-(4) with zero-inputs:

• Case 1: W (t) = T (t)
Since both partial differential equations in the
model with no inputs contain the same term
∂2Ψ/∂z2, it is possible to incorporate the steady-
state part of the model into the equation containing
the time derivative of the transmembrane potential.
Next, replacing variables Φm and Ψ with their
corresponding eigenfunction expansions yields the
eigenvalue problem, with the solution for eigen-
functions given by (11)- (13).

• Case 2: W (t) �= T (t)
In order to make the method of separation of
variables succeed, it must be assumed that W (t) =
c1T (t), where c1 denotes a constant. Also, for
the purpose of computing the eigenfunctions, the
coefficient c1 is not important, and the usual
procedure is to make it equal to 1. That would

reduce the analysis to Case 1, and all previously
derived results apply.

2) Obtaining the differential-algebraic system of equa-
tions for computing the system states T(t) and W(t).
The next step requires that the computed eigenfunc-
tions (11)-(13) get substituted into the equations defin-
ing the infinite mode expansion (7) and (8). Then,
the infinite mode expansion (7)-(8) is introduced back
into the partial differential equations describing the
bidomain cardiac representation (3), and (4). In the
next three consecutive steps, each of the newly formed
equations should be multiplied by the eigenfunctions
Xi, Yj , Zk and integrated over the domains [0, a],
[0, b], and [0, c], respectively. The system of one ordi-
nary differential equation and one algebraic equation
will be obtained for each ijk, or equivalently pqr (in
the already used notation) mode. These equations are
given in the statement of the Theorem as (9) and (10).
In the most general case, the input source signals γe

and γi are functions of x, y, z, and t. Therefore, they
can be expanded as follows:

γe,i(x, y, z, t)=XIe,i(x)YIe,i(y)ZIe,i(z)Ie,i(t) (14)

Taking into account the expansions described by (14),
the differential (9) and algebraic (10) part of the
solution for pqr mode can be written as:

Ṫpqr =apqr11Tpqr+apqr12Wpqr+bpqr11Ie+bpqr12Ii (15)

0=apqr21Tpqr+apqr22Wpqr+bpqr21Ie+bpqr22Ii (16)

where coefficients apqr11÷apqr22, and bpqr11÷ bpqr22

are introduced as the short notation for the coefficients
in (9) and (10) .
As in the first step, two different cases will be consid-
ered:

• Case 1: W (t) = T (t)
Under the assumption that this equality holds, the
solution for the mode pqr defined by (15), (16)
becomes a system of two equations containing
one unknown only, and the only possible result
is the trivial solution: Tpqr(t) = Wpqr(t) = 0.
Therefore, this case will be taken out from any
further analysis.

• Case 2: W (t) �= T (t)
In this case, (15) and (16) apply, and it is possible
to find the unique solution. In the zero input
case (Ii = Ie = 0), the following relation be-
tween Wpqr and Tpqr follows readily from (16):
Wpqr =−apqr21/apqr22Tpqr = c1Tpqr, where c1 is
a constant, which means that the result is identical
with the one obtained in the first step.

The final set of completely uncoupled ordinary differential
equations is obtained by expressing Wpqr(t) in (16) as a
function of Tpqr(t) and applied inputs and substituting the
new expression into (15). It should be pointed out that for
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any practical implementation, the number of modes in (7)-
(8) has to be changed from an infinite to some finite number
N . The final result will be a finite-dimensional state-space
representation of defibrillation, which is needed as a basis
for any application of modern control methods.

IV. COMPUTER IMPLEMENTATION OF THE
BIDOMAIN MODEL AND SIMULATION RESULTS

The state-space form of the bidomain model can be
easily generated from the equations for computing the modes
Tpqr and Wpqr of the transmembrane potential Φm and the
auxiliary potential Ψ, respectively, which have been derived
earlier. Apparently, Tpqr and Wpqr in this context are state
variables and components of the state vectors T and W . One
way to compute the state vectors, is to form the state-space
model as given below:

Ṫ (t) = AT (t) + Bu(t) (17)

y = CT (t) (18)

where T is a n×1 vector, and dimensions of the input vector
u and the vector of the system outputs y are m×1 and l×1,
respectively. Dimension of the state vector can be determined
from: n = (N+1)(number of independent spatial variables).

Next, the results of one computer simulated example
will be presented. The parameter values used here have
been taken from [5]. The values of the bidomain conduc-
tivities and the other parameters needed as the input to
the simulations, are given in the Table I. The particular
type of simulation to be undertaken involves two point
current sources of equal magnitudes Ie and opposite po-
larities in the extracellular space, each of them given by
γe = Ie δ (x − xe) δ (y − ye) δ (z − ze), where (xe, ye, ze)
defines the source location. According to the notation already
adopted, Iext

i = 0. At the same time, the magnitudes of the
two point sources Ie

ext will be constant and in this numerical
example are +75 · 10−6 and −75 · 10−6 A/m3. Bipolar
stimulation will be applied to a three-dimensional cubical
slice of myocardium, whose dimensions are a = b = c =
0.02 m. The location of the signal sources is defined by two
following sets of coordinates: (x1, y1, z1) = (a/2, 0, c/2),
and (x1, y1, z1) = (a/2, b, c/2).

All the computations and simulations are performed using
Matlab. The number N at which the infinite sum of system
modes will be truncated and a finite model defined, is chosen
to be 3. Therefore, the dimension of the state-space vector
T (t) is 64. Each component of the state vector corresponds to

TABLE I

BIDOMAIN MODEL SIMULATION PARAMETERS

giL [S/m2] 0.375
giT [S/m2] 0.0375
geL [S/m2] 0.375
geT [S/m2] 0.214

β [m−1] 3 · 105

Cm [F/m2] 0.01
Gm [S/m2] Gm = 1.6

one Tpqr mode. Since all the elements of the matrix A have
negative real values, the conclusion that the unforced system
is stable readily follows. The output of the state-space model
is obtained by using the initial condition Ti(0) = 0, i =
1, . . . , 64. It turns out that only eight out of 64 system states
will be different than zero.

Once the system modes are known, the distribution of
the transmembrane potential within the cardiac tissue can
be computed by using the expression for the eigenfunction
expansion (7). The results computed with the steady-state
values of the system modes are presented on Fig. 1 and 2
as isopotential lines in x − y, y − z planes, at heights
z = 0 x = 0, respectively. The pattern of the spatial
distribution of the transmembrane potential is obtained by
using the Matlab command CONTOUR, with automatically
selected absolute values of the isopotentials to be displayed.
As seen from the figures, the tissue with unequal anisotropy
responds to point stimulation by producing adjacent regions
of hyperpolarization and depolarization. Further away from
the stimulating electrodes are regions of hyperpolarization
associated with the cathode and regions of depolarization
associated with the anode. Also, the analysis of the pattern of
the transmembrane potential indicates that stimulation along
and across the fibers differs significantly. It can be shown
that the position of the bipole across fibers results in larger
number of zones of alternating membrane polarity.

V. CONNECTION BETWEEN THE BIDOMAIN
MODEL AND SIMPLE RC CIRCUIT EQUIVALENTS

OF DEFIBRILLATION

Even though simplified, lumped equivalents of the heart
tissue in the presence of strong electric fields appear in
the literature in a variety of combinations of resistors and
capacitors, and sometimes inductors, a simple parallel RC
circuit can be adopted as a representative of this class of
models [11]. The principal characteristic of these models is
that they are described by first order ordinary differential
equations, and as such are very convenient for building
different algorithms for computations. The second class of
models are newer, so-called bidomain models, more exact
and more difficult to deal with from the mathematical point

−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

y

Fig. 1. Computed values of the steady-state values of the transmembrane
potential Φm in x − y plane at z = 0 cm
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Fig. 2. Computed values of the steady-state values of the transmembrane
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of view. Despite the current tendency of scientists to use
bidomain models exclusively in studying defibrillation, so
far all the research efforts have been concentrated on finding
the most efficient numerical method for solving partial
differential equations and, more importantly, no applicable
results have been reported. The obvious consequence is that
only the knowledge gained through the work with seemingly
completely different and perhaps unacceptably simple [12]
RC circuit models has been used in practice.

As a mathematical model of a simple parallel resistor-
capacitor circuit takes the form of a first order partial differ-
ential equation, the state-space formulation of the bidomain
model provides the ground for interpreting the bidomain as
a circuit consisting of an infinite number in the ideal case,
or using the notation adopted in Section IV, a finite number
n of RC circuits connected through the same input u(t).
Fig.3 contains the schematic representation of the connection
between the bidomain model in the n-dimensional state-
space and the final output of the bidomain model, the
transmembrane potential Φm. The key detail is that each
state (mode) Ti(t) of the bidomain model, can be computed
from one parallel RC circuit.

This finding might be the missing link between the two
classes of models for defibrillation and clarify the so far
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Fig. 3. Computing the transmembrane potential from a n parallel resistor-
capacitor circuit equivalent of the bidomain model

unexplained success of simple RC models in predicting the
outcome of defibrillating shocks.

VI. FINITE DIMENSIONAL BIDOMAIN MODEL
AND A TIME-ENERGY OPTIMAL CONTROLLER

FOR A GENERALIZED RC CIRCUIT MODEL

Next, the results of the application of an algorithm devel-
oped for the optimal defibrillating pulse synthesis based on
mathematically strict optimization will be presented. All the
results of this theoretical study have been obtained for the
proposed model, under the assumption that cardiac tissue
can be represented by a linear, time-invariant, first-order
differential equation:

dVm(t)
dt

+ a0Vm(t) = b1
dVs(t)

dt
+ b0Vs(t) , (19)

where the system input and output signals Vs(t) and Vm(t)
are generic, that is, they could each be a voltage or a current.
Parameters a0, b0, b1 are constants. In particular, setting
b1 = 0 reduces this model to the simple parallel resistor-
capacitor circuit used to study defibrillation. The objective
is to design the control function Vs(t) based on the measured
output Vm(t) to steer the internal state of the system (19) (or
the output Vm(t)) from an arbitrary initial to a specified final
value in finite time tf , while minimizing a weighted balance
between tf and a measure of the energy spent. The proposed
cost criterion given by: J =

∫ tf

0

[
ρ + u2(t)

]
dt is more

general than the one proposed in [11], which is based on
minimization of energy only. The interpretation of the param-
eter ρ > 0 is that it penalizes the elapsed time. The limiting
cases of ρ → 0 (time is cheap) and ρ → ∞ correspond to
minimum-effort and minimum time problems, respectively.
Also, u(t) in the cost function is the dimensionless control
variable defined as: u(t) = V̄s/V̄smax =⇒ |u(t)| ≤ 1.0,
since the constraint expressed as |Vs(t)| ≤ Vsmax has been
imposed on the input Vs(t).

Detailed report on the derivation of the optimal solution
via Hamiltonian approach is given in [13], and simulation
results for the case b1 = 0 are presented in [14].

It is well known that most control designs for distributed
parameter models such as bidomain model, must be per-
formed on some lower order models. With the established
connection with the simple parallel RC circuit, it was natural
to assume that the feedback design should start from there.
With the reference to Fig.3, it is clear that the one mode
expansion will be identical to one RC circuit model. The
only difference is that the one mode expansion originates
from a distributed parameter model, which implies that the
transmembrane potential Φm will be a function of spatial
coordinates as well.

For a collocated one point sensor-actuator case and the
input signal delivered via extracellular space, the same opti-
mal time-energy controller designed for a parallel RC circuit
model has been synthesized for one mode expansion (mode
T111) of the bidomain model. As expected, the controller will
take T111 from the initial value (0) to the specified value
Tf . All the plots have the same shape as the ones in the
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lumped parameter case [13], [14]. Here, only the plots of
normalized curves of Vs(t) and T111(t) are shown in Fig.4
and 5, respectively. In addition, Fig.5 also contains the result
of application of the same optimal controller (designed for
one mode expansion case) to two more modes T112 and
T121. In the end of the period with the controller on, T111

reaches Tf as expected, and T112 and T121 get to 97 and 99.4
percent of Tf , which means that the error produced in the
case of a higher dimensional model is acceptable. It should
be emphasized that the selection of modes as representatives
for one- and three-mode expansions has been arbitrary and
not based on any assessment of their relative importance for
the overall system response.

VII. CONCLUSIONS

In order to improve the efficiency and safety of currently
used defibrillators, the application of control techniques to
the existing mathematical models of cardiac tissue exposed
to strong electric fields is proposed.

To this end, the passive bidomain model for a three-
dimensional slice of myocardium has been discretized and
the tool used for that purpose is the classical method of
separation of variables. The preference for this particular
method originated in the fact that this technique is less
expensive than others from the computational point of view.
More importantly, it was possible to get the model of the
system in the state-space form, which is known as the
most suitable for control applications. Also, the solutions
for eigenfunctions apply to the bidomain nonlinear model
as well. The results of the computation in the state space
form have been used for finding the distribution of the

transmembrane potential within a three dimensional slice of
myocardium. The presence of virtual electrodes is evident
in the plots obtained during simulations, and the pattern
of the transmembrane potential distribution is in very good
agreement with the results reported in the reviewed literature.

A missing link has been established between bidomain
models, and much simpler lumped parameter equivalents of
the heart in the presence of strong electric fields. Then, as
a feedback control application, the defibrillating waveform,
simultaneously optimal with respect to time and energy, has
been derived. All the results have been obtained for a general
first order model that, as a special case, reduces to the simple
parallel RC circuit. Also, it was outlined that with minimal
changes, the optimal controller design can be used in the case
of one mode expansion of the distributed parameter model.
Finally, exactly that controller has been applied to the three-
dimensional mode expansion. In this work, the control of the
distributed parameter model has been realized by means of
one point sensor-actuator. One possible direction in future
research is to to explore different aspects of multi-input and
spatially distributed control on a high-dimensional model.
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