
Abstract—This paper considers the problem of adaptive 
identification of IIR systems when the system output is 
corrupted by noise. The standard recursive least squares 
algorithm is known to produce biased parameter estimates in 
this case. A new type of fast recursive identification algorithm 
is proposed which is built upon approximate inverse power 
iteration. The proposed adaptive algorithm can recursively 
compute the total least squares solution for unbiased adaptive 
identification of IIR systems. It is shown that the proposed 
adaptive algorithm has global convergence. The significant 
features of the proposed adaptive algorithm include efficient 
computation of the fast gain vector, adaptation of the inverse-
power iteration, and rank-one update of the augmented 
covariance matrix. The proposed adaptive algorithm is 
superior to the standard recursive least squares algorithm and 
other recursive total least squares algorithms in such aspects as 
its ability for unbiased parameter estimation, its lower 
computational complexity, and its good long-term numerical 
stability. Computer simulation results that corroborate the 
theoretical findings are presented. 

I. INTRODUCTION

URING the past decade, adaptive infinite impulse 
response (IIR) filters have found extensive applications 

in many areas, such as system identification, adaptive noise 
cancellation, spectral estimation, channel estimation and 
equalization in communication systems and so on [1], [2], 
[3]. Adaptive IIR filters are considered as the efficient 
replacements for adaptive finite-impulse-response (FIR) 
filters when the desired filter can be more economically 
modeled with poles and zeros only than with the all-zero 
form of an FIR tapped-delay line. The possible benefits in 
reduced complexity and improved performance have 
enhanced the applicability of adaptive IIR filters.  

This paper is concerned with adaptive identification of 
IIR systems when the system output is contaminated by 
noise. There are generally two main classes of methods for 
adaptive identification of IIR systems in this scenario. The 
first class of adaptive identification algorithms is the output-
error (OE) method [4]. But the convergence as well as 
stability of the OE method is guaranteed only under the 
assumption that certain system transfer function is strictly 
positive real [5]. Given the fact that it is a highly nonlinear 
algorithm, the OE method has the difficulty in providing 
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unbiased parameter estimates. The second class of adaptive 
estimation algorithms is the equation-error (EE) method [2]. 
Since the system model adopted is linear, the EE method for 
adaptive IIR identification can operate in a stable manner 
when the step size is properly selected. Moreover, the EE 
method has such attractive features as a unimodal error 
surface, good convergence and guaranteed stability when 
compared with the OE method. However, the EE method 
(including particularly the standard recursive least squares 
(RLS) algorithm) usually produces biased parameter 
estimates for IIR systems subject to output noise [6]. Some 
efficient algorithms to remove the bias in adaptive EE 
identification of IIR systems have been developed. For 
example, there are the instrumental variable algorithms [7], 
the hybrid algorithms [8], the unit-norm EE algorithms [9], 
the total least squares (TLS) algorithms [10] and the total 
least mean squares algorithm [11], to just mention a few. 
Among them, the Rayleight quotient (RQ) based TLS 
algorithms [10] have proved to be a viable alternative for 
achieving unbiased estimates for adaptive identification of 
IIR systems with output noise.    

Regarding the computational complexity, the recursive 
TLS (RTLS) algorithms normally involve )( 2LO  operations 
per iteration, where L  denotes the number of model 
parameters in an IIR system. Similarly, other adaptive 
algorithms (for instance, the inverse-power (IP) method 
[12]) also require )( 2LO  operations per eigenvector update. 
For on-line solving the TLS problem in adaptive 
identification, the fast RTLS algorithm proposed in [10] is 
based on the gradient search for the generalized RQ along 
the Kalman gain vector. This algorithm can fast track the 
eigenvector associated with the smallest eigenvalue of the 
augmented autocorrelation matrix, since the Kalman gain 
vector can be fast estimated by taking advantage of the shift 
structure of the input data vector. The RTLS algorithm in 
[10] has computational complexity of )(LO  per iteration, 
but is dependent on the fast computation of the Kalman gain 
vector. Unfortunately, it is a well-known fact that the 
computation of the Kalman gain vector may be potentially 
unstable [13].  

In this paper, the problem of adaptive identification of IIR 
systems subject to output noise is investigated from a new 
point of view. A fast recursive identification algorithm is 
derived by approximating the well-known inverse power 
iteration along the data vector. Further, a fast scheme is 
developed to compute the gain vector that is used in 
adaptation. With guaranteed global convergence, the 
proposed approximate inverse power (AIP) algorithm is able 
to conduct recursive computation of the TLS solution so as 
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to achieve unbiased identification of IIR systems. The 
proposed algorithm is equipped with attractive features, such 
as efficient computation of the fast gain vector, adaptation of 
the inverse-power iteration, and rank-one update of the 
augmented covariance matrix. The proposed AIP algorithm 
is significantly advantageous over the standard RLS 
algorithm because the RLS algorithm produces biased 
estimates with computational complexity of )( 2LO  per 
iteration while the AIP algorithm gives unbiased estimates 
with computational complexity of )(LO  per iteration. 
Moreover, the proposed algorithm outperforms the fast 
RTLS algorithm in [10]. First, the computational complexity 
of the AIP algorithm is much less than that of the fast RTLS 
algorithm. Second, the long-term numerical stability of the 
proposed algorithm is much better than that of the fast RTLS 
algorithm, thanks to its efficient computation scheme for the 
fast gain vector and its no use of the inverse of the 
covariance matrix. The performance of the proposed AIP 
algorithm is evaluated via simulation and is compared with 
the standard RLS algorithm, the fast RTLS algorithm and 
the IP method.  

II. PRELIMINARIES

A. System Description 
Consider an unknown IIR system and assume that only 

the output is corrupted by the additive white Gaussian noise. 
Our task is to use an EE adaptive IIR filter to estimate the 
IIR system from the observations of the input and output. 
The parameter vector of the unknown IIR system is given by 

1
110121 ],,,,,,,[ LT

MN Rbbbaaah        (2.1) 
where N  and M  are the denominator order and the 
numerator order of the IIR system transfer function, 
respectively, and 1MNL . h  may be time varying. 
Assume that the system orders N  and M  are known.

The noise-free system output is given by 
hr )(ˆ)(ˆ ttd T                                (2.2) 

where the noise-free data vector )(ˆ tr  is given by 
TTT ttt )](),(ˆ[)(ˆ xdr  with TNtdtdt )]1(ˆ,),1(ˆ[)(d̂

and TMtxtxt )]1(,),([)(x .
The observation output can be represented as 

)()(ˆ)()(ˆ)( tnttntdtd T hr       (2.3) 
where the measurement noise )(tn  is a zero-mean Gaussian 

white noise with variance 2
o , independent of the input 

signal )(tx . The output for a sufficient-order EE adaptive 
IIR filter is given by  
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where TTT ],[ baw  is the adjustable parameter vector, 
TTT ttt )](),([)( xdr  is the noisy data vector, and 

T
Naa ],,[ 11a ,    T

Mbb ],,[ 10b     (2.5) 

TNtdtdt )]1(,),1([)(d              (2.6) 
Moreover, we have 

)1()1(ˆ)( 11 ttt NN ndd      (2.7a) 
T

N Ntntntnt )]1(,),2(),1([)1(1n    (2.7b) 
T

N Ntdtdtdt )]1(ˆ,),2(ˆ),1(ˆ[)1(ˆ
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At time t  the augmented data vector is defined as  
TTTTT ttttdt )](),([)](),([)( xdrr          (2.8a) 
TT

NN ttdttt )](),([)()(ˆ)( dndd          (2.8b) 
The covariance matrix of the data vector is given by 
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The covariance matrix of the augmented data vector is 
described by 

Rg
g

rrR
T

T c
ttE )}()({           (2.11) 
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hR
g
g

rg ˆ)}()({
dx

ddtdtE                (2.12) 
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So the covariance matrix of the augmented data vector can 
be written as 
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where
RhR
RhhRhR ˆˆ
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*
TT

and
00
0I

R N
oo
2 . It is easy to 

verify that 0
h

R
1* . This means that if R̂ has full rank, 

then *R  is rank-one deficient. 

B. Equation Error Method 
The equation error (EE) [6], [9] is defined as 

)()()()()()( ttdttdtyte TT rwrw      (2.15) 

where 1)1(],,1[],1[ LTTTTT Rbaww . Under the 
natural ‘monic’ constraint, the variance of the EE is given by 

][)}({ 2*2 aawRwwRw T
o

TTteE         (2.16) 

where TTa ],[ 0 aa . The first term on the right-hand side of 
(2.16) is associated with the noise-free situation, while the 
second term is seen to add an interference that will produce 
the estimation bias. This shows that the least-squares-type 
cost function (2.16) based on the ‘monic’ constraint does not 
yield the unbiased estimate for IIR systems subject to output 
noise. If aaT  is constrained to 1, then (2.16) becomes 
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2*2 )}({ o
TteE wRw            (2.17) 

Since the presence of the measurement noise adds only a 
constant term to the EE variance, the solution obtained by 
minimizing the cost function (2.17) does not vary with the 
noise variance. However, the final solution has to be 
obtained by the following scaling operation 

01,2 /][ aLww         (2.18) 

Note that for a vector 1
21 ,,, LT

L Ruuuu , we define  
1)1(

1, ,,,][ mnT
nmmnm Ruuuu  for Lnm1 . In 

order to find the solution for adaptive IIR filtering, the least-
squares-type cost function in [6], [9] is to minimize 

wRwTteE )}({ 2   subject to  1aaT         (2.19) 
On the other hand, to efficiently seek the TLS solution for 
adaptive estimation of IIR systems, the following Rayleigh 
quotient (RQ) is established in [10]:

wDw
wRww

T

T

tJ )}({        (2.20) 

where },{ MMNNdiag 0ID . Clearly, (2.20) is like (2.19). 
Now consider minimizing the RQ )(wJ . Forcing the 
gradient of )(wJ  with respect to w  to be equal to zero 
leads to the special generalized eigenvalue decomposition 
associated with the matrix pair ),( DR , that is,

0aDwR , 1aaT             (2.21) 
This shows that the unbiased parameter estimate of IIR 
systems can be also achieved by finding the generalized 
eigenvector associated with the smallest generalized 
eigenvalue of the matrix pair ),( DR .

C. Inverse Power Iteration 
The inverse-power (IP) iteration for finding the 

eigenvector associated with the smallest generalized 
eigenvalue of the matrix pair ),( DR  is as follows [14]. 

Randomly produce the initial value )0(w , for ,2,1t
solve a set of linear equations 

)1()(ˆ tt wDwR (2.22)
and perform the following normalization 

)(ˆ/)(ˆ)( ttt www .       (2.23)
It can be seen that the core of the IP iteration is (2.22). 

Moreover, it is shown in [14] that the IP iteration globally 
exponentially converges to the eigenvector associated with 
the smallest generalized eigenvalue of the matrix pair 

),( DR . Unfortunately, the IP iteration is an algorithm with 

computational complexity ).( 3LO Note that if the inverse 
update formula of R  is used like the RLS algorithms, the IP 
iteration will become an algorithm with computational 
complexity ).( 2LO  However, the potential instability of the 
inverse update formula of the covariance matrix may cause 
the potential instability of such IP iteration. 

Since we expect that the non-normalized eigenvector 
associated with the smallest generalized eigenvalue of the 

matrix pair ),( DR  has the first entry to be fixed as 1 , we 
may implement an IP iteration in conjunction with monic 
normalization, which is given as follows. 

Randomly produce the initial value )0(~w  and let 
1)]0(~[ 1,1w , for ,2,1t

solve a set of linear equations 
)1(~)(ˆ tt wDwR (2.24)

and perform the following monic normalization 
1,1)]0(ˆ/[)(ˆ)(~ www tt .      (2.25)

Using the eigenvalue decomposition (EVD), it can be 
shown that )(~ tw  given by the simple IP iteration (2.24) and 
(2.25) globally exponentially converges to the true 
augmented parameter vector TT ],1[ h as t .

For implementation convenience, we may combine (2.24) 
and (2.25) together to get the following compact IP iteration. 

Randomly produce the initial value )0(w , for ,2,1t
solve a set of linear equations 

TTTT ttt )]1(,1[)()](,1[ wDwR . (2.26)
Note that it is straightforward to establish the equivalence 

of (2.26) to (2.24) and (2.25). 

III. THE APPROXIMATE INVERSE POWER ALGORITHM

In this section, we develop an efficient algorithm for 
finding the TLS solution of the adaptive IIR filtering 
problem. This algorithm is an approximate inverse-power 
(AIP) iteration. Choosing update direction to be the data 
vector will also give rise to the computationally efficient 
algorithm with computational complexity )(LO .

The basic idea is to update the parameter vector in (2.26) 
by the following rank-one updating formula 

)()()1()( tttt rww       (3.1a) 
or equivalently 

TTTTTT tttt )](,0)[()]1(,1[)](,1[ rww    (3.1b) 
Substituting (3.1) into (2.26) yields the approximate formula 

TTTTT tttttt )]1(,1[)()]()()1(,1)[( wDrwR    
 (3.2) 

where )(t  and )(t  can be efficiently determined in )(LO
multiplications by the following equations 
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Notice that )(tR  in adaptive identification is computed by a 
recursive formula 
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T
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where
)()()1()( tdtdtctc        (3.5a) 
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)()()1()( ttdtt rgg        (3.5b) 

)()()1()( tttt TrrRR       (3.5c) 
The  in (3.4) and (3.5) is the forgetting factor. 
Substituting (3.4) and (3.5) into (3.3) yields 
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where
)()1()( ttty T

a da        (3.7) 
After some manipulations, (3.6) can be further represented 
as
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Let
)1()()()(11 tttta T wRr           (3.9a) 

)()()1()()()(1 ttttttb TT grwRr      (3.9b) 

)1()1(1)(22 ttta T aa           (3.9c) 
TTT ttttb )]1(,1)[()]1(,1[)(2 wRw     (3.9d) 

The matrix form of (3.8) is then given by  
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In order to compute efficiently the coefficients of (3.10), let 
)()()( ttt rRk           (3.11) 

TTT ttttb )](,1)[()](,1[)(0
2 wRw    (3.12) 

Here the gain vector )(tk  can be fast computed as shown in 
Table I. 

TABLE I
FAST SCHEME FOR COMPUTING THE GAIN VECTOR

Algorithm                                                          MAD’s  
Initialize .)0(,)0(~,)0( 2222 00B0B LL

)()1()1()( 222 tttt T
LL rBB L2
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t
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m

)()(~)()( 22 tttt LBmk L2
                                           Total real MAD’s:  810L

Note that the fast scheme for the gain vector )(tk  shown 
in Table I is derived by the approach similar to [15]. It 
should be emphasized that unlike the well-known Kalman 
gain vector that is based on the matrix-inversion lemma and 
can be numerically unstable, the fast scheme for computing 

)(tk  is independent of the matrix-inversion lemma, thereby 
being numerically stable. 

Using the gain vector )(tk , the coefficients )(11 ta  and 
)(1 tb  can be efficiently computed by 

)()()(11 tkr tta T           (3.13) 

)()()1()()(1 tttttb TT grwk     (3.14) 
Note that with the gain vector )(tk  and the coefficients 

)(11 ta , )(1 tb  and )(ty , )(2 tb  and )(0
2 tb  can be efficiently 

computed by 
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Solving (3.10), it follows that 
)]()()()(/[)]()()()([)( 122112122 tbtytatatbtytbtat aa

                          (3.17) 

TABLE II
AIP ALGORITHM

Initialize: T]0,,0,0[)0(w , 0)0(0
2b , 0.1~99.0

For ,2,1t                                                    MAD’s 
1 update the data vector )(tr
2 update gain )(tk  (see Table I) 810L
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Notice that )(t  is not required for finding the TLS solution 
of adaptive IIR filtering. The above algorithm is called the 
approximate inverse-power (AIP) algorithm and is 
summarized in Table II.   

Since the monic normalization is adopted, the above table 
does not include the tenth and eleventh manipulations in 
Table 1 in [10], which saves about L2  MAD’s, where 
MAD's stands for the number of multiplies and divides. 
Moreover, since the parameter vector being tracked is 
reduced to L  dimensions from 1L  dimensions, more 
manipulations have been saved. It can be shown by 
computing the MAD’s of each manipulations that the 
MAD’s of the AIP algorithms is 1717 NL , while the 
MAD’s of the RTLS algorithm [10] is 74319 NL . This 
indicates that the AIP algorithm is able to achieve a 
substantial reduction in the computational complexity from 
the RTLS algorithm. 

IV. THEORETICAL ANALYSIS

Performing the generalized eigenvalue decomposition 
(GEVD) of the matrix pair ),( DR  gives

),,,(diag 121 LVDVR   or jjj vDvR   (4.1) 

where V  is the generalized eigenvector matrix, and  jv

and j  are the j-th generalized eigenvector and eigenvalue, 
respectively. Note that the eigenvalues are arranged in a 
descending order 121 LL . This means that 

D  and R  have the EVD: VDVT  and VRVT ,
where ),,,(diag 121 L , ),,,(diag 121 L ,
and i/ii  ( 1,,1 Li ).

The following lemma is obvious.  
Lemma 4.1 If R̂  is of full rank, then 1LL .

By substituting TT ],1[ ww  into (2.20), we have the 
cost function 

)1/(],1[],1[)( aawRww TTTTJ    (4.1) 
The next Theorem 4.1 guarantees that we can search the 
global minimum point of )(wJ  by the gradient descent 
method. Its proof is omitted here due to limited space. 

Theorem 4.1  If 1LL  and 01,1 Lv , where 1,1 Lv  is 

the )1(L -th element of the first row of V , then 

1,111 / LLL vvw  is the global minimum point of )(wJ .
All the other stationary points are the saddle points of 

)(wJ .
We can show that the proposed AIP algorithm is globally 

convergent. To this end, a lemma is first stated.    
Lemma 4.2 If t  is large enough so that RR )(t , then 

it always holds that ( ( )) ( ( 1)) 0J t J tw w .
Theorem 4.2  Assuming that t  is large enough so that 

RR )(t , then hw )(t  with probability 1 as .t

The proofs of Lemma 4.2 and Theorem 4.2 are omitted 
here due to limited space. 

V. SIMULATION RESULTS

Computer simulations have been conducted to verify the 
performance of the proposed AIP algorithm. Here all the 
simulation results are averaged over 30 independent tests.

The unknown linear IIR system is defined by [16] 

4321

432

64.088.08.01.11
7.05.04.01)(

zzzz
zzz

zH .

Thus, 5N , 5M  and 91MNL . The standard 
RLS, the RTLS in [10], the IP in [12], and the proposed AIP 
algorithms are applied to the system identification 
experiment for comparison. The IIR system is excited by the 

Fig. 1. AIP, IP, RLS and RTLS are used to identify a linear time-
invariant IIR system. The errors denoted by dash-dot line, dashed line, 
dotted line and solid line are obtained by AIP, IP, RLS and RTLS, 
respectively.

Fig. 2. AIP, IP, RLS and RTLS are used to identify a linear time-
varying IIR system. The errors denoted by dash-dot line, dashed line, 
dotted line and solid line are obtained by AIP, IP, RLS and RTLS, 
respectively.
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colored input signal )(tx , which is generated by the first-
order AR model )()1(25.0)( ttxtx , where )(t  is a 
white noise with unit variance. The IIR system output is 
contaminated by additive, zero-mean and white Gaussian 
noise with a unit variance, which is statistically independent 
of the input signal )(tx . The forgetting factor  used in 
simulation is chosen to be 0.99. The estimation error is 
defined by 

22
/)()( hhw ttE

where T]7.0,5.0,4.0,0.0,0.1,64.0,88.0,8.0,1.1[h .
When the system is linear time-invariant, the estimation 

results of the RLS, RTLS, IP and AIP algorithms are shown 
in Fig. 1. In order to test the tracking behavior of the relative 
algorithms in a nonstationary environment, the parameter 
estimation experiment is repeated, but each of the numerator 
parameters of the unknown IIR system will undergo a sign 
change at 1001t . The obtained simulation results are 
plotted in Fig. 2. It is interesting to see from Figs. 1 and 2 
that the AIP algorithm has the slightly slow convergence in 
the first segment of the learning curves, but it has the 
significantly small statistical fluctuation in comparison with 
the IP and RTLS algorithms. Note that the AIP algorithm is 
implemented at a numerical cost much lower than the RTLS 
algorithm. As expected, the standard RLS algorithm fails to 
work because it produces biased parameter estimates. The 
numerical stability of the AIP algorithm has also been tested 
via a long-time ( )102 5t  experiment with satisfactory 
results as shown in Fig. 3.

VI. CONCLUDING REMARKS

The problem of adaptive identification of IIR systems 
subject to output noise has been studied in this paper. A fast 
algorithm has been proposed to recursively compute the 
TLS solution for unbiased estimation of IIR systems. The 
main idea is to efficiently compute the non-normalized 
eigenvector associated with the smallest eigenvalue of the 
sample covariance matrix via approximate inverse-power 
iteration and fast gain vector computation.  It has been 
demonstrated that in addition to its good long-term 

numerical stability, the proposed AIP algorithm has a 
significant computational advantage over the fast RTLS 
algorithm in [10] and the IP algorithm in [12]. The global 
convergence and the estimation unbiasedness of the 
proposed algorithm have been established. The good 
performance of the AIP algorithm has been verified via 
computation simulations.  
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Fig. 3. The long-time numerical stability of the proposed AIP algorithm is 
tested.
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