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Abstract— In this paper, we study synchronization of complex
random networks of nonlinear oscillators, with specifiable
expected degree distribution. We review a sufficient condition
for synchronization and a sufficient condition for desynchro-
nization, expressed in terms of the eigenvalue distribution of
the Laplacian of the graph and the coupling strength. We then
provide a general way to approximate the Laplacian eigenvalue
distribution for the case of large random graphs produced by a
generalization, [2], of the Erdös-Rényi model. Our approach is
based on approximating the moments of the eigenvalue density
function. The analysis is illustrated by using a complex network
of nonlinear oscillators, with a power-law degree distribution.

I. INTRODUCTION

The Erdös-Rényi (E-R) random graph model [3] is the
oldest and one of the most studied techniques to generate
complex networks. However, some interesting features of
large-scale complex networks cannot be emulated by the
E-R construction. One of its most important limitations is
the infeasibility of generating arbitrary degree distributions.
(The degree of a node in a graph is the number of edges
connected to it; the degree distribution is then the monotonic
nonincreasing sequence of the node degrees.). Specifically,
while the original E-R models can only provide either
binomial or Poisson degree distributions, many biological
and technological networks might be described by other
degree distributions [1],[4],[14],[16].

Our interest in this paper is the analytical study of the
synchronization phenomenon in complex networks of non-
linear oscillators. In this direction, many efforts have been
invested in determining conditions under which a set of
dynamical nodes synchronize. Most of these studies mainly
focus on analyzing the nonlinear dynamics of completely
deterministic regular topologies [13], [17], excluding the
complexity originated from stochastically-generated connec-
tivity patterns.

In this paper, we merge the structural complexity of a
complex network topology with the dynamical complexity
of nonlinear oscillators. We review analytical conditions to
achieve synchronization among coupled identical nonlinear
systems connected in a graph. The mathematical structure of
our problem is closely related to that of consensus problems
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in networks of agents [11], as well as the task of analyzing
flocking/swarming conditions in a group of autonomous
agents [5], [8].

The organization of the paper is as follows. In Section
II, we review different approaches to constructing complex
networks through a set of simple rules. The issue of syn-
chronization in a network is discused in Section III, giving
conditions for synchronization in terms of the eigenvalue
distribution of a matrix representing the topology of the
network. The results are illustrated using a power-law inter-
connection of Rössler oscillators. Section IV presents a new
procedure to approximate the lower-order moments of the
eigenvalue density function of this type of random network
in the case of a large number of nodes. We end this paper
with some conclusions and comments for further research.

II. MODELING COMPLEX DYNAMICAL NETWORKS

The number of elements interacting in a complex large-
scale network is such that answering even simple struc-
tural and dynamical questions is usually an infeasible task.
Therefore, the development of models capable of matching
empirically-observed behaviour and amenable to analysis is
an important task.

A. Some Approaches to Generate a Complex Topology

A brief summary of the most popular ways to generate a
complex network is presented in this section. The descrip-
tions only try to give a flavor of the type of techniques one
can use to stochastically generate a complex network.

1) Barabási-Albert Model: The following algorithm was
suggested by Barabási and Albert [1] in order to grow a
network presenting the so-called scale-free or power-law
feature. In this recursive algorithm, we have a set of m0

nodes at the origin of time. Then, at every discrete-time step,
we add a new node with m edges that we link randomly to
a set of m different nodes in the network.When randomly
choosing the nodes to which to connect, assume node i
is selected with probability µi linearly proportional to its
degree. Growing a network with this algorithm gives rise to
a power-law degree distribution in the limit of large time,
i.e. P (k) ∼ 2m2k−3.

2) Watts-Strogatz-Newman Model: In the original model
by Watts and Strogatz [16], random graphs are obtained from
regular lattices by rewiring edges or by making shortcuts
between randomly chosen vertices. The resulting architecture
is intermediate between regular lattices and classical random
graphs. An exciting result observed in this model was the
following: even for small probability of rewiring p, while
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the local properties of the network are still nearly the same
as for the original regular lattice and the clustering coefficient
does not differ essentially from its initial value, the average
shortest-path length is already of the order of that for the
classical random graphs.

3) Erdös-Rényi Random Network Model: The basic E-R
random network is defined as a random graph of N labeled
nodes connected by l edges, which are chosen randomly
from all the N(N − 1)/2 possible edges. The network is
generated with the following simple rule: Starting from N
isolated nodes, add edges between every pair with a fixed
probability p.

The main goal of the elegant theory developed for this type
of network is to determine the value of p at which a particular
property of the graph arises with high probability. In the
case of large networks, this model renders a Poisson degree
distribution; therefore, nodes in the network present a quite
homogeneous degree. The fact that the degrees of the nodes
are fairly evenly distributed makes this model inappropriatte
to match many real-world networks.

4) Generalized Erdös-Rényi Model: In this paper, we use
a random graph model introduced in [2] as an attempt to
generalize the Erdös-Rényi model to the case of a given
degree distribution. Let us consider a given expected degree
sequence w = (w1, w2, ..., wn). In this model, edges are
independently assigned between each pair of nodes (i, j)

with probability pij = wiwjρ, where ρ =
(∑N

i=1 wi

)−1

. It
is easy to verify that the expected degree of i is wi. We can
recover the original E-R model by using a uniform degree
distribution, i.e., wi = w = Np for every node i in the
graph.

At this point we assume that maxi w2
i <

∑
k wk so that

pij ≤ 1 for all i and j. This assumption assures that the
sequence wi is ’graphical’ (in the sense that it satisfies
the necessary and sufficient condition for a sequence to be
realized as a graph [3]).

Note that, contrary to the approaches presented above,
this model does not attempt to explain the mechanisms
under which a complex graph develops a given degree
distribution. Rather, it takes the degree distribution as given
from empirical data, and tries to derive the structures and
properties (such as connected components, diameters, etc.).

III. SYNCHRONIZATION IN DYNAMICAL NETWORKS

Consider a dynamical network consisting of N linearly
and diffusively coupled identical nodes, where each node
is an n-dimensional nonlinear oscillator (possibly chaotic in
isolation). The state equations of this network are

ẋi = f (xi) + γ

N∑
j=1,j �=i

aijΓ (xj − xi) , i = 1, 2, ..., N,

(1)

where xi represents the n-dimensional vector of state vari-
ables corresponding to node i, and f (·) is a nonlinear
function describing the dynamics of the isolated nodes. We
also have a positive scalar γ which can be interpreted as a

global coupling strength parameter, and an n × n matrix Γ
representing how states in the neighboring oscillators linearly
combine to affect the dynamics.

Let us denote by A the matrix whose elements aij = aji

are defined to be 1 when there is a connection between node
i and j, 0 otherwise. This symmetric matrix is called the
adjacency matrix of the undirected graph, and it comprises
all the information regarding the topology of the network.
We also define the degree ki of node i as the number of
edges connected to it. Using the degrees, we can obtain the
so-called diagonal degree matrix D ≡ diag (k1, k2, ..., kN ) ,
and the Laplacian matrix L ≡ D −A = [lij ]. The dynamics
(1) can then be written as

ẋi = f (xi) − γ
N∑

j=1

lijΓxj , i = 1, 2, ..., N. (2)

Assuming that L is a symmetric and irreducible matrix
(meaning that the network presents a single connected
component) it can be verified that its smallest eigenvalue
λ1 is zero with algebraic multiplicity one, and the other
eigenvalues λ2 ≤ ... ≤ λN are strictly positive.

Asymptotic synchronization in the coupled network (1) is
said to be achieved if

xi(t) → s(t), for i = 1, 2, ...N as t → ∞

where s(t) satisfies the isolated-node dynamics ṡ (t) =
f (s (t)). In the case of nonlinear systems, s(t) can be not
only an equilibrium point, but also a periodic or even chaotic
orbit, broadening the behavior of interest beyond the usual
fixed-point stability.

In the following, two useful lemmas proven in [15] are
presented.

Lemma 1: Consider the dynamical network (2). Let 0 =
λ1 ≤ λ2 ≤ ... ≤ λN be the eigenvalues of the Laplacian
matrix L, and let Df (s) be the Jacobian of f (·) at s (t).
If the following N − 1 linear time-varying systems are
exponentially stable

ẇ = [Df (s (t)) − γλkΓ]w, k = 2, ..., N (3)

then individual node state vectors synchronize exponentially
fast.

Lemma 2: Consider the dynamical network (2). Suppose
that there exists a diagonal matrix Λ and two constants d̄ < 0
and τ > 0, such that[

Df (s (t)) + d̄Γ
]T

Λ − Λ
[
Df (s (t)) + d̄Γ

]
≤ −τIn (4)

for all d ≤ d̄. If γλ2 ≥ d̄, the network synchronizes
exponentially fast.

Therefore, Lemma 2 shows the existence of a threshold
d̄/λ2 on the coupling strength γ for synchronization although
it does not provide an explicit form for the value of this
threshold.

For sake of clarity, we will restrict ourselves to the case
of chaotic synchronization. Denote by h1 ≥ h2 ≥ ... ≥ hn

the Lyapunov exponents of each individual dynamical node.
A chaotic regime in the isolated dynamics of the nodes is
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characterized by the maximum Lyapunov exponent h1 being
positive. In the following useful theorem, introduced in [13],
we assume the isolated nodes are chaotic.

Theorem 3: Consider network (2) with identical nodes
that are chaotic in isolation. If the network attains synchro-
nization exponentially, then,

γλN < h1. (5)
Therefore, this theorem indicates the counterintuitive idea

that a sufficiently large coupling strength may lead to desyn-
chronization [7] in the chaotic case. A similar phenomenon
has been reported in the closely related problem of stability
of multiagent systems with time-dependent communication
links [10]. In that paper, interaction of dynamical systems
is analyzed under the perspective of information flow. It is
shown there that more information flow among the agents
may lead to a loss of convergence of the individual agents’
states.

The above analytical conditions have been illustrated for
networks of deterministic topologies of relatively small size
in [13]. In the following, we extend the illutration to the case
of stochastically-generated large-sized networks. Consider
a power-law network with 100 nodes generated by the
generalized E-R method. We analyze the cases in which the
exponent of the distribution is β = 3.2 and 2.4. At each node,
we locate a Rössler oscillator1, allowing interaction through
the edges of the power-law graph. The nonlinear dynamics
of the coupled network of Rössler oscillators is given by

ẋi = −(yi + zi) − 0.4

100∑
j=1

lijxj , (6)

ẏi = xi + ayi − 0.4

100∑
j=1

lijyj ,

żi = b + zi(xi − c) − 0.4

100∑
j=1

lijzj .

In this paper we have chosen the parameters of each
isolated oscillator in such a way that they present chaotic
behaviour. In this way, we expect the synchronized state of
the network to be chaotic as well. Under this assumption, and
after numerically calculating the Lyapunov exponent of the
oscillator, we determine the threshold in the second smallest
eigenvalue λ2 for the network to synchronize to be 26.4, for
a coupling strength γ = 0.4.

In Fig. 2, we show the eigenvalue histograms for both
β = 3.2 (above) and β = 2.4 (below). The threshold in
the value of λ2 to achieve synchronization is marked with
a dashed line on the figures. We see that the values chosen
must give rise to a synchronized network for β = 3.2, and
could produce desynchronized behaviour for β = 2.4.

Fig. 3 represents the evolution of the state xi for several
oscillators in the network. We have chosen, in order of
decreasing degree, the most connected node, the third, the

1The Rössler oscillator was originally proposed to model the nonlinear
dynamics of a chemical reaction. We have chosen this oscillator because it
is one of the simplest models able to present a chaotic behavior [17].

Fig. 3. Histogram of the eigenvalues of the Laplacian of a Power-Law
graph with 600 nodes. Notice the trivial eigenvalue at the origin.

fifth, the thirtieth and the sixtieth as a representative set of
the 100 nodes involved in our numerical simulations. In the
upper part of the figure, we represent the case in which
synchronization is achieved. We can observe how, even for
initial conditions randomly chosen in quite a broad range
(uniformly distributed between -10 and 10), the nodes tend
to a synchronized state in a relatively short time. In the lower
case, the synchronized state is not stable. Therefore, even for
very closely chosen initial conditions, the values of xi for
the representative set of nodes diverge in time, as predicted.

IV. EIGEVALUE SPECTRA AND SYNCHRONIZATION IN

RANDOM NETWORKS

From the theoretical results presented above, we conclude
that the second smallest eigenvalue, λ2, of the network
Laplacian L plays a central role in determining whether
synchronization occurs. An example of the eigenvalue distri-
bution of the Laplacian is in Fig. 1 for the case of a power-
law graph with N =600 nodes. Notice that the spectrum
contains a single trivial eigenvalue at the origin, and a
nontrivial spectrum beyond that. The cumulative distribution
function (cdf) of the eigenvalues remains approximately in-
variant over different realizations of the 600-node power-law
graph. Furthermore, the cdf of the eigenvalues of the size-
normalized Laplacian 1

N L remains approximately invariant
as N increases.

Therefore, our dynamical problem is reduced to the al-
gebraic problem of determining the value λ2 from the
stochastic definition of the random graph (note that this
eigenvalue determines the lower endpoint of the nontrivial
support of the distribution). Then, combining this value with
the numerically calculated largest Lyapunov exponent h1,
we will be in a position to determine the range of values
of the coupling strength γ to achieve synchronization in the
network.

Before presenting our approach to estimating the eigen-
value spectrum of the Laplacian for the generalized E-R
model, some notation is introduced.

Notation: We use the operator trNE to denote the
averaged expected trace for an N × N random matrix M
with entries mij :

trNE(M) :=
1

N

N∑
i=1

E[mii].
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Fig. 1. Eigenvalue histograms for two power-law networks of 100 nodes. Synchronization is achieved for the case β = 3.1 (upper part of the figure),
and for β = 2.4 we reach a desynchronized state (lower part).

Fig. 2. Time evolution of the x state for the first, the third, the fifth, the thirtieth and the sixtieth most connected nodes. Synchronation can be observed
in the upper case. A desynchronized behaviour is achieved in the lower case.

The expected n-th moment associated with the eigenvalue
distribution of the size-normalized Laplacian 1

N L is then
given by 1

Nn trNE(Ln). For well-behaved matrix ensembles,
these moments are known to converge as N → ∞ [9]. Let
us denote by αn the limit of the n-th moment,

αn := lim
N→∞

1

Nn
trNE(Ln).

A. Moment-Based Reconstruction of the Eigenvalue Spec-
trum of the Laplacian

In this section, we present an approach to estimate
the probability distribution of the eigenvalues of the size-
normalized Laplacian matrix of a large network pro-
duced by the generalized E-R construction. Our method is
based on approximating the moments of the distribution
from knowledge of the expected degree distribution vector
w = (w1, w2, ..., wN ). Given all the moments, one can in
principle recover the eigenvalue distribution; however, our
focus is on the first few moments.

Determining the exact value of the moments of the
Laplacian is an intricate combinatorial problem. Instead, we
introduce a much simpler expression that is exact up to third-
order moments and gives a good approximation for a few
more moments beyond the third.

The proposed approximation for the n-th moment of the
(non-normalized) Laplacian takes the form:

trNE [(D − A)
n
] ≈ trNE

[
n∑

k=0

(
n

k

)
(−1)kAkDn−k

]

=

n∑
k=0

(
n

k

)
(−1)ktrNE

[
AkDn−k

]
.(7)

The approximate expression on the right is what one obtains
if D and A commute, which is not the case. Nevertheless,
this approximation —which is considerably more tractable
than the exact expression— yields quite accurate results.

The problem of approximating moments of the random
matrix is now reduced to finding a closed form for the terms
trNE

[
AiDj

]
, for all pairs of positive integers i, j. Based

on the description in Section 2, the generalized E-R random
graph can be generated by defining a matrix P ≡ ρww

T

obtained by collecting the terms pij = ρwiwj that define the
probability of linking nodes i and j, i �= j; since we don’t
allow self-loops, pii = 0. It is immediate to see that the
expectation of the adjacency matrix of the graph is E [A] =
P=ρ

(
w

T
w

)
.

In the following, we determine the expectation of the
diagonal elements of the powers of the adjacency matrix A.
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In the case of the second power,

(
E

[
A2

])
ii

= E

[∑
k

aikaki

]
=

∑
k

E
[
a2

ik

]
=

∑
k

E [aik] = ρwi

∑
j

wj = wi. (8)

In the cubic case,

(
E

[
A3

])
ii

= E

[∑
r

air

∑
k

arkak,i

]

=
∑

r

⎛
⎝E

[
a2

iraii

]
+

∑
k �=i

E [airarkaki]

⎞
⎠

= E [aii] +
∑
k �=i

E [aiiaik] +
∑
r �=i

E [airaii]

+
∑
r �=i

∑
k �=i

E [airarkaki]

= pii +
∑
k �=i

piipik +
∑
r �=i

pirpii

+
∑
r �=i

∑
k �=i

pirprkpki. (9)

Since we don’t allow self-loops in our network (pii = 0),
only the last addend survives. Therefore, this term can be
easily written in terms of wi as(

E
[
A3

])
i,i

= ρ3w3
i

∑
r �=i

∑
k �=i

w2
rw2

k (10)

In order to determine the expected value of the diagonal
elements of An for general n, we will use a graph-theoretical
interpretation. It is a well-known fact that the diagonal ele-
ments of the powers of the adjacency, i.e.,

(
Ak

)
ii

represents
the number of walks of length k starting on i and ending in
itself (allowing potential visits to node i in the middle of the
path). This quantity can be computed as presented below.

First of all, it is useful to define a function called the
compression of a set of elements, which will be denoted
by comp(si1,j1 , si2,j2 , ..., sik,jk

), as the multiplication of the
elements in the set after eliminating repetitive symbols. In
doing that, we take into account that symbols with symmetric
subindices are considered equivalent (si,j = sj,i). For
example, comp (s1,2, s1,2, s3,4, s2,1, s4,3) = s1,2s3,4.

Let qi(n) be the expected number of walks of length n
starting at i and ending at i for the first time. This quantity
can be easily computed as

qi (n) =
∑

i1,i2,...,in−1

{i1,i2,...,in−1}∈N̄(i)

comp
(
pi,i1 , pi1,i2 , ..., pin−1,i

)
,

where N̄ (i) is the set of integers {1, 2, ..., N} excluding i.
Note that this quantity can be directly computed as a function
of the expected degree sequence by direct substitution.

The total number of walks of length n can be computed
as

E ([An])i,i = qi (n) +
∑

qi (n1) qi (n2) δn1+n2,n (11)

+
∑

qi (n1) qi (n2) qi (n3) δn1+n2+n3 ,n + ...

Therefore, we can compute the diagonal terms as a function
of the given expected degree sequence. Based on these,
we can also find an approximate expression for the terms
E

[
AkDn−k

]
involved in the decomposition of the spectral

moments (7). By the strong law of large numbers, we can
estimate the elements di of the degree matrix D in the case
of large matrices as di 	

∑
j E [ai,j ] = wi. Therefore,(

E
[
AkDn−k

])
i,i

	 wn−k
i

(
E

[
Ak

])
i,i

,

and we can use (8)-(10) to yield the required terms in the
summation (7)

trNE
[
AkDn−k

]
	

⎧⎨
⎩

0 for k = 1,∑
i wn−1

i for k = 2,
ρ3

∑
i wn

i

∑
r �=i

∑
k �=i w2

rw2
k for k = 3.

For the case k > 3, the computation of
(
E

[
AkDn−k

])
i,i

in-
volves the solution of the expression (11). Therefore, we can
estimate the moments of the Laplacian from knowledge of
an expected degree sequence by using the above determined
values of the terms in (7).

From the description of the distribution given by the
moments, the eigenvalue spectrum of the Laplacian can be
constructed in several ways, depending on the specific form
of the expected degree distribution. Two alternatives are:

(i) Use the moments to determine the characteristic func-
tion by Taylor expansion

Mα(jv) =

∞∑
r=0

αr
(jv)

r

r!
,

and obtain the spectrum by inverse Fourier transformation
[12].

(ii) Use a multi-pole series expansion to determine the
Stieltjes transform of the eigenvalue distribution,

Sa(z) = −
1

z
−

∞∑
r=0

αr

zr+1
,

and make use of the Stieltjes-Perron inversion formula

pa(λ) =
1

π
lim
ξ→o

Im Sa(λ + jξ).

where pa(λ) denotes the eigenvalue distribution.

B. Illustration: Synchronization in a Power-Law Network

In order to illustrate how the above results can be applied,
we consider the case of a random graph with a power-law
expected degree distribution. By definition, in a power-law
network the probability that a node has degree k follows a
power-law distribution, i.e. P (k) ∼ ak−β . To yield a power-
law degree distribution from the generalized E-R model, we
choose a degree sequence w = (w1, w2, ..., wN ) satisfying
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wi = ci−1/(β−1) = ci−γ for i0 ≤ i ≤ i0 + N [2]. Here, c is
determined by the average degree d̄, and i0 depends on the
maximum degree m:

c =
β − 2

β − 1
d̄N−1/(β−1), (12)

i0 = N

[
d̄ (β − 2)

m (β − 1)

]β−1

.

As required for a power-law network, it can be verified that
the number of vertices of degree k is proportional to k−β .

Notice that many terms of the form
∑N

i=1 ws
i , s ∈ N are

involved in (12). In the case of large power-law networks,
this summation has a closed form solution in terms of the
powers of N [6]. By taking the term in the series with the
highest power of N , we obtain

N∑
i=1

ws
i =

i0+N∑
i=i0

(
ci−1/(β−1)

)s

	 cs (i0 + N)
1−s/(β−1)

1 − s/(β − 1)
, for N � i0. (13)

Therefore, by taking the leading term in the moments, we
reach,

αn 	
ρ2ncn

Nn+1

(i0 + N)
1−n/(β−1)

1 − n/(β − 1)
. (14)

The existence of a closed-form expression of this sort is a
consequence of the highly-structured expected degree distri-
bution.

We have compared this analytical approximation with
numerical values of the averaged spectra of 10 power-law
networks with 600 nodes (β = 3.2). The following table
contains a comparison of the first four moments:

αn Analytical moments Numerical Values
1 0.1495 0.1491
2 2.575e-2 2.571e-2
3 5.21e-3 5.1972e-3
4 1.2534e-3 1.2187e-3

In this example, the relative errors between analytical and
numerical results increase with the order of the moment; the
maximum error is around 3% in the fourth moment.

V. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we have reviewed several stochastic algo-
rithms to construct complex networks by simple rules, and
have presented explicit conditions to achieve synchronization
of oscillators at the network nodes. We discussed the central
role of the second smallest eigenvalue of the Laplacian in
the stability of the synchronized state. A novel approach to
approximate the moments of the spectrum of the Laplacian
for stochastically generated large networks was presented.

Further analytical studies are needed, for example:
1) Improvement of our moment estimates by solving the

exact combinatorial problem underlying the computation of
the moments.

2) Extension of the approach to other types of stochasti-
cally generated networks, as well as switching topologies.

3) Determination of the robustness of the synchronized
network under removal of edges or nodes.

4) Development of approaches to study synchronization
of non-identical oscillators linked by heterogeneous connec-
tions.
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