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Abstract— A procedure for constructing approximate
stochastic models for chemical reactions is presented. This is
done by representing the population of various species involved
in a chemical reaction as the continuous state of a polynomial
Stochastic Hybrid System (pSHS). An important property of
pSHSs is that the dynamics of all the statistical moments of its
continuous states, evolves according to a infinite-dimensional
linear ordinary differential equation (ODE). Under appropriate
conditions, this infinite-dimensional ODE can be accurately
approximated by a finite-dimensional nonlinear ODE, the
state of which typically contains the moments of interest. In
this paper, for a very general class of chemical reactions,
we provide existence and uniqueness conditions for these
finite-dimensional nonlinear ODEs. Furthermore, explicit
formulas to construct them are also provided.

To illustrate the applicability of our results, we construct an
approximate stochastic model for a decaying and dimerizing
chemical reaction set. Moment estimates obtained from the
finite-dimensional nonlinear ODE are compared with estimates
obtained from a large number of Monte Carlo simulations.

I. INTRODUCTION

The time evolution of a spatially homogeneous mixture
of chemically reacting molecules is often modeled using a
stochastic formulation, which takes into account the inherent
randomness of thermal molecular motion. This formulation
is superior to the traditional deterministic formulation of
chemical kinetics and is motivated by complex reactions
inside living cells, where small populations of key reactants
can set the stage for significant stochastic effects [1]- [4].

In the stochastic formulation, the time evolution of
the system is described by a single equation for a grand
probability function, where time and species populations
appear as independent variables, called the Master equation
[5]. However, this equation can only be solved for relatively
few, highly idealized cases and generally Monte Carlo
simulation techniques are used [6]- [9]. Since one is often
interested in only the first and second order moments for the
number of molecules of the different species involved, much
effort can be saved by applying approximate methods to
produce these low-order moments, without actually having
to solve for the probability density function. Various such
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approximate methods have been developed, for example,
using the Fokker-Plank approximation or expanding the
Master equation [5].

In [10], an alternative approximate method for estimating
lower-order moments was introduced. This was done by
representing the dynamics of a chemical reaction as a
Stochastic Hybrid System (SHS) whose state x, is the
population of all the species involved in the reaction. In
order to fit the framework of our problem, this class of SHS
had trivial continuous dynamics ẋ = 0, with reset maps and
transitional intensities defined by the stoichiometry and the
reaction rates of the reactions, respectively. In essence, if
no reaction takes place, the population of species remain
constant and whenever the reaction takes place, the reset
map is “activated” and the population is reset according to
the stoichiometry of the reaction. Details for the stochastic
modeling of chemical reactions are presented in Sec. II.

It was also shown in [10] that these SHSs used to model
chemical reactions are actually polynomial Stochastic Hybrid
Systems (pSHS). An important property of pSHSs is that,
if one creates an infinite vector containing all the statistical
moments of x, the dynamics of this vector is governed
by an infinite-dimensional linear ordinary differential
equation (ODE) which we call the infinite-dimensional
moment dynamics. In general, the infinite-dimensional
moment dynamics cannot be solved analytically, however,
as shown in Sec. III, under appropriate conditions, they can
be approximated by a finite-dimensional nonlinear ODE,
which we call the truncated moment dynamics. The state of
the truncated moment dynamics µ , typically contains the
lower-order moments of interest. A procedure to construct
these truncated moment dynamics was outlined in [10].

The procedure proposed in [10] was general but not
systematic. Moreover, [10] provided no conditions under
which the truncated moment dynamics could be found. In
this paper we resolve these issues for a very general class of
K chemical reactions involving n species. More specifically,
we show in Sec. IV, that given a vector µ , containing all the
first and second order moments of x, one can find truncated
moment dynamics, if one drops some second and all first
order moments from the second time derivative of µ . This
will be valid, as long as these moments are dominated
by the fourth order moments of x, which also appear in
the second time derivative of µ . We also give specific
conditions on the stoichiometry of the reactions, for which,
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this truncated moment dynamics is unique. Furthermore,
explicit formulas to construct them are also provided. The
striking features of these formulas is that are independent
of K, the stoichiometry of the reactions and the reaction rates.

To summarize, the results of this paper provide a fully
automated procedure for constructing truncated moment
dynamics for general sets of chemical reactions. To illustrate
the applicability of our results we consider a decaying-
dimerizing reaction set [7], [14]. This reaction is difficult to
simulate due to the existence of two very distinct time scales
and methods that do not require Monte Carlo simulations
are of special interest. Moment estimates obtained from the
truncated moment dynamics are compared with estimates
obtained from a large number of Monte Carlo simulations.

II. STOCHASTIC MODELING OF CHEMICALLY REACTING
SYSTEMS

Consider a system of n species X j, ∀ j = {1, . . . ,n} inside
a fixed volume V involved in K reactions of the form

Ri : uaiAi +ui1X1 + . . .+uinXn
ci−→ vi1X1 + . . .+ vinXn +∗ (1)

for all i∈ {1, . . . ,K}, where species Ai have a constant num-
ber of molecules1, ui j ∈N≥0 is the stoichiometry associated
with the jth reactant in the ith reaction and vi j ∈ N≥0 is
the stoichiometry associated with the jth product in the ith

reaction, and ∗ represents products other than the species
X j. As all chemical reactions occur in a series of elementary
reactions [11], which are generally uni- or bi-molecular, we
assume

uai +ui1 + . . .+uin ≤ 2, ∀i = {1, . . . ,K}. (2)

The reaction parameter ci characterizes the reaction Ri and,
together with the stoichiometry, defines the probability that
a particular reaction takes place in an “infinitesimal” time
interval (t, t + dt]. This probability is given by the product
of the following two terms:

1) the number hi of distinct molecular reactant combina-
tions present in V at time t for the reaction Ri,

2) the probability cidt that a particular combination of Ri
reactant molecules will actually react on (t, t +dt].

For simplicity, we assume ci to be constants, but in general
they can be allowed to be functions of time. The number,
hi depends both on the reactants stoichiometry ui j in Ri and
on the number of reactant molecules in V . Table I shows the
value of hi for different reaction types [6]. In this table and
in the sequel, we denote by x j, the number of molecules of
the species X j in the volume V . The reaction parameter ci is
related to the reaction rate ki in the deterministic formulation
of chemical kinetics by the formulas shown in the right-most
column of Table I. For convenience, we group the reactions
in (1) into S groups, such that, reactions in each group have

1We assume that the population of species Ai is large compared to species
X j , and hence, can be assumed to be a constant.

TABLE I
hi(x) AND ci FOR DIFFERENT REACTION TYPES.

Reaction Ri hi(x) ci
X j −→ ∗ x j ki

X j +Xt −→ ∗, (t 6= j) x jxt
ki
V

2X j −→ ∗ 1
2 x j(x j−1) 2ki

V

identical hi(x). Towards that end, we order the reactions in
the following way

∀ i = {K0 +1, . . . ,K1}, hi(x) = hK1(x)
∀ i = {K1 +1, . . . ,K2}, hi(x) = hK2(x) (3)

...
∀ i = {KS−1 +1, . . . ,KS}, hi(x) = hKS(x),

where S ≤ K, K0 = 0 and KS = K. If all the reactions in (1)
have different hi(x), then S = K and Ki = i, ∀i = {1, . . . ,K}.

To model the time evolution of the number of molecules
x1, x2, . . . , xn, a special class of Stochastic Hybrid Systems
(SHS) were introduced in [10]. More specifically, to fit the
framework of our problem, these system are characterized
by trivial dynamics

ẋ = 0, x = [x1, . . . ,xn]T , (4)

a family of K reset maps

x = φi(x−), φi : Rn→Rn, (5)

and a corresponding family of K transition intensities

λi(x), λi : Rn→ [0,∞) (6)

for all i = {1, . . . ,K}. Each of the reset maps φi(x), and cor-
responding transition intensities λi(x) are uniquely defined
by the ith reaction in (1) and given by

x 7→ φi(x) =


x1−ui1 + vi1
x2−ui2 + vi2

...
xn−uin + vin

 , λi(x) = cihi(x) (7)

for all i = {1, . . . ,K}. In essence, if no reaction takes place,
the state remains constant and whenever the ith reaction takes
place, φi(x) is “activated” and the state x is reset according
to (7), furthermore, the probability of the activation taking
place in an “infinitesimal” time interval (t, t +dt] is λi(x)dt.

III. MOMENT DYNAMICS

To fully characterize the dynamics of a chemical reaction
one would like to determine the evolution of the probability
distribution for x(t). In general, this is difficult and a more
reasonable goal is to determine the evolution of a few low-
order moments.

Given a vector m = (m1,m2, . . . ,mn) ∈ Nn
≥0 of n greater

than equal to zero integers, we define the test-function
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associated with m to be ψ(m)(x) = x(m), ∀ x ∈ Rn and the
(uncentered) moment associated with m to be

µ
(m)(t) = E

[
ψ

(m)(x(t)
)]

, ∀t ≥ 0. (8)

Here and in the sequel, we use x(m) to denote the monomial
xm1

1 xm2
2 · · ·xmn

n . The sum ∑
n
j=1 m j is called the order of the

moment. The time evolution of moments is given by the
following result, which is a straightforward application of
Theorem 1 in [12] to the SHS (4)-(6).

Theorem 1 : For every continuously differentiable function
ψ : Rn → R we have that

dE[ψ(x)]
dt

= E[(Lψ)(x)], (9)

where ∀x ∈ Rn

(Lψ)(x) =
K

∑
i=1

(ψ(φi(x))−ψ(x))λi(x). (10)

The operator ψ 7→Lψ defined by (10) is called the extended
generator of the SHS. �

Since, the reset maps φi(x) and transitional intensities λi(x)
are finite polynomials2 in x, the extended generator (Lψ)(x)
is a finite-polynomial in x for every finite-polynomial ψ(x)
in x. Such SHSs whose extended generator L is closed on
the set of finite-polynomials in x are called polynomial
Stochastic Hybrid System (pSHS).

Using (7), (9) and (10), the evolution of µ(mp) is given by

µ̇
(mp) = E[(Lψ

(mp))(x)] (11)

where

(Lψ
(mp))(x) =

K

∑
i=1

cihi(x)
{

φi(x)(mp)−x(mp)
}

=
K

∑
i=1

cihi(x)

{[
n

∏
j=1

(x j−ui j + vi j)
mp j

]
−x(mp)

}
.

As discussed briefly in the previous section, the time deriva-
tive of moment of order m∗ is given by a linear combination
of moments, moreover, because of (2), this linear combina-
tion of moments includes moments of order upto m∗+1. To
see this, we re-write (11) as

µ̇
(mp) = E

[
K

∑
i=1

cihi(x)x(mp)

{
n

∏
j=1

(
1+

vi j−ui j

x j

)mp j
−1

}]

where µ(mp) is a moment of order m∗. Now doing a binomial
expansion, we have

µ̇
(mp) = E

[
K

∑
i=1

cihi(x)x(mp)

(
n

∑
j=1

C
mp j
1

vi j−ui j

x j
+ . . .

)]
. (12)

2By a finite-polynomials in x we mean a function λ (x) such that x 7→ λ (x)
is a (multi-variable) polynomial of finite degree.

With x(mp) being a monomial of order m∗, and for some re-
actions, hi(x) being a polynomial of order 2, the polynomial

K

∑
i=1

cihi(x)x(mp)
n

∑
j=1

C
mp j
1

vi j−ui j

x j

will be order of m∗+1, and hence, will contribute moments
of order m∗+1 in µ̇(mp). Lesser order moments will appear
from the other terms in the binomial expansion. Thus, if one
now stacks all moments in an infinite vector µ∞, its dynamics
can be written as

µ̇∞ = A∞µ∞, (13)

for some appropriately defined infinite matrix A∞ [13].
In the sequel, we refer to (13) as the infinite-dimensional
moment dynamics.

Since we are only interested in computing a few low-
order moments, we rewrite (13) as

µ̇ = Ik×∞A∞µ∞ = Aµ +Bµ̄, µ̄ = Cµ∞, (14)

where µ ∈ Rk contains to the top k elements of µ∞, which
correspond to the lower-order moments of interest. Ik×∞

denotes a matrix composed of the first k rows of the infinite
identity matrix, µ̄ ∈Rr contains all the moments that appear
in the first k elements of A∞µ∞ but that do not appear in µ ,
and C is the projection matrix that extracts µ̄ from µ∞. Our
goal is to approximate the infinite dimensional system (13)
by a finite-dimensional nonlinear ODE of the form

ν̇ = Aν +Bϕ̄(ν , t), ν = [ν1,ν2, . . . ,νn]T (15)

where the map ϕ̄ : Rk×[0,∞) → Rr should be chosen so
as to keep ν(t) close to µ(t). We call (15) the truncated
moment dynamics and ϕ̄ the truncation function.

Let Ωµ be a set of initial conditions for which solutions to
(13) exists globally and their first k elements are uniformly
bounded by the same constant. When a sufficiently large
but finite number of derivatives of µ(t) and ν(t) match
point-wise, then, the difference between solutions to (14)
and (15) remains close on a given compact time interval,
this follows from a Taylor series approximation argument.
To be more precise, for each δ > 0 and T ∈ R, there exists
an integer N, sufficiently large, for which the following
result holds: Assuming that for every t0 ≥ 0, ∀µ∞(t0) ∈Ωµ

µ(t0) = ν(t0) ⇒ diµ(t0)
dt i =

diν(t0)
dt i , ∀i ∈ {1,2, . . . ,N}

(16)

where diµ(t0)
dt i and diν(t0)

dt i represent the ith time derivative of
µ(t) and ν(t) along the trajectories of system (13) and (15)
respectively at t = t0. Then,

‖µ(t)−ν(t)‖ ≤ δ , ∀t ∈ [t0,T ], (17)

along solutions of (13) and (15), where µ denote the first
k elements of µ∞. It has been shown in [13] that under ap-
propriate asymptotic stability conditions on (13), inequality
(17) can actually be extended ∀t ∈ [t0,∞).
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IV. CONSTRUCTION OF APPROXIMATE TRUNCATIONS

In this section, using (16), we construct approximate
truncated moment dynamics for the general set of reactions
introduced in Section II. Since the quantities of interest
in the stochastic approach are often the first and second
order moments, we construct truncation models whose state
contains all the first and second order moments of x.

Let vector µ ∈ Rk contain all the first and second order
moments of x. As with n species, there are in all3 2n +Cn

2
first and second order moments, we have k = 2n +Cn

2 . We
denote the pth element of µ to be µ(mp) = E[ψ(mp)(x)],
ψ(mp)(x) = x(mp) where mp = (mp1 ,mp2 , . . . ,mpn) and
∑

n
j=1 mp j = 1 or 2, ∀p = {1, . . . ,k}. For convenience, we

order the elements of µ in the following way.
1) The first n elements are of the form E[x j], i.e,

for each p = {1, . . . ,n}, mp = ep where ep =
{0, . . . ,0,1,0, . . . ,0} and the 1 occurs at the pth po-
sition.

2) The next n elements are of the form E[x2
j ], i.e, for each

p = {n+1, . . . ,2n}, mp = 2ep−n.
3) The last k−2n elements are of the form E[x jxt ], t 6= j,

i.e., for each p = {2n+1, . . . ,k}, mp = ep̄1 +ep̄2 where
p̄1, p̄2 ∈ {1, . . . ,n}, p̄1 6= p̄2.

With this, the evolution of vector µ can be written as

µ̇ = Aµ +Bµ̄, (18)

for some matrices A and B obtained from (11) and as µ

contains all the first and second order moments of x, µ̄ ∈Rr

is a vector of third order moments of x only. Our goal is to
approximate (18) by a finite-dimensional nonlinear ODE of
the form

ν̇ = Aν +Bϕ̄(ν , t), ν = [ν1,ν2, . . . ,νk]T (19)

with ϕ̄ : Rk× [0,∞)→ Rr chosen so that the condition (16)
holds. For simplicity of computation, we restrict ourselves
to functions ϕ̄(ν(t)), with entries ϕ(ν(t)) of the following
separable form

ϕ(ν(t)) =
k

∏
p=1

νp(t)
γp = ν(t)(γ), γ = (γ1, . . . ,γk) (20)

for appropriately chosen constants γp ∈ R. In general, it is
not possible to find ϕ̄(ν(t))) of the form (20) for which
(16) holds. We will therefore relax this condition and simply
demand the following

µ(t0) = ν(t0) ⇒ diµ(t0)
dt i =

diν(t0)
dt i +E[εi(x(t0))], (21)

∀i ∈ {1,2}, where the pth element of E[εi(x(t0))] contains
moments of x(t0). One can think of (21) as an approximation

3C`
h̄ is defined as follows: ∀`, h̄ ∈ N≥0

C`
h̄ =

`!
(`− h̄)!h̄!

, `≥ h̄,

= 0, ` < h̄.

where `! denotes the factorial of `.

to (16) which will be valid as long as the moments in diµ (t0)
dt i

dominate E[εi(x(t0))].

We make the following assumption on the stoichiometry of
the reactions in (1), which is essential for the uniqueness
for solution of γ .

Assumption 1 (Uniqueness) : Let αi j = vi j − ui j, ∀i =
{1, . . . ,K}, ∀ j = {1, . . . ,n}. Then,

1) For each j = {1, . . . ,n}, there exists q∈ {1, . . . ,S} such
that

Kq

∑
i=Kq−1+1

ciαi j 6= 0. (22)

2) For each p = {2n+1, . . . ,k}, there exists q∈ {1, . . . ,S}
such that

Kq

∑
i=Kq−1+1

ciαip̄1αip̄2 6= 0. (23)

�
The following theorem summarizes our result.

Theorem 2 : For every deterministic initial condition,
x(t0) = x(t0) with probability one, where x(t0) =
[x1(t0), . . . ,xn(t0)]T , there exists γ for which

µ(t0) = ν(t0) ⇒ dµ(t0)
dt

=
dν(t0)

dt
(24)

⇒ d2µ(t0)
dt

=
d2ν(t0)

dt
+ ε2(x(t0))

(25)

where the first n elements of ε2(x(t0)) are zero and all other
elements are polynomials in x(t0) of order 2 and diµ(t0)

dt i ,
diν(t0)

dt i represent the ith time derivative of µ(t) and ν(t)
along the trajectories of system (13) and (15), respectively
at t = t0. Furthermore, if Assumption 1 holds then γ is
uniquely determined. �

Remark 1. As µ(mp), ∀p ∈ {n + 1, . . . ,k}, is a second
order moment, d2µ

(mp)

dt2 is a linear combination of moments

of x upto order 4. Thus, d2µ
(mp)(t0)
dt2 is a polynomial in x(t0)

of order 4 and will generally dominate ε2p(x(t0)), the pth

element of ε2(x(t0)), which is a polynomial in x(t0) of order
2. This would occur, e.g., with 10 molecules for all species,
d2µ

(mp)(t0)
dt2 would be atleast two orders of magnitude larger

than ε2p(x(t0)).

Remark 2. If Assumption 1 holds, then, for each element
µ(m̄) of µ̄ given by m̄ = (m̄1, m̄2, . . . , m̄n), ∑

n
j=1 m̄ j = 3, γ

is uniquely determined by the following system of linear
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equations

m̄ =
k

∑
p=1

γpmp, (26)

γp =

 3 if m̄p−n = 3
1 if m̄p−n = 2
0 if m̄p−n ≤ 1

∀p ∈ {n+1, . . . ,2n}(27)

γp = m̄p̄1m̄p̄2 , ∀p ∈ {2n+1, . . . ,k}. (28)

As one see, the solution for γ is independent of K, the
stoichiometry of the reactions and the reaction rates. For
n = 3 and

µ = [µ(1,0,0),µ
(0,1,0),µ

(0,0,1),µ
(2,0,0),µ

(0,2,0),µ
(0,0,2),

µ
(1,1,0),µ

(0,1,1),µ
(1,0,1)]T ,

truncation functions ϕ(ν) as given by (26)-(28), for various
third order moments, , are as follows

µ
(m̄) = µ

(3,0,0), ϕ(ν) =
(

ν4

ν1

)3

(29)

µ
(m̄) = µ

(2,1,0), ϕ(ν) =
(

ν4

ν2

)(
ν7

ν1

)2

(30)

µ
(m̄) = µ

(1,1,1), ϕ(ν) =
(

ν7

ν1

)(
ν8

ν2

)(
ν9

ν3

)
. (31)

One can verify that the approximation of higher order
moments with lower order ones, as given by the truncation
functions above, is consistent with x(t) being lognormally
distributed. �

V. EXAMPLE

Consider the following decaying-dimerizing reaction set
[7], [14]:

X1
c1=1−→ ∗, 2X1

c2=10−→ X2, X2
c3=1000−→ 2X1, X2

c4=.1−→ ∗. (32)

The number of particles x = [x1,x2]T of the species involved
in the above set of decaying-dimerizing reaction can be
generated by a SHS with continuous dynamics ẋ = 0 and
four reset maps

x 7→ φ1(x) =
[

x1−1
x2

]
, λ1(x) = c1x1

x 7→ φ2(x) =
[

x1−2
x2 +1

]
, λ2(x) =

1
2

c2x1(x1−1)

x 7→ φ3(x) =
[

x1 +2
x2−1

]
, λ3(x) = c3x2

x 7→ φ4(x) =
[

x1
x2−1

]
, λ4(x) = c4x2.

Taking

µ =


µ(1,0)

µ(0,1)

µ(2,0)

µ(0,2)

µ(1,1)

 ,

and with reset maps and transitional intensities as given
above, from (11) the evolution of µ is given by

µ̇ = Aµ +Bµ̄.

where

A =


9 2000 −10 0 0

−5 −1000.1 5 0 0
−19 4000 38 0 4000
−5 1000.1 5 −2000.2 −10
10 −2000 −15 2000 −991.1

 .

B =


0 0
0 0

−20 0
0 10
5 −10

 , µ̄ =
[

µ(3,0)

µ(2,1)

]
.

One can verify that the stoichiometry of the above reaction
satisfies Assumption 1, and hence, from Theorem 2, there
exists a unique γ such that (24) and (25) hold. Using (29)
and (30) the truncated moment dynamics is given by

ν̇ = Aν +Bϕ̄(ν), ϕ̄(ν) =


(

ν3
ν1

)3(
ν3
ν2

)(
ν5
ν1

)2

 . (33)
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Fig. 1. Comparison between Monte Carlo simulations (dashed lines) and
the truncated model (33) (solid lines), for the evolution of a) the means, b)
the standard deviations and c) the correlation E[x1x2]−E[x1]E[x2]

Std[x1]Std[x2] with initial
conditions (34).

The particular values of the parameter chosen in (32)
result in two distinct time scales, which makes this chemical
reaction computationally difficult to simulate (“stiff” in the
terminology of [14]). Figure 1 shows a comparison between
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Fig. 2. Comparison between Monte Carlo simulations (dashed lines) and
the truncated model (33) (solid lines), for the evolution of a) the means, b)
the standard deviations and c) the correlation E[x1x2]−E[x1]E[x2]

Std[x1]Std[x2] with initial
conditions (35).

Monte Carlo simulations and the truncated model (33) for
initial conditions

x1(0) = 400, x2(0) = 798. (34)

Monte Carlo simulations were carried out using the algorithm
described in [12], which is equivalent to Gillespie’s Monte
Carlo simulation (SSA) for chemical reactions [6]. The above
initial conditions (34) start in the “slow manifold” x2 =

5
1000 x1(x1−1) and Figure 1 essentially shows the evolution
of the system on this manifold. Figure 2 zooms in on the
interval [0,5×10−4] and shows the evolution of the system
towards the manifold when it starts away from it at

x1(0) = 800, x2(0) = 100. (35)

As one can see from the zoomed inserts in Figure 1 and
Figure 2, the truncated model (33) captures both the time
scales and provides very accurate estimate for the evolution
of the first and second order moments of x1 and x2.

VI. CONCLUSION AND FUTURE WORK

An approximate stochastic model for chemically reacting
systems was presented in this paper. This was done by
representing the population of various species involved in
a set of chemical reactions as the continuous state of a
pSHS. With such a representation, the dynamics of the
infinite vector containing all the statistical moments of the

continuous state are governed by an infinite-dimensional
linear system of ODEs, which under appropriate conditions
can be approximated by finite-dimensional nonlinear ODEs.
For a very general class of chemical reactions, explicit
conditions under which these finite-dimensional nonlinear
ODEs exist and are unique were given along with formulas
to construct them. Using these formulas, we constructed an
approximate stochastic model for the decaying-dimerizing
reaction set, which provided very accurate results in
comparison with Monte Carlo algorithms.

An important observation which points to directions
for future research is as follows: If one restricts the class of
reactions in (1) to only single specie reactions, and if (22)
holds for n = 1, then, with γ chosen as solution of (26) and
(27), equality (21) holds ∀i ≥ 2. We believe that a similar
result can be proven for multi-specie reactions.
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