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Abstract— In this paper, we propose an adaptive resource
control method for multiple resource real-time systems. Exe-
cution results of applications are evaluated as a QoS level and
a fair QoS management is an important issue. The fair QoS
level depends on the number of active applications and their
characteristics so that it may change dynamically due to the
current states of the real-time systems. The proposed controller
activates at discrete times and updates resource allocations to
achieve the optimal fair QoS level. Moreover, the algorithms
used in the controller solve the update in O(mn) time per its
activation. We derive sufficient conditions for achievement of
the fair resource allocation. Simulation experiments show that
a fair resource allocation can be achieved under the conditions.

I. Introduction

In real-time systems, overload conditions bring up the

significant degrade of system response predictability and

performance[12]. To avoid overload conditions in soft real-

time systems such as multimedia computing systems, QoS

(Quality of Service) control methods have been proposed,

where resource requirements are reduced according to a QoS

level allocated to each task. Flexible applications are often

used to improve QoS as long as its computation time and

resources increase[1]. In flexible applications, the QoS level

indicates a satisfaction level of users for an execution result

of released jobs. When each flexible application in a system

increases the QoS level simultaneously, however, the sys-

tem becomes overload conditions. To avoid the conditions,

arbitrating the QoS levels of the competitive applications

are required. There are several researches to arbitrate the

competitive applications or tasks in real-time systems. Ab-

delzaher et al. have proposed a method where the acceptable

QoS levels of tasks in overload conditions are described a
priori and the system degrades the QoS levels of the tasks

based on the QoS level description at overload conditions[4].

However, this study does not consider dynamic negotiation of

QoS levels of tasks. Rajkumar et al. have proposed the QoS-

based resource allocation model to solve problems when

applications in real-time systems have simultaneous access

to multiple resources[2].

A resource allocation based on the QoS level may cause

unfairness. When allocated resource are decreased with the

same ratio for all tasks to avoid overload conditions or to

arbitrate the QoS levels of competitive tasks, the quality

of services of tasks varies and the deviation of the QoS

levels could occur. Several QoS management methods for

prevention of unfairness of QoS levels have been proposed.

In [3], a system utility function for fair-sharing is described

as maximizing the lowest QoS level among the task set.

In such QoS management methods, a resource alloca-

tion problem is described by a multi-dimensional nonlinear

programming problem for static environments. Thus these

methods cannot be applied into dynamically changing en-

vironments where the task set, workload, and/or available

resource amount are dynamically varying. To adapt quality

of services in dynamically varying real-time systems, the

control theory is utilized to manage resource allocations

to tasks[6]. In [7] and [8], feedback control methods are

adopted to maintain CPU ratios and deadline ratios with

specified values. Feedback control QoS adaptation in Internet

Servers are proposed in [5]. In [9], both a feedback mecha-

nism for the bandwidth allocation and an admission control

mechanism are utilized for the QoS management in radio

networks. In [10], a feedback mechanism is applied to control

robot applications according to the temporal requirement

changes. Diao et al. proposed an LQR control method for

load balancing of computing systems[13]. The cost function

is modeled by specifying the weight matrices based on the

impact of control actions and transient load imbalances.

As a feedback control architecture for fairness of QoS

levels among the current task set, we have proposed a QoS

adaptation control method where the updated CPU utilization

factor converges a fair CPU allocation and fair QoS level is

achieved[11]. In this paper, we will extend it and propose a

novel QoS adaptation control system to achieve the fairness

of QoS levels for the multi-resource real-time environment.

Conventional feedback scheduling architectures require

reference values a priori, which may requires recalculation

of them when active tasks change. In the recalculation,

solving nonlinear equations requires O(n2) computation time,

where n is the number of the active tasks, and characteristics

of QoS levels of all tasks must be known. However, the

proposed controller searches the optimal fair QoS level on-

line without increase of computation time in the controller.

The controller takes O(mn) time complexity, where m and n
are the number of resources and tasks, respectively, which

means efficient computation time. Moreover, though several

feasible fair resource allocations may exist under multi-

resource environments, the QoS adaptation controller can

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

WeIC19.1

0-7803-9568-9/05/$20.00 ©2005 IEEE 6198



provide the best resource allocation in sight of the efficient

resource usage.

This paper is organized as follows: In Section II, we will

describe considered real-time systems and define fairness

of QoS level in a task set. A QoS adaptation control for

fair resource allocation is introduced in Section III. The

architecture of this control, formulation of control objective,

and a control rule are shown. We analyse this system and

show a sufficient condition to achieve fair QoS in Section

IV. The result of simulation experiment of our method is

shown in Section V. Finally, we will conclude the paper in

Section VI.

II. Real-time system model

A. Resource and task set

In this paper, we consider a real-time system with

n independent tasks {τ1, τ2, . . . , τn} and m resources

{R1,R2, . . . ,Rm}. Each resource R j has a finite capacity

R j and can be shared with the tasks, either temporally or

spatially. A specified amount of every resource is needed for

execution of each task with the acceptable lowest QoS level

and it is improved by additional resource allocations.

Each task τi releases a job periodically or aperiodically.

The job is executed and completed with using an allocated

portion of each resource. When each job released by τi

accomplishes a QoS level QoS i ∈ R, we say that the QoS

level of τi is QoS i.

Let ri j(∈ R+) be the portion of resource R j allocated to task

τi. QoS i is improved by allocating more amount of resources.

The relationship between the resource allocation {ri1, . . . , rim}
and the QoS level QoS i is described by a non-decreasing

resource consumption function. Its detail will be discussed

in Section II-C.

Each task τi has the minimum and maximum QoS re-

quirement, QoS min
i and QoS max

i , respectively, where QoS min
i

represents the worst QoS level acceptable to τi and QoS max
i

the optimal QoS level τi requires. Thus, we have QoS min
i ≤

QoS i ≤ QoS max
i for each task τi.

In order to achieve QoS min
i or QoS max

i , τi needs the

minimum or maximum resource requirement rmin
i j and rmax

i j
for each resource R j, respectively.

B. Fairness of QoS levels

In real-time systems, resource allocations may cause un-

fairness. For example, task τ1 is executed with its maximum

QoS level QoS max
1

while task τ2 is executed with its min-

imum QoS level QoS min
2

for the same resource allocation

r1 j = r2 j for each resource R j. In general, the range

[QoS min
i , QoS max

i ] of the QoS level QoS i is individually

associated with task τi, and different each other. To evaluate

fairness, we introduce a normalized QoS level Qi for task τi

as follows:

Qi :=
QoS i − QoS min

i

QoS max
i − QoS min

i

. (1)

Note that Qi is monotonically increasing according to

ri1, . . . , rim, whose range is [0, 1]. It represents a satisfaction

rate of execution results in the sense which Qi = 0 means

that a job released by τi is executed with its minimum QoS

level QoS min
i while Qi = 1 means that it is executed with its

maximum QoS level QoS max
i .

The relative importance of each task τi is denoted by wi ∈
R
+. The larger wi is, the more critical or important among

{τ1, τ2, . . . , τn} τi is. Then we define weighted fairness of the

QoS level as follows[11]:

Definition 1: Suppose that each task τi(i = 1, 2, . . . , n)

releases a job sharing each resource R j( j = 1, 2, . . . ,m) with

ri j. Let Qi and wi be the normalized QoS level and the

importance. Then, we will say that a fair resource allocation

is achieved by ri j if the following equation holds:

1

w1

Q1 =
1

w2

Q2 = · · · = 1

wn
Qn. (2)

Moreover, Q f = Qi/wi is called the “fair QoS level”.

In the following, Qi will be simply called the QoS level of

τi.

Remark 1: Since we assume that each Qi is real-valued and

continuously varied as ri j changes, the fair QoS level which

satisfies (2) always exists.

C. Resource utilization and QoS level

As described in the previous section, the relationship

between resource allocation {ri1, ri2, . . . , rim} and the cor-

responding achievable QoS level Qi is described by the

resource consumption function φi j : [0, 1] → [0,R j]. φi j(q)

represents the amount of resource R j needed to achieve QoS

level q. Thus, To achieve QoS level q of τi, τi requires its

resource allocation {φi1(q), . . . , φim(q)}.
When task τi can use ri j for resource R j, its QoS level is

determined as follows: For simplicity, we consider m = 2.

As shown in Fig. 1, let Qhigh

i = φ−1
i1 (ri1) and Qlow

i = φ−1
i2 (ri2).

In order for a job released by τi to be completed with

Qhigh

i , a required amount for R2 is φi2(Qhigh

i ). However, since

ri2 < φi2(Qhigh

i ), ri2 is insufficient to achieve Qhigh

i . An

achievable QoS level is Qlow
i since ri j ≥ φi j(Qlow

i )( j = 1, 2).

Thus, the QoS level of the execution is evaluated as Qlow
i

and the utilized amount of resource R1 is φi1(Qlow
i ) < ri1. On

the other hand, all allocated amount of R2 is utilized for the

execution. In the following, the utilized amount of resource

R j for the execution of a job released by τi will be denoted

by ract
i j . From the above discussion, the following equations

hold in general:

Qi = min
j
φ−1

i j (ri j), ract
i j = φi j(Qi). (3)

ract
i j represents the actual resource utilization of resource R j

while ri j represents the allocated (or reserved) portion. Note

that each task τi releases a job completed with the highest

QoS level under allocated resources. Thus, there exists a

fully-consumed resource R j for task τi such that ri j = ract
i j .

Remark 2: Under a single-resource environment (m = 1),

allocated resource R1 is fully consumed for execution of

tasks. Thus, the following equation always holds:

Qi = φi1(ri1), ract
i1 = ri1. (4)
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Fig. 1. The relationship between resource utilizations and QoS level.

D. Control objective

In this paper, we consider the following optimization

problem:

Problem 1: Maximize the fair QoS level subject to the

following resource constraints: for each j,
n∑

i=1

ri j ≤ R j. (5)

To solve this problem, we will propose a resource allo-

cation controller based on the errors between tasks’ QoS

levels and their average. Since Qi and ri j dynamically vary

according to the resource allocation control, we denote their

current value during the time interval [tk, tk+1) as Qi(k) and

ri j(k), where tk represents the k-th controller activation time.

Moreover, for simplicity, we make some assumptions as

follows:

• wi = 1 for each task τi without loss of generality.

• Each φi j is a monotonically increasing and diffeomor-

phic function.

• rmin
i j = 0 for all i = 1, 2, . . . , n and j = 1, 2, . . . ,m. Note

that, when rmin
i j > 0, we can replace R j −∑n

i=1 rmin
i j and

rmax
i j − rmin

i j with R j and rmax
i j , respectively.

• There exist constants hi j and Hi j for all φi j such that

0 < hi j ≤ dφi j

dQi
≤ Hi j < ∞, (6)

which implies 0 < 1
Hi j
≤ dφ−1

i j

dri
≤ 1

hi j
< ∞.

III. QoS adaptation control

In this section, we introduce a QoS adaptation controller

to achieve a fair resource allocation, with extension of our

previous work[11]. In Subsection III-A, we describe the

architecture of the control system. In Subsection III-B, a

control rule are introduced.

Task
Resource

Resource

Resource

Basic
Scheduler

Scheduling

QoS
Adaptation
Controller

Monitor

Queue

Task

Task
Release of

jobs

Resource set

Task set

Resource allocation ...

...

Fig. 2. Real-time systems with QoS adaptation control.

A. Architecture

Shown in Fig. 2 is our proposed QoS adaptation control

architecture for fair sharing, which consists of a basic sched-

uler, a QoS adaptation controller, and a monitor.

The monitor evaluates a normalized QoS level of each

completed job and feeds it back to the QoS adaptation

controller.

The QoS adaptation controller activates at discrete times

t1, t2, . . . , and allocates the resources to each task with

searching a fair QoS level on-line. This allocation is based

on the normalized QoS levels fed back from the monitor. A

control rule used in the QoS adaptation controller will be

dealt with in the next subsection.

The basic scheduler schedules each released job based

on the resource portions allocated to the corresponding task

by the QoS adaptation controller. It works with a specified

algorithm for resource allocation (e.g., for CPU resource,

Earliest Deadline First, Rate Monotonic, and so on).

The controller activates at discrete times tk(k = 1, 2, . . .).
When the QoS adaptation controller activates at time t = tk,

it updates r11(k), . . . , rnm(k) based on QoS levels Q1(k −
1), . . . ,Qn(k−1), which are fed back from the monitor. Every

job of τi which is released in time [tk, tk+1) is allocated

ri j(k) of Resource R j. Its QoS level is uniquely determined

according to (3).

B. Control rule

Conventional feedback control rules such as PID control

are based on an error between a reference value and its

current value in general. Many studies on applications of the

control theory to real-time systems assume that the reference

values (depending on control specifications) are given a
priori [6], [7]. On the other hand, we have proposed a control

system where an unknown fair QoS level is searched on-line

according to the following control rule[11]:

ri1(k + 1) = ri1(k) + α(Q(k) − Qi(k)), (7)

where

Q(k) =
1

n

n∑

l=1

Ql(k). (8)
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In this method, a new CPU allocation is determined based on

the error between each QoS level and the average of all QoS

levels and a fair CPU allocation is achieved when the error

converges to zero. In this paper, we extend this control rule

to achieve a fair resource allocation for the multi-resource

environment.

From (3), each available resource is not always consumed

fully. To maximize the achievable QoS level as high as

possible, we consider the minimum resource unutilization
factor λ(k) for each k given by

λ(k) = 1 −max
j

⎛⎜⎜⎜⎜⎜⎝
∑n

i=1 ract
i j (k)

R j

⎞⎟⎟⎟⎟⎟⎠ . (9)

∑n
i=1 ract

i j (k)/R j is the actual total utilization factor of resource

R j for all tasks. If

λ(k) = 0 (10)

holds, there exists at least one bottleneck resource R j which

is consumed fully by its maximum capacity R j. This implies

that the QoS level Qi is optimal under the fair resource

allocation when both (2) and (10) hold.

We extend the control rule (7) to multi-resource allocations

as follows: for each i = 1, 2, . . . , n and j = 1, 2, . . . ,m,

ri j(k + 1) =
(
1 + αλ(k)

(
1 − Qi(k)

))
ract

i j (k)

+ βh j
(
Q(k) − Qi(k)

)
, (11)

where

α, β ∈ R+, (12)

h j = min
i

hi j. (13)

Note that this control rule requires O(nm) computation time,

where nm is the number of equations in (11).

Equation (11) can be explained as follows: If Qi(k) is

smaller than Q(k), each resource allocation ri j(k) to τi is

increased, which implies ract
i j (k + 1) > ract

i j (k). This means

that the updated resource utilizations ri1(k+1), . . . , rim(k+1)

upgrade the new QoS level Qi(k + 1) than the previous one

Qi(k). On the other hand, ri j(k) is decreased if Qi(k) > Q(k).

So the error between Qi(k) and the average gets smaller and

smaller, which implies |Q(k)−Qi(k)| converges to zero. When

λ(k) is positive, there are unused portions in all resources so

that QoS levels of all tasks can be improved by allocating

the unused portions to them.

When every Q(k) − Qi(k) and λ(k) is equal to zero, the

control objective is achieved. Note that the following equa-

tion holds simultaneously, which is preferable for efficient

resource usage:

ri j(k) = ract
i j (k). (14)

Remark 3: As described in Remark 2 in Subsection II-C,

ri1(k) = ract
i1 (k) and λ(k) = 0 for any k in the case where

m = 1. Then the control rule (11) can be rewritten as (7).

In (11), the selection of appropriate the control parameters

α and β is important. Inadequate α or β violate feasibility

and accomplishment of fair allocation. They must be selected

to satisfy the following two conditions:

• [Feasibility condition] Each ri j(k)(i = 1, 2, . . . , n, j =
1, 2, . . . ,m) is positive for every k. Also, Each resource

constraint
∑n

i=1 ri j(k) ≤ R j is guaranteed.

• [Stability condition] Every ri j(k) converges to the opti-

mal fair resource allocation, that is a fixed point of the

closed-loop system.

IV. Analysis of the closed-loop system

In this section, we show sufficient conditions for which

both feasibility and stability condition are guaranteed. For

simplicity, we make an assumption on the initial resource

allocation:

ri j(0) ≥ 0,
n∑

i=1

ri j(0) ≤ R j. (15)

A. Feasibility condition

If the control parameters α and β are too large, ri j(k) will

cause a large variation even if the error |Q(k)−Qi(k)| and λ(k)

are small, which leads to infeasible situations such as ri j(k) <
0 or ri j(k) > R j. Moreover, in order to satisfy resource

constraints, the total utilization of resource R j should be

equal or less than R j. Thus, the following conditions must

hold for every k:

ri j(k) ≥ 0,

n∑

i=1

ri j(k) ≤ R j. (16)

The following lemma guarantees the feasibility of the control

rule.

Lemma 1 (Feasibility condition): Equation (16) holds for

every k if

0 ≤ α ≤ 1, 0 < β ≤ n
n − 1

. (17)

proof: See [15].

B. Stability condition

In this subsection, we discuss stabilization by the proposed

QoS adaptation control, which guarantees achievement of the

fair QoS level. The closed-loop system described by (3) and

(11) has two fixed points. To discuss stability around the

optimal fair allocation point, we show the following fact at

first.

Fact 1: The closed-loop system has the following two

fixed points:

(I) ri j(k) = 0 for all i = 1, 2, . . . , n, j = 1, 2, . . . ,m (that is

every Qi(k) equals to zero).

(II) ri j(k) = r f
i j such that (2), (10) and (14) hold. Let the

corresponding QoS level be Q f .

The fixed point (I) is unstable. Since ract
i j (k) = 0 for all

i, j, the first arguments of the right side of (11) equals to

zero, regardless of λ(k) (= 1). Also, since Qi(k) = 0, every

Q(k) − Qi(k) equals to zero. This implies that ri j(k + 1) = 0

for all i = 1, 2, . . . , n and j = 1, 2, . . . ,m. However, even

if a ri j(k) takes sufficiently small number, ract
i j (k) > 0 and

ri j(k+1) increases largely, which implies that the fixed point

(I) is unstable.
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Now we discuss the local stability around the fixed point

(II), ri j = r f
i j. The allocation error vector δr , the actual

utilization error vector δract, and the QoS error vector δQ
are defined as follows:

δr(k) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r11 − r f
11

...

r1m − r f
1m

...

rn1 − r f
n1

...

rnm − r f
nm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, δract(k) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ract
11
− r f

11
...

ract
1m − r f

1m
...

ract
n1
− r f

n1
...

ract
nm − r f

nm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (18)

δQ(k) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q1(k) − Q f

...
Qn(k) − Q f

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (19)

We denote the resource consumption error function φi j by

φi j(Qi(k) − Q f ) − ract
i j = δφi j(δQi(k)). (20)

Let ji and ju be the indexes of resources which satisfy

ri ji = ract
i ji (k), ju = arg

⎛⎜⎜⎜⎜⎜⎝max
1≤ j≤m

∑n
i=1 ract

i j (k)

R j

⎞⎟⎟⎟⎟⎟⎠ , (21)

respectively. Using δri j(k), δract
i j (k), and δQi(k), (11) can be

rewritten as follows:

δri j(k + 1) =
[
1 + αλ(k)

(
1 − Q f − δQi(k)

)]
δract

i j (k)

+ βh j
(
δQ(k) − δQi(k)

)

+ αλ(k)
(
1 − Q f − δQi(k)

)
r f

i j. (22)

Then the closed-loop system can be linearized around the

fixed point (II) as follows:

δr(k + 1) =
[
P1h̃1 j1 P2h̃2 j2 · · · Pnh̃n jn

]
δr(k)

:=P × δr(k), (23)

where Oi, j is the i × j zero matrix and

Pi =
[
Onm, ji−1 Ci Onm,m− ji

]
, (24)

Ai =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ai1
...

Aim

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Bi

k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Bi
k1
...

Bi
km

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Ci =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Bi
1
...

Bi
i−1

Ai

Bi
i+1
...

Bi
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (25)

Ai j =
dδφi j(0)

dδQi
−
βh j(n − 1)

n

− α
R ju

(1 − Q f )r f
i j

dδφi ju (0)

dδQi
, (26)

Bp
i j =
βh j

n
− α

R ju
(1 − Q f )r f

i j

dδφp ju (0)

dδQp
, (27)

h̃i ji =
dδφ−1

i ji (0)

dδri ji
. (28)

TABLE I

Task parameters for simulation.

Ri hi1 hi2 hi3 hi4 hi5 hi6

R1 1 0.63 0.98 0.35 0.94 0.62 0.76
R2 3 2.8 2.47 1.96 2.44 2.76 2.94
R3 2 1.85 0.78 1.47 1.30 1.95 1.19

Remark: every hi j is equal to Hi j.

If the origin of (23) is asymptotically stable, every δri j(k)

converges to zero and the fixed point (II) is asymptotically

stable. In order to prove the asymptotic stability, it is suffi-

cient to show that absolute values of the all eigenvalues of

P are less than 1. It is easily shown that the eigenvalues of

P equal to zero or those of the following matrix P′:

P′ :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 j1 h̃1 j1 B2
1 j1

h̃1 j1 · · · Bn
1 j1

h̃1 j1

B1
2 j2

h̃2 j2 A2 j2 h̃2 j2 · · · Bn
2 j2

h̃2 j2
...

...
. . .

...
B1

n jn
h̃n jn B2

n jn
h̃n jn · · · An jn h̃n jn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (29)

A stability condition is given by the following lemma.

Lemma 2 (Stability condition): If

0 < α ·max
i, j

Hi j

h j
·max

i, j

Hi j

R j
·min

j

nR j∑n
i=1 hi j

≤ β ≤ 1, (30)

then all eigenvalues of P′ are stable.

Proof: See [15].

C. Selection of α and β

According to Lemmas 1 and 2, (15), (17), and (30) give

sufficient conditions for satisfying the control objective. This

can be summarized as the following theorem:

Theorem 1 (Fair resource allocation condition): If

0 < α ≤ 1, (31)

α ·max
Hi j

h j
·max

Hi j

R j
·min

nR j∑n
i=1 hi j

≤ β ≤ 1, (32)

then the optimal fair resource allocation is achieved by the

control rule (11) under the initial condition satisfying (15).

For fast convergence of Qi(k) to Q f , α and β may be selected

as large as possible, where

α =
1

max
Hi j

h j
·max

Hi j

R j
·min

nR j∑n
i=1 hi j

, β = 1. (33)

V. Simulation

We show simulation experiments to evaluate the perfor-

mance of the proposed QoS adaptation control. We consider

an independent task set {τ1, τ2, . . . , τ6} and a resource set

{R1,R2,R3}. Each φi j is a linear function. Shown in Table

I are task parameters and capacities of resource, where

hi j = Hi j.

The control parameters α and β are set to 0.312 and 1,

respectively, which satisfy (33).

The simulation results are shown in Figs. 3, 4, and 5. Fig.

3 shows that all Qi(k) converges to 0.195, which implies

6202



0 4 8 12 16 20 24
0.02

0.06

0.10

0.14

0.18

0.22

0.26

0.30

0.34
QoS levels

Fig. 3. Behavior of QoS.
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Fig. 4. Behavior of the total utilization of R2.

that (2) holds. Fig. 4 shows that the total actual utilization∑n
i=1 ract

i2 (k) equals to R2 in the steady state, which means

that (14) is satisfied. These two Figures show that the fair

resource allocation is achieved with the highest QoS level. In

sight of (10), every ract
i j (k) goes up to ri j(k) and ract

i j (k) = ri j(k)

in the steady state. For example, Fig. 5 shows that ract
41

(k)

is equal to ract
41

(k) in the steady state, while ract
41

(k) is less

than r41(k) in transient state. Thus the control objective

is accomplished, which means the proposed method can

perform the fair resource allocation.

VI. Conclusions

In this paper, we proposed a control method to achieve a

fair resource allocation based on QoS levels in multi-task

and multi-resource systems. Based on the errors between

current QoS levels and their average, the proposed QoS

adaptation controller searches the desirable QoS level and

allocates resources to each task in order to achieve the level.

This control is very simple so that it takes only O(nm)

computation time, where nm is the problem size.
As future work, at first, we relax the fair resource allo-

cation condition given by Theorem 1. According to (32), α
takes very conservative value when Hi j, hi j, and R j are dif-
ferent largely each other. However, it is shown by simulation
experiment that fair resource allocation can be achieved even
if (32) does not hold. Moreover, we will extend our method
to real-time systems with for multi-dimensional QoS levels.
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Fig. 5. Behavior of allocated and actual utilization of R4 of τ1.

It is also future work to implement the proposed controller
in real-time OS.

References

[1] J. Liu, “Real-Time Systems,” pp. 394–419, Prentice Hall, 2000.
[2] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek, “A Resource

Allocation Model for QoS Management,” Proceedings of the 18th
IEEE Real-Time Systems Symposium, pp. 298–307, December 1997.

[3] C. Lee, J. Lehoczky, D. Siewiorek, R. Rajkumar, and J. Hansen, “A
Scalable Solution to the Multi-Resource QoS Problem,” Proceedings
of the 20th IEEE Real-Time Systems Symposium, pp. 315–326,
December 1999.

[4] T. Abdelzaher, E. Atkins, and K. Shin, “QoS Negotiation in Real-
Time Systems and Its Application to Automated Flight Control,”
Proceedings of the 3rd IEEE Real-Time Technology and Applications
Symposium, pp. 228–238, June 1997.

[5] T. Abdelzaher and C. Lu, “Modeling and Performance Control of In-
ternet Servers,” Proceedings of the 39th IEEE Conference on Decision
and Control, vol.3, pp. 2234–2239, December 2000.

[6] D. Steere, A. Goel, J. Gruenberg, D. McNamee, C. Pu, and J.
Walpole, “A Feedback-Driven Proportional Allocator for Real-Rate
Scheduling,” Proceedings of the 3rd Symposium on Operating Systems
Design and Implementation, January 1999.

[7] C. Lu, J. Stankovic, S. Son, and G. Tao, “Feedback Control Real-
Time Scheduling: Framework, Modeling, and Algorithms,” Real-Time
Systems, Vol.23, No.1–2, pp. 85–126, 2002.

[8] K. Kang, S. Son, J. Stankovic, and T. Abdelzaher, “A QoS-Sensitive
Approach for Timeliness and Freshness Guarantees in Real-Time
Databases,” Proceedings of the 14th Euromicro Conference on Real-
Time Systems, pp. 203–212, June 2002.

[9] C. Curescu and S. Nadjm-Tehrani, “Time-Aware Utility-Based QoS
Optimisation ,” Proceedings of the 15th Euromicro Conference on
Real-Time Systems, pp. 83–94, June 2003.

[10] H. Hassan, J. Simo, and A. Crespo, “Enhancing the Flexibility and
the Quality of Service of Autonomous Mobile Robotic Applications,”
Proceedings of the 14th Euromicro Conference on Real-Time Systems,
pp. 213–222, June 2002.

[11] F. Harada, T. Ushio, and Y. Nakamoto, “Adaptive Resource Allocation
Control with On-Line Search for Fair QoS Level,” 10th IEEE Real-
Time and Embedded Technology and Applications Symposium, pp.
352–359, May 2004.

[12] G. Buttazzo, Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications, Kluwer Academic Publish-
ers, Boston, 1997.

[13] Y. Diao, J. Hellerstein, A. Storm, M. Surendra, S. Lightstone, S.
Parekh, and C. Garcia-Arellano, “Incorporating Cost of Control into
the Design of a Load Balancing Controller,” Proceedings of the
10th IEEE Real-Time and Embedded Technology and Applications
Symposium, pp. 376–385, May 2004.

[14] D. McNamee, C. Krasic, K. Li, A. Goel, E. Walthinsen, D. Steere,
and J. Walpole, “Control Challenges in Multi-Level Adaptive Video
Streaming,” Proceedings of the 39th IEEE Conference on Desicion
and Control, vol.3, pp. 2228–2233, December 2000.

[15] http://ushiolab.sys.es.osaka-u.ac.jp/˜harada/cdc05 fairQoS 050831.pdf

6203


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




