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Abstract— A complete characterization of almost surely uni-
formly stable and contractive Markovian jump linear systems
is given in the discrete-time domain via the union of an
increasing family of linear matrix inequality conditions. This
characterization draws on the facts that the Riccati difference
inequality associated with a stable and contractive linear time-
varying system admits a solution which has finite memory of
past parameters, and that each Markovian jump linear system
can be treated as a switched linear system where the underlying
Markov chain defines the switching path constraint. The result
leads to a semidefinite programming–based controller synthesis
technique, from which optimal finite-path dependent dynamic
output feedback controllers arise naturally.

I. INTRODUCTION

The Markovian jump linear system is a multi-modal linear
system whose mode changes within a finite set according
to the state transitions of an underlying Markov chain. We
consider the problem of almost sure uniform disturbance at-
tenuation for Markovian jump linear systems in the discrete-
time domain. The problem is not deterministic because the
Markov chain determines the switching sequence (i.e., the
sequence of modes); yet our technique is non-stochastic due
to the uniformity requirement on the almost sure stability and
performance. We formulate the problem in the framework of
switched linear systems with switching path constraints, and
provide a complete solution without any assumption on the
parameters or the Markov chain.

A key contribution of this work to the control of Marko-
vian jump linear systems is that an exact “control-oriented”
condition for almost sure (uniform) stabilization and dis-
turbance attenuation is provided for the first time. This
condition is control-oriented in the sense that it leads to
semidefinite programming–based techniques that render opti-
mal controllers very efficiently. The usual approach in the lit-
erature to disturbance attenuation of Markovian jump linear
systems has been based on the notion of stochastic stability
in both continuous time [1], [2], [3] and discrete time [4],
[5], [6]. These results, however, are either partly satisfactory
or exact but not well-suited for efficient controller synthesis;
moreover, although stochastically stable Markovian jump lin-
ear systems are almost surely stable [7], the usual approach
does not guarantee almost sure disturbance attenuation.
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Our approach is quite different and based on a fundamental
property of linear time-varying systems. The performance
analysis relies on the extended Kalman-Yacubovitch-Popov
(KYP) inequality [8] for stable and contractive linear time-
varying systems, from which we derive a uniformly stabi-
lizing solution to the associated Riccati difference inequality
that has finite memory of past parameters. On the other hand,
the contoller synthesis is done via the linear matrix inequality
(LMI) embedding technique originally developed for H∞

control of linear time-invariant systems [9], [10]. As a result,
we obtain an increasing family of LMI conditions whose
“union” is necessary and sufficient for the Markovian jump
linear system to have a finite-path dependent controller (i.e., a
controller that has finite memory of past modes) that yields
an almost surely uniformly stable and contractive closed-
loop system, where the uniformity is in time and over all
realizations of the underlying Markov chain.

The reason why our result involves a family of LMI
conditions is that, under our notion of stability and perfor-
mance, each Markovian jump linear system is equivalent to
a switched linear system (i.e., a collection of linear time-
varying systems whose parameters vary within a single finite
set). The basic problem in switched linear systems is to de-
termine the stability of every admissible switching sequence
[11], [12]. This problem is considered semidecidable and
involves a countable but increasing family of LMIs to check
[13]. Our result inherits the same limitations due to the
problem nature, even though this limitation is not likely to
manifest in practice. (The number of LMIs whose feasibility
needs to be checked is often very small.) Nevertheless, there
has been little work on the input-output performances of
switched linear systems, and we provide the first complete
solution to the uniform stabilization and disturbance attenu-
ation of discrete-time switched linear systems as well.

Due to the space constraint, lemmas and theorems are
presented without proof. For more detailed discussion of
our results, complete with proofs and several examples, the
reader is referred to [14], [15].

Notation

If X ∈ R
m×n, the range (or image) of X is denoted by

ImX, the null space (or kernel) of X by KerX, and the rank
of X by rankX; denoted by N(X) is any particular full-rank
matrix such that ImN(X) = KerX. If X, Y ∈ R

n×n are
symmetric and X−Y is positive definite (resp. nonnegative
definite), we write X > Y (resp. X ≥ Y). The identity
matrix is denoted by I with n understood.
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For x ∈ R
n, denoted by ‖x‖ is the Euclidean norm of

x. If X ∈ R
m×n, the Euclidean norm induces the spectral

norm ‖X‖ of X. If x = (x(0), x(1), . . . ) is a sequence in
R

n, then we write x ∈ �2(Rn) whenever the �2 norm of x
is finite.

II. PERFORMANCE OF LINEAR TIME-VARYING SYSTEMS

Let a subset G of R
n×n × R

n×m × R
l×n × R

l×m and a
sequence θ = (θ(0), θ(1), . . . ) in {0, 1, . . . } be as follows:

G =
⋃∞

i=0
{(Ai,Bi,Ci,Di)}, θ(t) = t. (1)

Then (Aθ(t),Bθ(t),Cθ(t),Dθ(t)) = (At,Bt,Ct,Dt), so the
pair (G,θ) defines the linear time-varying system that has
the state-space representation

x(t + 1) = Atx(t) + Btw(t),
z(t) = Ctx(t) + Dtw(t),

(2)

where G defines an indexed family of parameter quadruples,
and the sequence θ chooses one quadruple among G for
each t ≥ 0. Given the initial state x(0) and disturbance
sequence w = (w(0), w(1), . . . ), system (2) determines the
state sequence x = (x(0), x(1), . . . ) and output sequence
z = (z(0), z(1), . . . ). If Bi, Ci, Di are all zero matrices,
we write (A,θ) for (G,θ) where

A = {A0,A1, . . . }.
Definition 1: The system (G,θ), and hence (A,θ), is said

to be uniformly (exponentially) stable if there exist c ≥ 1 and
λ ∈ (0, 1) such that, whenever w = 0,

‖x(t)‖ ≤ c λt−t0 ‖x(t0)‖ (3)

for t ≥ t0 ≥ 0 and x(t0) ∈ R
n.

Definition 2: The system (G,θ) is said to be uniformly
(strictly) contractive if there exists a γ ∈ (0, 1) such that,
whenever x(t0) = 0,∑t

s=t0
‖z(s)‖2 ≤ γ2

∑t

s=t0
‖w(s)‖2 (4)

for t ≥ t0 ≥ 0 and w ∈ �2(Rm).
Lemma 1: Let G and θ be as in (1); let G be bounded.

The following are equivalent:

(a) The system (G,θ) is uniformly exponentially stable and
uniformly strictly contractive.

(b) There exist symmetric positive definite matrices Xt ∈
R

n×n, uniformly bounded above and below, such that[
At Bt

Ct Dt

]T [
Xt+1 0

0 I

] [
At Bt

Ct Dt

]
−

[
Xt 0
0 I

]
< 0

(5)
holds uniformly for all t ≥ 0.

(c) There exist symmetric positive definite matrices Yt ∈
R

n×n, uniformly bounded above and below, such that[
At Bt

Ct Dt

] [
Yt 0
0 I

] [
At Bt

Ct Dt

]T

−
[
Yt+1 0

0 I

]
< 0

(6)
holds uniformly for all t ≥ 0.

Moreover, if either (b) or (c) holds, then one may take Xt =
Y−1

t for t ≥ 0.
Lemma 1 is a time-varying version of the classical KYP

lemma—the equivalence of (a) and (b) is proved in [8].
Inequality (5) is called the extended KYP inequality, and (6)
is its dual form. Solutions of these inequalities are obtained
by solving the associated Riccati difference equations. Let S

be the set of all symmetric matrices in R
n×n. For each i, let

Yi be the set of symmetric matrices Y ∈ R
n×n such that

Vi(Y) = I − DiDT
i − CiYCT

i

is invertible. Define Ri : Yi → S, i = 0, 1, . . . , by

Ri(Y) = AiYAT
i + BiBT

i

+ (AiYCT
i + BiDT

i )Vi(Y)−1(CiYAT
i + DiBT

i )

for Y ∈ Yi.
Lemma 2: Let G and θ be as in (1); let G be bounded.

The following are equivalent:
(a) The system (G,θ) is uniformly exponentially stable and

uniformly strictly contractive.
(b) There exists a constant ε0 > 0 such that, whenever

ε ∈ [0, ε0], the Riccati difference equation

Y(ε,t0)
t0 = εI, Y(ε,t0)

t+1 = Rt

(
Y(ε,t0)

t

)
+ εI (7)

yields symmetric positive definite matrices Y(ε,t0)
t ∈

R
n×n, uniformly bounded above and below, such that

Vt

(
Y(ε,t0)

t

)
> 0 holds uniformly for t ≥ t0 ≥ 0.

Moreover, if (b) holds, one may take Yt = Y(ε,0)
t in (6).

The proof of Lemma 2 is based on the following standard
lemma. For Y ∈ Yi, let

Ai(Y) = Ai + (AiYCT
i + BiDT)Vi(Y)−1Ci.

Lemma 3: Let Y(1), Y(2) ∈ Yi. Then

Ri

(
Y(1)

) −Ri

(
Y(2)

)
= Ai

(
Y(2)

)
∆(12)Ai

(
Y(2)

)T

+ Ai

(
Y(2)

)
∆(12)CT

i Vi

(
Y(1)

)−1
Ci∆(12)Ai

(
Y(2)

)T

where ∆(12) = Y(1) − Y(2).
Lemma 3 is useful in proving asymptotic properties of

the Riccati difference equation. In particular, an immediate
consequence of Lemma 3 is that Ri

(
Y(1)

) ≥ Ri

(
Y(2)

)
if

Y(1), Y(2) ∈ Yi and Y(1) ≥ Y(2); moreover, it is not hard
to see from this lemma that

Ri

(
Y(1)

) −Ri

(
Y(2)

)
= Ai

(
Y(1)

)
∆(12)Ai

(
Y(2)

)T
(8)

whenever Y(1), Y(2) ∈ Yi, and ∆(12) = Y(1) − Y(2).
Lemmas 1–3 and (8) lead to the following result:
Theorem 1: Let G and θ be as in (1); let G be bounded.

Suppose that the system (G,θ) is uniformly exponentially
stable and uniformly strictly contractive, so that condition
(b) of Lemma 2 holds. Then the following hold:
(a) For ε ∈ (0, ε0) and t0 ≥ 0, let

A(ε,t0) =
{At0

(
Y(ε,t0)

t0

)
,At0+1

(
Y(ε,t0)

t0+1

)
, . . .

}
,

θ(t0) = (t0, t0 + 1, . . . ).
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Then each system
(
A(ε,t0),θ(t0)

)
is uniformly expo-

nentially stable. Moreover, for each ε ∈ (0, ε0), there
exist cε ≥ 1 and λε ∈ (0, 1) such that, for t > t0 ≥ 0,∥∥At−1

(
Y(ε,t0)

t−1

) · · · At0

(
Y(ε,t0)

t0

)∥∥ ≤ cε λt−t0
ε .

(b) For each ε ∈ (0, ε0), there exists a nonnegative integer
M such that the symmetric positive definite matrices

Yt =

{
Y(ε,t−M)

t , t ≥ M ;
Y(ε,0)

t , t < M,

are uniformly bounded above and below, and satisfy (6)
uniformly for t ≥ 0.

If (G,θ) is uniformly stable, it follows from (8) and
the results in [16], [17] that, for each t0 ≥ 0, Y(ε,t0)

t

converges to the unique “moving equilibrium” (i.e., the
maximal solution) of the Riccati difference equation (7) as
t − t0 → ∞. However, part (a) of Theorem 1 says that
this convergence is uniform in (t, t0) because the uniform
stability of (A(ε,t0),θ(t0)) is again uniform in t0. Part (b)
of Theorem 1 says that the KYP inequality (or equivalently,
the Riccati inequality) associated with a uniformly stable and
contractive linear time-varying system has a solution that has
finite memory of past parameters.

III. CONTROL OF SWITCHED LINEAR SYSTEMS

Markovian jump linear systems will be treated in the next
section as if they are switched linear systems. Fix a positive
integer N , and let Ω be the set of all infinite sequences in
{1, . . . , N}. Let Ai ∈ R

n×n, Bi ∈ R
n×m, Ci ∈ R

l×n,
Di ∈ R

l×m for i = 1, . . . , N . If

G = {(A1,B1,C1,D1), . . . , (AN ,BN ,CN ,DN )}, (9)

and if Θ is a nonempty subset of Ω, then the switched linear
system, identified with the pair (G,Θ), is the family of linear
time-varying systems (G,θ), θ = (θ(0), θ(1), . . . ) ∈ Θ,
with state-space representations

x(t + 1) = Aθ(t)x(t) + Bθ(t)w(t),
z(t) = Cθ(t)x(t) + Dθ(t)w(t).

(10)

If θ(t) = i, then the system is said to be in mode i at time t
and its parameters at time t are given by (Ai,Bi,Ci,Di).
Each θ ∈ Θ is called a switching sequence.

In particular, the pair (G,Ω) is the usual discrete linear
inclusion without any constraints on the switching sequence;
on the other hand, if Θ is a singleton {θ}, then (G,Θ) is the
linear time-varying system (G,θ) that has a finite parameter
set G. We require that the stability and contractiveness of the
system (G,Θ) be uniform not only in time, but also over all
switching sequences in Θ.

Definition 3: The system (G,Θ) is said to be uniformly
(exponentially) stable if there exist c ≥ 1 and λ ∈ (0, 1) such
that, whenever w = 0, inequality (3) holds for t ≥ t0 ≥ 0,
x(t0) ∈ R

n and θ ∈ Θ.
Definition 4: The system (G,Θ) is said to be uniformly

(strictly) contractive if there exists a γ ∈ (0, 1) such that,

whenever x(t0) = 0, inequality (4) holds for t ≥ t0 ≥ 0,
w ∈ �2(Rm) and θ ∈ Θ.

Introduce a dummy mode 0 and think of each θ ∈ Θ as a
two-sided sequence (. . . , θ(−1), θ(0), θ(1), . . . ) by putting
θ(t) = 0 for t < 0. Finite sequences in {0, . . . , N} will
be called (finite) switching paths; in particular, for each non-
negative integer L, elements of {0, . . . , N}L+1 are switching
paths of length L, and called L-paths. Given θ ∈ Θ, let

θL(t) = (θ(t − L), . . . , θ(t))

for all t and L; the set of L-paths occurring in Θ is

LL(Θ) = { θL(t) : θ ∈ Θ, t ≥ 0 }.

If (i0, . . . , iL) ∈ LL(Θ), then write (i0, . . . , iL)− =
(i0, . . . , iL−1) and (i0, . . . , iL)+ = (i1, . . . , iL) for L > 0;
write (i0, . . . , iL)− = (i0, . . . , iL)+ = 0 for L = 0. Let
M0(Θ) = L0(Θ), and for L > 0 define ML(Θ) to be the
smallest subset of LL(Θ) such that the following hold: for
each j ∈ M0(Θ), there is a switching path (ij0, . . . , i

j
L−1) ∈

{0, . . . , N}L such that, for every θ ∈ Θ with θ(0) = j,
we have (ij0, . . . , i

j
L−1, θ(0)), (ij1, . . . , i

j
L−1, θ(0), θ(1)), . . . ,

(ijL−1, θ(0), . . . , θ(L−1)) ∈ ML(Θ); and θL(t) ∈ ML(Θ)
for all t ≥ L and for all θ ∈ Θ. The sets ML(Θ), L = 0,
1, . . . , are unique, so well-defined. Let

M−
L (Θ) = { I− : I ∈ ML(Θ) }.

Now we are ready to state our characterization of uni-
formly stable and contractive switched linear systems.

Theorem 2: Let G be as in (9); let Θ ⊂ Ω be nonempty.
The system (G,Θ) is uniformly exponentially stable and
uniformly strictly contractive if and only if there exist a non-
negative integer M and an indexed family

⋃
I∈M−

M (Θ){XI}
of symmetric positive definite matrices XI ∈ R

n×n such that[
AiM

BiM

CiM
DiM

]T [
X(i0,...,iM )+ 0

0 I

] [
AiM

BiM

CiM
DiM

]
−

[
X(i0,...,iM )− 0

0 I

]
< 0 (11)

for all M -paths (i0, . . . , iM ) ∈ MM (Θ).
Theorem 2 characterizes the uniform stability and distur-

bance attenuation performance of the switched linear system
via the countably infinite union of an increasing family of
systems of linear matrix inequalities. For uniform stability
and contractiveness, not only each member of this family is
sufficient, but also the union of the family is necessary.

Now, consider the set

T =
⋃N

1
{(Ai,B1,i,B2,i,C1,i,C2,i,D11,i,D12,i,D21,i)}

(12)
with Ai ∈ R

n×n, B1,i ∈ R
n×m1 , B2,i ∈ R

n×m2 , C1,i ∈
R

l1×n, C2,i ∈ R
l2×n, D11,i ∈ R

l1×m1 , D12,i ∈ R
l1×m2 ,

D21,i ∈ R
l2×m1 for i = 1, . . . , N . If Θ ⊂ Ω is nonempty,

then the pair (T ,Θ) defines the controlled switched linear
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system represented by

x(t + 1) = Aθ(t)x(t) + B1,θ(t)w(t) + B2,θ(t)u(t),
z(t) = C1,θ(t)x(t) + D11,θ(t)w(t) + D12,θ(t)u(t),
y(t) = C2,θ(t)x(t) + D21,θ(t)w(t)

(13)

for t ≥ 0 and θ = (θ(0), θ(1), . . . ) ∈ Θ. Given the
initial state x(0), disturbance sequence w = (w(t)) and
control sequence u = (u(t)), this system of equations defines
the evolution of the state x(t), controlled output z(t), and
measured output y(t) for t ≥ 0.

We make the usual assumption that the mode θ(t) is
perfectly observed at each time instant t; however, relaxing
the standard restriction to mode dependent controllers (i.e.,
controllers that do not recall past modes), we consider all the
finite-path dependent controllers (i.e., controllers with finite
memory of past modes). For each nonnegative integer L, let

ΘL = { (θL(0), θL(1), . . . ) : (θ(0), θ(1), . . . ) ∈ Θ };
with AK,I ∈ R

nK×nK , BK,I ∈ R
nK×l2 , CK,I ∈ R

m2×nK ,
DK,I ∈ R

m2×l2 for I = (i0, . . . , iL) ∈ LL(Θ), let

K =
⋃

I∈LL(Θ)
{(AK,I ,BK,I ,CK,I ,DK,I)}. (14)

Then the pair (K,ΘL) defines the L-path dependent (linear
output feedback) controller (of order nK), which determines
the control sequence u according to

xK(t + 1) = AK,θL(t)xK(t) + BK,θL(t)y(t),
u(t) = CK,θL(t)xK(t) + DK,θL(t)y(t),

(15)

given the initial controller state xK(0) and a switching
sequence θ ∈ Θ. An L-path dependent controller is called
finite-path dependent, and a zero-path dependent controller
is said to be mode dependent.

Let

T K =
⋃

I∈LL(Θ)

{(
ÃI , B̃I , C̃I , D̃I

)}
, (16)

with

Ã(i0,...,iL) = ÂiL
+ B̂2,iL

K(i0,...,iL)Ĉ2,iL
,

B̃(i0,...,iL) = B̂1,iL
+ B̂2,iL

K(i0,...,iL)D̂21,iL
,

C̃(i0,...,iL) = Ĉ1,iL
+ D̂12,iL

K(i0,...,iL)Ĉ2,iL
,

D̃(i0,...,iL) = D11,iL
+ D̂12,iL

K(i0,...,iL)D̂21,iL

(17)

where

Âi =
[
Ai 0
0 0

]
, B̂1,i =

[
B1,i

0

]
, Ĉ1,i =

[
C1,i 0

]
,

B̂2,i =
[
0 B2,i

I 0

]
, Ĉ2,i =

[
0 I

C2,i 0

]
,

D̂12,i =
[
0 D12,i

]
, D̂21,i =

[
0

D21,i

]
,

K(i0,...,iL) =
[
AK,(i0,...,iL) BK,(i0,...,iL)

CK,(i0,...,iL) DK,(i0,...,iL)

]
.

If we define the closed-loop state by

x̃(t) =
[
x(t)T xK(t)T

]T ∈ R
n+nK ,

then the closed-loop system (T K,ΘL) is represented by

x̃(t + 1) = ÃθL(t)x̃(t) + B̃θL(t)w(t),

z(t) = C̃θL(t)x̃(t) + D̃θL(t)w(t)
(18)

for t ≥ 0 and θ ∈ Θ. As long as finite-path dependent
controllers are concerned, the closed-loop system is still a
switched linear system where the closed-loop modes are the
L-paths in LL(Θ).

The following lemma is a consequence of Theorem 2, and
can be proved as in [10], where the decompositions (17),
along with a Schur complement argument and an appropriate
congruence transformation, are used.

Lemma 4: Let T be as in (12); let Θ ⊂ Ω be nonempty.
Suppose that K is as in (14) with some nonnegative integer
L. Then the closed-loop system (T K,ΘL) is uniformly
exponentially stable and uniformly strictly contractive if and
only if there exist an integer M ≥ L and an indexed family⋃

I∈L−
M (Θ){XI} of symmetric positive definite matrices

XI ∈ R
(n+nK)×(n+nK) such that

H(i0,...,iM ) + GT
iM

KT
(iM−L,...,iM )FiM

+ FT
iM

K(iM−L,...,iM )GiM
< 0 (19)

for all M -paths (i0, . . . , iM ) ∈ LM (Θ), where

H(i0,...,iM )

=

⎡⎢⎢⎢⎣
−X−1

(i0,...,iM )+
ÂiM

B̂1,iM
0

ÂT
iM

−X(i0,...,iM )− 0 ĈT
1,iM

B̂T
1,iM

0 −I D̂T
11,iM

0 Ĉ1,iM
D̂11,iM

−I

⎤⎥⎥⎥⎦
and [

FiM

GiM

]
=

[
B̂T

2,iM
0 0 D̂T

12,iM

0 Ĉ2,iM
D̂21,iM

0

]
for (i0, . . . , iM ) ∈ LM (θ).

Inequality (19) is amenable to the standard linear matrix
inequality embedding technique, originally developed for
linear time-invariant systems [9], [10]. Finite-path dependent
controllers arise naturally from this technique.

Definition 5: The controller (K,ΘL) is said to be an
admissible (L-path dependent) synthesis (of order nK) for
(T ,Θ) if the closed-loop system (T K,ΘL) is uniformly
exponentially stable and uniformly strictly contractive.

Theorem 3: Let T be as in (12); let Θ ∈ Ω be nonempty.
Suppose that nK ≥ n. There exists an admissible finite-path
dependent synthesis of order nK for the system (T ,Θ) if
and only if there exist a nonnegative integer M and an in-
dexed family

⋃
I∈M−

M (Θ){(RI ,SI)} of pairs of symmetric
positive definite matrices RI , SI ∈ R

n×n such that

NT
F,iM

([
AiM

B1,iM

C1,iM
D11,iM

] [
R(i0,...,iM )− 0

0 I

]
×

[
AiM

B1,iM

C1,iM
D11,iM

]T

−
[
R(i0,...,iM )+ 0

0 I

])
NF,iM

< 0,

(20a)

863



NT
G,iM

([
AiM

B1,iM

C1,iM
D11,iM

]T [
S(i0,...,iM )+ 0

0 I

]
×

[
AiM

B1,iM

C1,iM
D11,iM

]
−

[
S(i0,...,iM )− 0

0 I

])
NG,iM

< 0,

(20b)[
R(i0,...,iM )− I

I S(i0,...,iM )−

]
≥ 0 (20c)

hold for all M -paths (i0, . . . , iM ) ∈ MM (Θ), where

NF,iM
= N

([
BT

2,iM
DT

12,iM

])
,

NG,iM
= N

([
C2,iM

D21,iM

])
.

Moreover, if (20) holds for all (i0, . . . , iM ) ∈ MM (Θ),
then there exist a nonnegative integer L ≤ M and controller
gain matrices K(iM−L,...,iM ) ∈ R

(nK+m2)×(nK+l2) such that
(19) holds for (i0, . . . , iM ) ∈ MM (Θ) with

XI =

[
SI UIV

1
2
I

V
1
2
I UT

I VI

]
> 0,

X−1
I =

[
RI −RIUIV

− 1
2

I
−V− 1

2
I UT

IRI V− 1
2

I (I + UT
IRIUI)V− 1

2
I

]
(21)

for I ∈ M−
M (Θ), where UI ∈ R

n×nK , VI ∈ R
nK×nK are

any matrices such that UIUT
I = SI − R−1

I and VI > 0.
Given a nonnegative integer M , the number of systems

of linear matrix inequalities (20) to solve simultaneously is
equal to the cardinality of MM (Θ), and is bounded above
by NM+1+M . Given a nonnegative integer L, the feasibility
of (20) for some M ≤ L is sufficient but not necessary for
the existence of an admissible L-path dependent synthesis.

Suppose that a set of controller gain matrices KI , I ∈
ML(Θ), is obtained by solving (19) for some nonnegative
integer L ≤ M . If L = 0, then it follows from M0(Θ) =
L0(Θ) that we have all the gain matrices Ki, i ∈ L0(Θ),
of an admissible zero-path dependent controller synthesis. If
L > 0, on the other hand, then obtain KI , I ∈ LL(Θ),
as follows: for each j ∈ M0(Θ), choose a switching path
(ij0, . . . , i

j
L−1) ∈ {0, . . . , N}L such that (ij0, . . . , i

j
L−1, θ(0)),

(ij1, . . . , i
j
L−1, θ(0), θ(1)), . . . , (ijL−1, θ(0), . . . , θ(L − 1)) ∈

ML(θ) for all θ ∈ Θ with θ(0) = j; and put

K(θ(t−L),...,θ(t)) = K
(i

θ(0)
t ,...,i

θ(0)
L−1,θ(0),...,θ(t))

for all t < L. Then the resulting set of gain matrices defines
an admissible L-path dependent controller synthesis.

IV. CONTROL OF MARKOVIAN JUMP LINEAR SYSTEMS

Let G be as in (9). Let p = (pi) ∈ R
1×N be a row

vector whose entries are nonnegative and sum to one; let
P = (pij) ∈ R

N×N be a (row) stochastic matrix, so that
each row of P has nonnegative entries that sum to one. Then
the discrete-time Markovian jump linear system, defined by
the triple (G,P, p), has the representation (10) where the
switching sequence θ is a realization of the Markov chain
defined by the pair (P, p) with transition probability matrix

P and initial distribution p. The state θ(t) of the chain (P, p)
at time t defines the mode of (G,P, p) at time t. Let Ω be
the space of all infinite sequences in {1, . . . , N}. Let P be
the unique consistent probability measure on Ω such that

P{ θ(t + 1) = j | θ(t) = i } = pij ,

P{ θ(0) = i } = pi

for all i, j and t.
Definition 6: The system (G,P, p) is said to be almost

surely uniformly (exponentially) stable if there exists a set
Θ ⊂ Ω with P (Θ) = 1 such that the system (G,Θ) is
uniformly exponentially stable.

Definition 7: The system (G,P, p) is said to be almost
surely uniformly (strictly) contractive if there exists a set
Θ ⊂ Ω with P (Θ) = 1 such that the system (G,Θ) is
uniformly strictly contractive.

A switching sequence θ in {1, . . . , N} is said to be admis-
sible (with respect to (P, p)) if pθ(0) > 0 and pθ(t)θ(t+1) > 0
for t ≥ 0. If we define

Θ(P, p) = {θ : θ is admissible with respect to (P, p) },
and let

ML(P, p) = ML(Θ(P, p)),

M−
L (P, p) = M−

L (Θ(P, p))

for nonnegative integers L, then we have P (Θ(P, p)) = 1;
on the other hand, whenever (i0, . . . , iL) ∈ ML(P, p), we
have that P{θ ∈ Ω : (i0, . . . , iL) ∈ LL({θ}) } > 0, so that
ML(P, p) ⊂ ML(Θ) whenever Θ ⊂ Ω and P (Θ) = 1.
The following result is immediate from this observation and
Theorem 2.

Theorem 4: Let G be as in (9); let (P, p) be a Markov
chain. The system (G,P, p) is almost surely uniformly
exponentially stable and almost surely uniformly strictly
contractive if and only if there exist a nonnegative integer
M and an indexed family

⋃
I∈M−

M (P,p){XI} of symmetric
positive definite matrices XI ∈ R

n×n such that (11) holds
for all M -paths (i0, . . . , iM ) ∈ MM (P, p).

Remark 1: Define

ni(0) = 1, ni(L + 1) =
∑

{ j : pij>0 } nj(L)

for i ∈ {1, . . . , N} and for L = 0, 1, . . . . Given a Markov
chain (P, p), let

S(p) = { j : pj > 0 },
T (P, p) = { j : pip

(k)
ij > 0 for some (i, k) }

where Pk =
(
p
(k)
ij

)
is the k-step transition probability matrix

[18]. Then, for each M in Theorem 4, the number of linear
matrix inequalities (11) to solve simultaneously is equal to
the cardinality of MM (P, p), which is precisely given by∑

j∈S(p)\T (P,p)

∑M−1

k=0
nj(k) +

∑
j∈S(p)∪T (P,p)

nj(M).

In particular, if P is irreducible (i.e., if the directed graph of
P is strongly connected), then the cardinality of MM (P, p)
is equal to

∑N
j=1 nj(M).
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Remark 2: Theorem 4 implies that the Markovian jump
linear system (G,P, p) is almost surely uniformly stable
and contractive if and only if the switched linear system
(G,Θ(P, p)) is uniformly stable and contractive. Therefore,
Markovian jump linear systems can be treated as if they are
switched linear systems. Moreover, the almost sure uniform
stability and contractiveness of (G,P, p) is robust against
sparsity pattern–preserving deviations from P and p.

Let T be as in (12), and let (P, p) be a Markov chain.
Then the triple (T ,P, p) defines the controlled Markovian
jump linear system represented by (13). Here, θ is a real-
ization of (P, p). As in the previous section, we make the
standard assumption that the state θ(t) of the chain (P, p)
is perfectly observed at each time instant t; we consider all
finite-path dependent controllers.

Given a nonnegative integer L, let K be as in (14)
with Θ replaced by Θ(P, p). Then the pair (K,Θ(P, p)L)
defines an L-path dependent controller, whose representation
is given by (15). Label the L-paths in LL(Θ(P, p)) in
dictionary order from 1 to NL, where NL is the cardinality
of LL(Θ(P, p)). Let P(0) = P, and define P(L) = (qij) ∈
R

NL×NL for each L > 0 as follows: whenever (i0, . . . , iL)
and (j0, . . . , jL) are L-paths labeled i and j, respectively, set
qij = piLjL

if (i1, . . . , iL) = (j0, . . . , jL−1) and piLjL
> 0;

otherwise, set qij = 0. Also, let p(0) = p and define a row
vector p(L) = (qi) ∈ R

NL for each L > 0 as follows:
whenever (i0, . . . , iL) is an L-path labeled i, set qi = piL

if i0 = · · · = iL−1 = 0 and iL �= 0; otherwise, set qi = 0.
Then the pair (P(L), p(L)) defines the L-path Markov chain
generated by (P, p) with transition probability matrix P(L)

and initial distribution p(L). Consequently, if T K is as in (16)
with Θ replaced by Θ(P, p), then the closed-loop system,
given by the triple (T K,P(L), p(L)), is a Markovian jump
linear system whose representation is of the form (18) for
each realization θL of (P(L), p(L)).

Definition 8: The controller (K,Θ(P, p)L) is said to
be an admissible (L-path dependent) synthesis (of order
nK) for the system (T ,P, p) if the closed-loop system
(T K,P(L), p(L)) is almost surely uniformly exponentially
stable and almost surely uniformly strictly contractive.

Theorem 5: Let T be as in (12); let (P, p) be a Markov
chain. Suppose that nK ≥ n. There exists an admissible
finite-path dependent synthesis of order nK for the system
(T ,P, p) if and only if there exist a nonnegative integer M
and an indexed family

⋃
I∈M−

M (P,p){(RI ,SI)} of pairs of
symmetric positive definite matrices RI , SI ∈ R

n×n such
that (20) holds for all M -paths (i0, . . . , iM ) ∈ MM (P, p).
Moreover, if (20) holds for all (i0, . . . , iM ) ∈ MM (P, p),
then there exist a nonnegative integer L ≤ M and controller
gain matrices K(iM−L,...,iM ) ∈ R

(nK+m2)×(nK+l2) such
that (19) holds for (i0, . . . , iM ) ∈ MM (P, p), where the
matrices XI are reconstructed via (21) for I ∈ M−

M (P, p).

V. CONCLUSION

The paper treated Markovian jump linear systems in the
discrete-time domain, and developed an exact condition for
almost sure uniform stabilization and disturbance attenuation.

This condition naturally gives rise to finite-path dependent
controllers, and admits an efficient algorithm for optimal
controller synthesis in the form of a sequential semidefinite
program. The computational complexity of the algorithm
can grow exponentially in the number of past modes that
the optimal controller recalls. This limitation is due to the
problem nature, and considered unavoidable.

It is not difficult to see that our result allows one to
minimize the disturbance attenuation level path-by-path over
all admissible switching paths of a given length, instead of
minimizing a single performance level. This gives a refined
notion of optimality, and there are examples where finite-path
dependent controllers outperform the usual mode dependent
controllers under this notion. For a detailed discussion of this
point, the reader is referred to [15].
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