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Abstract— Stock exchanges are modelled as nonlinear
feedback systems where the plant dynamics is defined by
known stock market regulations but the actions of agents
are unknown. It is assumed though that each agent submits
transaction requests according to his/her beliefs on the price
dynamics and his/her behavior. The action of the agents may
contain a random element, thus we get a non-linear stochastic
feedback system. The market is in equilibrium when the actions
of the agents reinforce their beliefs on the price dynamics.
Assuming that an AR(k) predictor is used for prediction of the
price process, a stochastic approximation procedure for finding
market equilibrium is described. The proposed procedure is
analyzed using the theory of Benveniste, Métivier and Priouret,
[1].

I. INTRODUCTION

In this paper we present a closed-loop model for a stock
exchange. The plant itself is defined by a market clearance
mechanism, by which the agent’s transaction requests are
collected, transactions are carried out, and new stock prices
are determined.

The agents action are based on predictions of the observed
price process. Using these predictions the agent will make a
buy or sell decision according to his/her behavior. A variety
of behaviors of economic players, such as loss aversion,
conservatism, or risk seeking was identified by experimental
psychologists, see for example Kahneman [5].

A key factor in the above model is the agent’s belief of
the price dynamics, and his/her predictive capability. In this
paper we assume that all agents use the same standardized
predictor, which is fitted to actual data. In this paper the
standard predictor will be obtained by fitting an AR(k)
model to the observed price process, and thus the predictor,
denoted by M , will be an FIR filter.

For any fixed predictor M the closed loop dynamics will
define a price process, the dynamics of which depends on
M . The standard predictor for this price process will be
typically different from M , thus the agents will adjust their
standard predictor. This adjustment will be continued until
an equilibrium is reached: until the actions of the agents
reinforce their beliefs. An on-line, data-driven version of the
above adjustment procedure will be presented and analyzed
using the theory of Benveniste, Métivier and Priouret, [1].

II. A BEHAVIORAL STOCK MARKET MODEL

Market dynamics. The price of a given stock at time n ∈ N
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is denoted by pn. The prices are given by the market: based
on the transaction requests of the agents, the next period’s
price is calculated by an automated trading system that uses
an equilibrium-price transaction matching algorithm. The
transaction request of the ith agent, 1 ≤ i ≤ N , consists
of a demand quantity di and a bid price bi. The demand
can take any values in R, a negative value meaning that the
agent would like to sell. The bid prices show the maximum
price the buyer is willing to pay when buying stocks or the
minimum the seller will accept when selling.

A basic building block of the transaction matching algorithm
is the following. For a given offer/bid price p calculate
the total number of transactions that would take place at
this price, and choose the price at which trading volume is
maximized. If no transactions are realized, the price remains
unchanged. The algorithms are complemented by minor
refinements that handle non-uniqueness problems. For details
see e.g. the opening rules of the New York Stock Exchange
[9]. The aggregated demand at price p, say D(p), is given
by

D(p) =
∑

i

(di)+H(bi − p),

where H is the Heaviside function or step-function and
x+ denotes the positive part of x. Similarly, the aggregated
supply is calculated by

S(p) =
∑

i

(di)−H(p − bi),

where x− denotes the negative part of x. The volume
maximizing price is obtained by solving the non-linear
optimization problem

max δ subject to D(p) ≥ δ, S(p) ≥ δ.

This mechanism can be formalized as

P

(
d

b

)
= p, (1)

where P is a known static nonlinear function of the
transaction requests. Obviously p ≤ maxi bi thus P has
linear growth rate. To ensure Lipschitz-continuity in the
variables (d, b), we assume that the Heaviside function
is replaced by a smooth so-called sigmoid function σ, a
standard element in neural networks.

The control action. The transaction requests serving as
the input of P are determined by a strictly non-anticipating
operator C:

C

(
p

v

)
=

(
d

b

)
, (2)
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where v denotes external investments or withdrawal.
Throughout the paper v is taken to be constantly 0, i.e we
consider a self-financing scenario. Another simplification in
our model is that unmatched demands and supplies are not
recorded in an order book, but simply cancelled. A more
detailed picture of the controller C will be given below.
Combining equations (1) and (2) we get the closed-loop
system shown in Fig. 1.
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Fig. 1 A stock market model.

The predictor. The financial market is made up of a
heterogenous mixture of traders. The only information the
agents get from the stock market is the observed stock price
process p, i.e. the bid prices of the other traders are unseen.
The agents operate by trying to predict price movements:
based on their beliefs they construct a price predictor M

p̂ = Mp. (3)

Here M is assumed to be a strictly causal linear predictor.
In this paper we will consider only FIR predictors. It is also
assumed that all agents use the same standardized predictor.

Behaviors. The agents use the predicted price to determine
their own demand d and bid price b. Researchers of
behavioral finance argue that various psychological factors
prevent decision makers from acting in a fully rational
manner, see for example Greenfinch [3], Kostolany [6] and
Shefrin [10]. Critics of this theory, see the works of Lucas
[8] and Simon [11], claim that the behavior of the agents is
always rational from a particular perspective.

The prediction combined with the decision made on
assumed future prices will lead to a controller structure,
where a dynamic linear element is followed by a static non-
linearity as follows:

(
d

b

)
= f(Lp),

see Fig. 2. Here f is a Lipschitz-continuous static
nonlinearity satisfying a linear growth condition, and L is
a strictly causal linear filter that contains the price predictor
M .

L � p� p̂

� pf
� d

� b

�

static nonlinearity

�

linear filter

Fig. 2. The control action.

III. MORE ON BEHAVIORS

A psychological phenomenon extensively studied by
behaviorists is the so-called loss aversion. Nobel prize
winner psychologists Kahneman and Tversky [5] find that
even simple risk aversion can be biased: empirical evidence
shows that a loss has about two and a half times the impact
of a gain of the same magnitude. This behavior can be
formalized by the equation

dn = (p̂n − pn−1)+ − 0.4(p̂n − pn−1)−. (4)

Now turning to bid prices, note that bid prices are usually
less than the expected price if buying, and the other way
round if selling. One such strategy is given by the rule

bn =
1
2
(p̂n + pn−1).

Introducing randomness. In case the predicted prices and
the current stock prices differ by much, say by at least a
value δ, the decision of the agents is straightforward: they
buy according to their behavior if p̂n − pn−1 > δ and
sell if p̂n − pn−1 < −δ. However if this is not the case
then the agents do not have a clear conception about future
price movements, hence they may act randomly: they make
buy/sell/hold decisions with prescribed probabilities. These
probabilities and the parameter δ are characteristics of the
agent.

Another source of randomness may be the uncertainty of
the agent in the correctness of his/her strategy. In this case
the agent makes a random buy/sell decision with a small
probability.

The diversity of bid prices is crucial for a well-functioning
market. This fact is supported by the abundant literature
on bid-ask spreads (see for example the seminal paper of
Glosten and Milgrom [4]). Thus it makes sense to have
random elements in bid prices as well.

The noise model. From now on, the source of randomness
is taken to be a random adjustment of the model-based pre-
computed bid prices, say(

d

b

)
= f(Lp) + e

where (en) is a strictly stationary sequence of random
variables with zero mean.
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IV. UPDATING THE PREDICTOR

Now imagine how an agent having a fixed behavior B
would determine the demand for a particular stock. Fixing
M = M0 the controller C0 = C(M0) is determined, and
assuming that the closed loop system is well-defined, and
the mapping from e to p is stable in an appropriate sense,
we get a strictly stationary price process p = p(M0), with a
spectrum depending on M0. The agent observes this process
and calculates its least squares predictor M+, which will
also depend on C0, say M+ = M+(C0). Next the agent
compares the two predictors. Now if M+(C0) �= M0 then it
is reasonable to switch to the new predictor M1 := M+(C0).
Let us define the mapping

f(M) = M+(C(M)).

Assume that there exists a predictor M∗ for which the market
is in equilibrium, i.e. M∗ is a fixed point of the operator
equation

M∗ = f(M∗).

Then we may ask if the iterative procedure

Mi+1 = f(Mi)

converges.

The updating of M can be easily calculated if the mapping
from e to p is rational and minimum phase. In our model this
can not be guaranteed. Also in real life financial markets the
mapping from exogenous noise to price is often non-rational
and non-minimum phase. It is therefore more reasonable to
identify M∗, or its approximation directly from the data.

AR(k)-approximation. Write the innovation representa-
tion of p in the form

p = Hν,

where ν is the innovation process of p. Since we have no
prior information on p we fit an AR(k) model to our data,
and use use a low order predictor based on this model. Let
A be a polynomial of the shift operator of degree k and let
A0 be its leading coefficient. Then we consider the model
class

Ak = {A | degA ≤ k, A0 = I, A stable}.
If the AR(k)-model is parametrized by η then we have for
the corresponding least squares predictor M(η) = I −A(η).

Let us now fix a predictor, or equivalently fix an η ∈ Ak.
Closing the loop we get the price process p(η). To adjust
the initial predictor find the best k-th-order AR-model by a
least squares fit: minimize in θ

E|A(θ)p(η)|2

subject to A(θ) ∈ Ak. Using the notation

ν(θ, η) := A(θ)p(η)

and
W (θ, η) :=

1
2
E|ν(θ, η)|2

we have to solve the linear equation

Wθ(θ, η) = 0.

The solution will be denoted by ϕ(η). It is then reasonable
to adjust our predictor using this best fit, and redefine M as

M+ = I − A(ϕ(η)).

Thus the mapping M+ = f(M) defined above in terms of
transfer functions will be reduced to a mapping

η+ = ϕ(η).

Market equilibrium is achieved if η = ϕ(η), or equivalently

Wθ(η, η) = 0. (5)

Let the solution of (5) be denoted by η∗.

V. A DATA-DRIVEN PROCEDURE

The above conceptual procedure translates to the following
data-driven procedure when working with real data. First, for
any fixed stationary price process p = p(η) observed over a
time horizon 1 to N estimate the best AR(k) coefficients by
solving the minimization problem

min
A∈Ak

N∑
n=1

(Ap)2 .

This is quadratic in the coefficients of A and thus can easily
be computed. Then update your a priori price model η.

Introduce

G(η) := Wθ(η, η) = Eνθ(η, η)ν(η, η).

Then η∗ is simply the solution of

G(η) = 0. (6)

Since Wθ(θ, η) is computable experimentally for each θ and
η, the general stochastic approximation procedure developed
by Benveniste, Métivier and Priouret, [1], or Ljung and
Söderström [7], the latter being extensively analyzed in [2],
is applicable.

Adjusting the price model. Thus we arrive at the following
data-driven procedure to solve (6):

ηn+1 = ηn − c

n
νθnνn, (7)

where νn, νθn are on-line estimates of ν(ηn, ηn) and
νθ(ηn, ηn), respectively, and c > 0 is a step size. Taking
into consideration the definition of ν(θ, η) we have

νn = [A(ηn)p]n

and
νθn = (pn−1, . . . , pn−k).

The convergence properties of the above procedure can
be analyzed via the general theory developed in [1]. Details
will be given subsequently. Here we remark only one aspect
of potential difficulty. Convergence of general recursive
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estimators is usually proven using the so-called ODE-
method. The associated ODE in the present case is given
by

η̇s = −c G(ηs). (8)

The Jacobian of G at any η is

Gη(η) = Wθθ(η, η) + Wθη(η, η).

We know that Wθθ(θ, η) is at least positive semidefinite for
each θ and η, and in fact it is independent of θ for fixed
η. However, note that we have no control of the second
term Wθη(η, η) even for η = η∗. Therefore the asymptotic
stability of (8) is not a priori guaranteed.

VI. THE BMP SCHEME

In this section we present the basics of the theory of
recursive estimation developed by Benveniste, Métivier and
Priouret, BMP henceforth (see Chapter 2, Part II. of [1]).

Let a family of transition probabilities {Πθ, θ ∈ D ⊂ R
d}

on R
k be given. Here D is an open set. Assume that for any

θ ∈ D there exists a unique invariant probability measure,
say µθ. Let (Xn(θ)) be a Markov-chain such that its initial
state X0(θ) has distribution µθ. Let H(θ, x) be a mapping
from R

d × R
k to R

d. Then the basic estimation problem of
the BMP-theory is to solve the equation

Eµθ
H(θ,X(θ)) = 0.

Assume that a solution θ∗ ∈ D exists.

The BMP-scheme. The recursive estimation procedure to
solve the above equation is then defined as

θn+1 = θn +
1
n

H(θn, Xn), (9)

where Xn is the time-varying process defined by

P (Xn+1 ∈ A|Fn) = Πθn(Xn, A).

Here Fn is the σ-field of events generated by the random
variables X0, . . . , Xn and A is any Borel subset of R

k.
To specify the class of functions H for which the theory

is developed define for real-valued functions g on R
k and

any p ≥ 0 the norms

||g||p := sup
x

|g(x)|
1 + |x|p ,

and

||∆g||p = sup
x1 �=x2

|g(x1) − g(x2)|
|x1 − x2|(1 + |x1|p + |x2|p) .

Introduce the class of functions

C(p) = { g : g is continuous and ||g||p < ∞}.
and

Li(p) = { g : ||∆g||p < +∞}.
Note that Li(p) ⊆ C(p + 1) for any p ≥ 0.

Conditions of BMP. All but one condition will be
formulated in terms of the Markov chain {Xn(θ) : n ≥ 0}
for a fixed θ ∈ D with an arbitrary non-random initial value

X0(θ) = x. Throughout the section we will illustrate these
conditions on the benchmark example of linear dynamical
processes:

Yn+1 = A(θ)Yn + B(θ)Wn+1,

where A(θ) and B(θ) are k × k real-valued matrices and
(Wn)n≥0 is an i.i.d. sequence of random variables. The
conditions are as follows. The real number p ≥ 0 is fixed all
over the conditions A1.-A3. below.

A1. For any compact subset Q ⊂ D there exists a
constant K = K(Q) such that for all θ ∈ Q, n ≥ 0 and
X0(θ) = x ∈ R

k:∫
Πn

θ (x, dy)(1 + |y|p+1) ≤ K(1 + |x|p+1).

In the case of linear processes this condition is satisfied
if (Wn) has bounded moments up to order p + 1, and there
exist constants K and 0 < α < 1 such that for all n ≥ 0
and any θ ∈ Q we have |An(θ)| ≤ Kαn and |B(θ)| ≤ K.

A2. For any compact subset Q of D there exist constants
K = K(Q) and 0 < ρ < 1 such that for all g ∈ Li(p), any
θ ∈ Q,n ≥ 0 and x, x′ ∈ R

k:

|Πn
θ g(x) − Πn

θ g(x′)| ≤
≤ K||∆g||p ρn|x − x′|(1 + |x|p + |x′|p).

In the linear case assumption A2 easily follows from the
conditions that we formulated for A1.

Conditions A1 and A2 imply geometric ergodicity of the
Markov chains in the following sense: for any θ ∈ D, x ∈ R

k

and any g ∈ C(p + 1) there exists a Γθg such that

|Πn
θ g(x) − Γθg| ≤ ||g||p+1ρ

n(1 + |x|p+1).

A key contribution of the BMP theory is that the above
geometric ergodicity is derived by verifying conditions on a
much more convenient class of test functions, namely Li(p).
It follows that that there exists a unique invariant measure
µθ such that

Γθg =
∫

g(x)dµθ(dx)

for g ∈ C(p + 1).

A3. For any compact subset Q of D there exists a constant
K = K(Q) such that for all g ∈ Li(p), any θ, θ′ ∈ Q and
n ≥ 0, x ∈ R

k:

|Πn
θ g(x) − Πn

θ′g(x)| ≤ K||∆g||p |θ − θ′|(1 + |x|p+1).

In other words the kernels Πn
θ are supposed to be Lipschitz-

continuous, uniformly in n, with respect to the parameter θ
when applied to a small set of test functions Li(p). In the
linear case A3 is satisfied if, in addition to what we required
above, the matrices A(θ) and B(θ) are Lipschitz-continuous
in θ.

Let D0 ⊂ D be a fixed compact truncation domain such
that θ∗ ∈ intD0. Define the stopping time

τ = inf{n : θn+1 /∈ D0}.
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In addition let ε be a fixed small positive number, and define

σ = inf{n : |θn − θn−1| > ε}.

The stability of the time-varying process Xn is enforced by
stopping it at τ ∧ σ.

A4. For any compact subset Q of D there exists a constant
K = K(Q) such that for any n ≥ 0 and arbitrary starting
values a ∈ Q, x ∈ R

k

Ea,x{I(n < τ ∧ σ)(1 + |Xn+1|p+1} ≤ K(1 + |x|p+1)

Regularity of the function H is required in the next
condition:

A5. For any compact subset Q of D there exists a constant
K = K(Q) such that for all θ, θ′ ∈ Q

|H(θ, x)| ≤ K(1 + |x|p+1)

|H(θ, x) − H(θ′, x)| ≤ K|θ − θ′|(1 + |x|p+1)
||∆H(θ, ·)||p ≤ K.

Remark: In fact it is sufficient to require the above condition
for ΠθHθ, thus H may be discontinuous.

Since H(θ, ·) ∈ Li(p) we may set as above

h(θ) = lim
n→∞Πn

θ H(θ, Xn(θ)) = Eµθ
H(θ,X(θ)).

The associated ODE is then given by

θ̇s = h(θs). (10)

To ensure the convergence of the SA-procedure we
require global asymptotic stability of the associated ODE
by assuming the existence of a Lyapunov function:

A6. There exists a real-valued C2-function U on D such that

(i) U(θ∗) = 0, U(θ) > 0 for all θ ∈ D\{θ∗}
(ii) U ′(θ)h(θ) < 0 for all θ ∈ D\{θ∗}
(iii) U(θ) → ∞ if θ → ∂D or |θ| → ∞.

Theorem 13, p. 236 of [1] yields the following
convergence result.

Theorem VI.1 Assume that Conditions A1 - A6 are
satisfied, and ε is sufficiently small. Let a ∈ intD0, Xm =
x ∈ R

k, and consider the stopped process θ◦n = θn∧τ∧σ .
Then for any 0 < λ < 1 there exist constants B and s such
that such that for all m ≥ 0 we have lim θ◦n = θ∗ with
probability at least

1 − B(1 + |x|s)
+∞∑

n=m+1

n−1−λ.

VII. CONVERGENCE OF THE SA-PROCEDURE

In this section we outline the proof of the validity of
Conditions A1-A3 for algorithm (7) for a stock market where
the demand function of the agent satisfies a sector condition
similar to that of Zames [12].

The proposed stochastic approximation procedure fits into
the general BMP scheme by choosing the state vector

Xn(θ) = (pn(θ), pn−1(θ), . . . , pn−k(θ))T .

The correction term will be obtained via the function
H : R

k × R
k+1 
→ R

k defined by

H(η, z) = −(z1, . . . , zk)T (z0 + η1z1 + . . . + ηkzk).

Next we impose conditions on the stock-exchange model
itself. For the market dynamics let us define the average
absolute demand

d =
N∑

n=1

|di|/N.

Similarly the average absolute deviation of demands will be

δd =
N∑

n=1

|di − d′i|/N.

For the vector of bid prices we use the sup-norm. The price
matching function g is assumed to satisfy the following
condition.

G. The price forming function satisfies a linear growth
condition and a Lipschitz condition in the following sense:
there exists an Lg ∈ R such that for any d, d′ ∈ R

N

|g(d, b)| ≤ Lg(d + |b|),
|g(d, b) − g(d′, b)| ≤ Lgδd.

For the price predictors we consider a feasible set

D0 ⊂ D = { η ∈ R
k : A(η) is stable}.

Empirical evidence on real data shows that the coefficient
of the one-period lag is typically close to 1 while the other
coefficients are close to 0. Thus a typical price predictor is
’close’ to an AR(1) predictor. Thus if our model is properly
describing the mechanism of a stock-exchange then the set
of feasible parameters can be chosen so that |η1−1| and |ηi|
are all small. Let δ1 = supη∈D0

|η1−1| and for i = 2, . . . , k
define

δi = sup
η∈D0

|ηi|.

Set

∆ =
k∑

i=1

δi.

Then we expect that ∆ is small.
The behavior of the agent is characterized by the static

non-linear element fi. For a current price predictor ηn the
i-th agent determines his/her transaction request according
to

di
n = fi(p̂n(ηn) − pn−1)
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The demand functions fi are assumed to satisfy the following
sector condition.

F. There exists Lf ∈ R such that for any x, y ∈ R and any
1 ≤ i ≤ N

|fi(x)| ≤ Lf |x| and |fi(x) − fi(y)| ≤ Lf |x − y|.

Theorem VII.1 Assume that E|en|q < ∞ for any q ≥ 0
and Conditions F and G hold. Then if

LfLg∆ < 1,

then assumptions A1.-A3. are satisfied.

Remark: Note that if all agents have the same behavior and
have approximately the same demand, then merging them
into a single agent has the effect that Lf is multiplied while
Lg is divided by approximately the same scalar.

Proof: For the proof we use a Lyapunov function
argument. A new norm in R

k+1 will be introduced to ensure
the contraction of the norms of the state vector Xn(θ). Let
ε1, . . . , εk be positive constants and for z ∈ R

k+1 define the
new vector norm as

|z| := |z0| +
k∑

i=1

εi|zi|.

The key observation is that the input for the behavior is
p̂n − pn−1 which is small if ∆ is small. Using the sector
constants Lf and Lg we conclude that there exist positive
constants ε1, . . . , εk and 0 < β < 1 such that using the norm
defined above we have for any θ ∈ D0

|Xn(θ)| ≤ β|Xn−1(θ)| + L1|en|.
The verification of A1 is now trivial. To verify A2. let

Xn(θ) and X ′
n(θ) denote the frozen-parameter processes

with initial values X0 = x and X ′
0 = x′, respectively. Then

|Πn
θ g(x) − Πn

θ g(x′)| = |E[g(Xn(θ)) − g(X ′
n(θ))]|.

Using g ∈ Li(p) the right hand side can be bounded by

||∆g||p E {|Xn(θ) − X ′
n(θ)|(1 + |Xn(θ)|p + |X ′

n(θ)|p)} .

Straightforward calculations yield

|Xn(θ) − X ′
n(θ)| = |pn − p′n| +

k∑
i=1

εi|pn−i − p′n−i| ≤

≤ β|Xn−1(θ) − X ′
n−1(θ)| ≤ . . . ≤

≤ βn|x − x′|.
Thus the Markov chain Xn(θ) forgets its initial condition
exponentially fast. Using A1. the validity of assumption A2.
follows immediately.

Now let Xn(θ) and Xn(θ′) denote the frozen-parameter
processes with the same initial state X0 = X ′

0 = x.
Exploiting the fact that g ∈ Li(p), the difference
|Πn

θ g(x) − Πn
θ′g(x)| is easily seen to be majorated by

||∆g||p E {|Xn(θ) − Xn(θ′)|(1 + |Xn(θ)|p + |Xn(θ′)|p)} .

From here easy calculations lead to

|Xn(θ) − Xn(θ′)| ≤ β|Xn−1(θ) − Xn−1(θ′)|+
+ K|θ − θ′||Xn−1(θ)|.

Iterating this inequality backwards we are led to

|Xn(θ) − Xn(θ′)| ≤ K|θ − θ′|
n∑

i=1

βi−1|Xn−i(θ)|.

Since Xn(θ) is Lq-bounded, so is |Xn(θ)−Xn(θ′)|/|θ−θ′|.
Using a Cauchy-Schwartz inequality and taking into account
A1., we get the validity of assumption A3.

Example. Assume the agent uses geometrically decreasing
weights for prediction: δi = αi for some 0 < α < 1.
Then assumptions A1.-A3. hold if the loop gain satisfies
LfLg < (1 − α)/α.

VIII. CONCLUSION

A behavioral stock market model has been developed. The
proposed model is a nonlinear stochastic feedback system.
The control action of the agents is composed by choosing
a behavior and a prediction step applied to the observed
price process. The predictor is automatically adjusted in an
iterative manner. Conditions for the convergence to a market
equilibrium have been given using the BMP theory.
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