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Abstract— This paper considers a problem of identifying
stochastic linear systems subject to observation outliers, where
the observation noise contains large values with a low probabil-
ity. A stochastic subspace identification method for the problem
is developed based on a block LQ decomposition, introducing
a weighting matrix to delete outputs which are suspected
as outliers. The weighting matrix is generated automatically,
and is incorporated in the block LQ decomposition to get
improved estimates of the forward innovation representation.
A numerical simulation result is included to show effectiveness
of the proposed method.

I. INTRODUCTION

Stochastic subspace identification algorithms [1], [2] com-
pute stochastic state space systems from finite strings of
time-series data, where the numerical operations include
not only the singular value decomposition (SVD) and QR
decomposition (or LQ decomposition), but also computation
of the stabilizing solution of an associated Riccati equation.
It is well-known that the stochastic subspace identification
algorithms [1], [2] are derived on the basis of the stochastic
realization theories [3], [4], [5].

Recently, we have re-visited stochastic realization theory
[6]. Moreover, adapting stochastic realization algorithms to
a finite string of time-series data, we have presented a
stochastic subspace identification algorithm [7], and given an
algorithm to guarantee stability and minimum phase property
of the resulting forward innovation representation [8].

In real applications, there are cases where large errors
are contained in observed data with a low probability,
which is however significantly higher than that given by
a single Gaussian distribution, so that a standard Gaussian
assumption for observation noises may fail [9]. The least-
squares estimate is quite sensitive to this type of non-
Gaussian disturbances called outliers, and thus numerical
performance of LQ decomposition may degrade. Therefore
subspace identification methods which are based on the
standard LQ decomposition may not give good models
under the observation outliers. It will be thus an important
topic to develop a simple method to cope with outliers for
stochastic subspace identification methods. For the purely
non-deterministic system, however, subspace identification
methods have not been studied well under observation out-
liers to the author’s knowledge.
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In this paper, we consider a stochastic subspace iden-
tification method for linear stochastic systems subject to
observation outliers, where the observation noise takes on
large values with a low probability. We derive a stochastic
subspace identification method for outliers by using a weight-
ing matrix for the block LQ decomposition, and develop a
simple method of deleting outliers with the help of a scheme
for robust estimation methods in statistics [10]. We give
a numerical simulation result to show effectiveness of the
proposed method.

II. PROBLEM STATEMENT

In this section, we consider a problem of identifying
stochastic linear systems subject to observation outliers.
Consider the unknown stochastic system

1 | | A Wy
R R EEE ) I

T . . .
where [ th (v?)T } is a zero-mean stationary white
Gaussian noise sequence with a covariance matrix

()3 ]} (8 3 o

The output {yp, ¢ = 0, £1, £2, ...} is a p-dimensional
non-deterministic process with mean zero and covariance
matrices

Ar = E{(yir) )}
where Ay (k = 0, £1, ...) is a positive real sequence:
D ul A;_juj >0, u; # 0. Defining G = E{z41(y})T},
we have A, = CAF—1G. We moreover assume that (4, G,
(') is a minimal realization with order n.

Suppose that we observe the output of the stochastic
system (1) which contains outliers:

e R T

where v; is a white noise which contains outliers

k=0,£1,42,...,

v = (1 — ap)v) + ool “4)

where a; = {0,1} and Pr{oy = 1} is small and v is a
Gaussian white noise with a covariance matrix

E{(v)(w})"} = R
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which satisfies
R° > R. ©)

Under these conditions, the output equation is written as

yr = (1 — o)y + ey,

where yy is defined as yy := C'z; + vy. In the following, y;'
is called the normal output, whereas y¢ the outliers output.
It should be, however, noted that y;' and y; are fictitious
outputs never observed.

The problem in this paper is stated as follows: Let 7 be
a positive integer with 7 > n, and v be sufficiently large.
Suppose that a finite string of time-series data

{ys 1 t=0,1,....21+v—2} (©6)

is given. Estimate then a realization (A, K, C, ]A%) of a
forward innovation representation of the system (1),

1| [ A K &y
i l=le TR o
E{0s0] } = Ry,

where 9, is an innovation process of the normal output y}.

It should noted that we are interested in also detecting the
outliers output yy, though we only develop an algorithm to
estimate (7) in this paper. We check if the output contains
outliers or not in (5), by using the forward innovation
representation, since there exist Markov representations of
y* generated by the stochastic system (1) !.

III. IDENTIFICATION FREE FROM OUTLIERS

We review a stochastic subspace identification method
based on a block LQ decomposition, under the assumption
that there are no outliers i.e. Pr(a; = 1) =0 or y; = y}.

A. Stochastic realization

In this subsection, we review stochastic realization theory
for an observed data [11], [12], assuming that we have data
Yyt = y; in (6) with v — oo and 7 — oo.

IConsider a Lyapunov equation
P—APAT = Q.

We then have G — APCT = S and Ag — CPCT = R. Every Markov
representation is given by solving LMI [11]:

G — APCT
Aog — CPCT

P — APAT

(G _ APCT)T 2 0 (8)

M(P) := |:
Factorizing M (P) as

T
M(P) = [ é } { é } , { é } : full column rank,

a stochastic realization is given by

Tt4+1 _ A L Tt (9)

yr C D et |’
where ey is a zero-mean white noise with a unit variance. Among stochastic
realizations (9), the forward innovation representation gives the largest R =

DDT, since the stabilizing solution P, of the associated Riccati equation
gives the smallest solution to the LMI (8): B < P. See also Section III.

According to [11], [12], we define the tail matrix from
observed data as

Yo=Y w1 Yg2 oo | €RPXE

We also define a vector space spanned by all finite linear
combinations of row vectors of y; as

Vo i={) ajyr|ax €R?, k=0, £1, £2, ...},
For aTyi and bTyj € Y°, we define an inner product as
(a"y;, b"y;)

By completing the vector space }*° with respect to conver-
gence in the norm induced by the inner product, we get a
Hilbert space, which is also written as ))*°.

Let U be a Hilbert subspace of J*° spanned by row vectors
of a matrix U € R***°, and the orthogonal projection of
£ € Y™ onto the space U be denoted by E 1 (& |U).

Define the past and the future matrices as

= aT/li_jb.

L
oo

Yi—1 Yt
B Yi—2 Yi+1
o= |y |+ Y

Yi+2

The block Hankel matrix of A; is then given by

A1 /12 Ag
Ay A3 Ay
_ A3 Ay As _ + -
H= Ay As A *<Yt 7Y;€ >éa

and ‘H = OC holds, where O and C are extended observ-
ability and reachability matrices described as

o=[cT (AT (©anT ...]7,
Cz[G AG A*G A3G - }
Define moreover variables as
& 1= OOV, 3Y
Uy =Y — Eé(ytlYf).

The projection of the future onto the past is then given as
31, [4] )
EL (YY) = Oy,

and y, is expressed as a forward innovation representation
in the Hilbert space V> [2], [11],

#1] [A K &4
e l-le e o
where @; satisfies Rds = (Vs,0) 1 and K and R are
defined as =
K := (G — AP,CT)(Ay — CP.CT)™, (11)
R:=/Ay—CP.CT, (12)
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where P, is the stabilizing solution % of a Riccati equation
P =APA" + (G — APCT)
x (Ag — CPCTY"H(G — APCT)T.
From the system (10), we have
T || A— KC K T

’lA)t o -C 1 Yt '
Since (13) is a purely non-deterministic system, &; is ex-
pressed as [2]

13)

Bo=[ & 1 B o ] (14)
where Z; is determined from the steady state Kalman filter,
(ﬁt+1 = A(lAft =+ K(yt — Cfi't),

and K is the Kalman gain defined as (11). Moreover, from
(14), v, is given as

b= 0 Bep1 Dy - ], (15)
where 0; = y; — Cy.
Now, define matrices as

Lo=1I; Lpo=CA 'K, k=12, .. .. (16)
In terms of Ly in (16), we define a block Hankel matrix as

Li Lo Ls

Ly Ls La

S=1|Ls Li Ls ’

Ly Ls Le

and block upper and lower triangular matrices as

i izo i/l i/Q L3
Lo Li Lo
L= Lo @1 ,
Lo
L O
Lo 0
L1 Lo
it | Lo Iy Lo
Ls Lo Li Lo

Define moreover variables as

1 Uy
N Vi—2 N (]
Vo = N vVt = N
t Vi3 | t Ut+2 |

and matrices as
R := block-diag(R, R, .. .),
F=[K AK A’K ---].
2The stabilizing solution P; is the smallest solution in the LMI (8):

P, < P [3], thus the forward innovation representation (10) gives the
largest R = DD™ among Markov representations (9).

_ Proposition 1: [6] In terms of the innovation processes
V,” and V;T, the past Y, and the future Y, are decomposed

ﬁ*]_{g ﬁ0+H%+]

where V[ and V;r satisfy
W1y R o
AR N A VA V-

Moreover, S has a decomposition

S=0F. (17)
The data matrix defined by stacking y, has equivalently a
block LQ decomposition

8~

Yt—2 e IA/O . Vi—2
Ye—1 | — | -+ L1 Lo Dy1 18
v o ks Ly Lo o (18
Yi+1 e i/g [:2 i/l [:0 Vi+1
where v; satisfies
Vi1 De_1 R .
Dy 5 Dy = R . (19)
D41 Vi1 ya R

We can thus compute Ly and R by means of the block LQ
decomposition (18), and obtain (A, K, C) from (17).

B. Stochastic subspace identification

Adapting stochastic realization theory to a finite string of
time-series data, we have a stochastic subspace identification
method [7], [8].

Define a matrix as

=]y Y Yiyv—1 | ERP*Y. (20

We also define a bilinear product of two matrices X € RP*¥
and Y € R?*” as
1
(X,Y): = —XYT.
v
We then have an approximation,
Aij = (yiyj) 1.
For 7 > n, also define a matrix as
Yo
- U1
Vo= 1)

Yor—1

Assume (Y;",Y;")r > 0. An identification algorithm is
given then as follgws [8]. We compute the standard LQ
decomposition of YOJr which defined in (21):

€

\/17}70+ = LQ",

(22)
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or equivalently we compute a decomposition
Y/O—i_ = LQTa <QTa QT>1 =1

where Q := /vQ. Partition L as
. - L L )
Lor—1,0 v 1

L0,0 0
where L; ; € RP*P and Ly, Lf,, Ly € RPT*PT. Define a
matrix as

Dy, := block-diag(Lo,o, - -

(23)

L =

Lor—127-1

R L2T71,2‘r71)~

The matrix Dy, is then non-singular from the assumption.
Define matrices as

Ly :=LD;", (24)
Vit = DLQT, (25)
Ry = DDY. (26)

We then have a block LQ decomposition of the matrix Yj',

Yot = LSV, 27)
(o™ Vo =Ry, (28)
where £ and R are described as
Loy 0
LE = : , (29)
i2771,0 ]:2771,2771
R = block-diag(Ro, ..., Ry, ..., Rar_1), (30)

where Rt € RP*P, l~/7;7j = szL;; and i’i,i = Ip.
A stochastic subspace identification method is summarized
as follows [7], [8].
A stochastic subspace identification algorithm
Step 1: Compute the standard LQ decomposition (22)
and obtain [:(J{ , 7@3 as (24) and (26), respectively.
Determine moreover a matrix as

Uy o= LypLy, + Ly L. @D
Step 2: Calculate the SVD of a matrix (¥,) 2L #p as
(@) 2Ly = U5, VF, 2. eR>™ (32

where UTU, = I, VIV, =1 and~rank2:’T =
n. Ba§ed on the SVD (32), define O, as O, =
(#.)" 0,52,

Step 3: Compute C and A as

C= @T(l :p:), A= (5171(7)7(])4— 1:p7,:),

where O, ;1 = O,(1 : p(r —1),:) and ()
expresses Moore-Penrose pseudo-inverse.

Step 4: Define R, from (30), and compute K., from

LT+1,T

~ ~ i7'+2,‘r
K, = Oi_l . )

L27'71,T

where I~/T+1~77, i7+2m . l~/27_177 are found in
the matrix £ in (29).

Step 5: Define transfer functions
Tr(2) = W ()W (=71,
W, (2) == (C(zI — A)~'K, + I)RE.

The transfer function TT(Z) is positive real, and

can be a good approximation to the true spectral

density of y, for large v and 7 [7]. Find a stable and

minimum phase spectral factor from a canonical

spectral factorization of 7 (z), solving two Riccati

equations, where the procedure is given in [8].
Partition the matrix V™ € R>7PX as

Vo
- U1 N
~ v
Voo = . , v; € RP*Y, (33)
Var_1
From (15), estimates of innovations ¥ar_1, V27, - . ., V2742

are given by

Var_1 = [ U2r—1 Ua2r 2727'+1/72 } .

The identification method shown above estimates forward
innovations ?¥; by means of the block LQ decomposition
(27), which is computed in the first step of the algorithm

summarized above.

IV. IDENTIFICATION UNDER OUTLIERS

We give a method of identifying systems subject to ob-
servation outliers. To this end, we present an identification
method by using a weighting matrix.

A. A weighting matrix
We define a bilinear product of two matrices X € RP*¥
and Y € R9*¥ as
(X,Y)e = XOYT
for a nonnegative definite © € R¥*", where
O =r x diag (6,01, - ,0,-1) € R"*¥

for r, 6, € R.

In order to give an idea to construct a weighting matrix,
we assume for a while that an outlier exists in “y;” only
and that it is detected exactly. For simplicity, we restrict p
to p = 1. Define y; as (20) and ?OJF as (21). The matrix }7—0+
is then written as

(34)

Yo Yi—27+4+1 e Yi Yv—1

Vi =

S Y2r4v—2

(35)
Since 170+ has a Hankel structure, y; appears 27 times in it
for 27 —1 <4 < v —1, and we must delete all the data from
(i — 27 4 1)-th to min{i, v — 1}-th columns from Y;". Thus,
if © € R"*” is defined as

Y2r—1 Yi o Yit2r—1

1
o= x diag (1,---,1,0,---,
v—2T ——

1—274+1 2T
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then, we can delete outliers y; in (35) in order to compute
covariance matrices approximately,

Aifj ~ <gi7gj>(97

and we hence have a good approximation

Ao A Ay
Al Ao AET—Q ~ ~

~ (T T

~ <YO aYO >@'
Agr1 Aoro oo Ao

B. Constructing weighting matrix

We show how to construct a weighting matrix ©, by
deleting all the outputs suspected as outliers instead of
detecting outliers exactly. To this end, we use the stochastic
subspace identification algorithm [7], [8] which computes the
innovation V" in the first step.

Construction of a weighting matrix
Step 1: Define © = 11 and D = .
Step 2: Compute a weighted block LQ decomposition,

YOJ’_ = ’ég VO+7
<‘Z)+a ‘70+>9 = 7§'(J)ra
where L] and_ RJ have block structures as (29)
and (30), and L;; = I.
Step 3: Partition the matrix VOJr as (33) and find estimates
Ut
Step 4: Obtain the median of |||

s =median{||T;|| : t =27 —1,--- , 27+ v —2}.

If ||3¢]| > cs, then y; possibly contains outliers ,
where ¢ = 5 ~ 9 is used 4, and hence add ¢ to the
set D.

Step 5: Define an index set as

I={jlieD, i<j<m},

where m = min{i + 27 — 1,v + 27 — 2}. It may
be noted that D C 7 holds.
Step 6:Set 0; (0<i<wv—1)as

0 for
0 = { 1 for
Compute r =1/ (E;’;Ol 0;), and define © as (34).

Go to Step 2, and compute iteratively until the
possible outliers are not newly detected.

itor—1¢€T,
i+2r—1¢7.

3The process ¥ is computed as ¥y = y¢ — C'ZT¢, Where Z; is a linear
combination of {y:—2r—1, Y¢t—27, ..., Yt—1}. It thus follows from (3),
(4) and (5) that {y:} or {yt—1, ..., Yyt—2r—1} may contain outliers, if
[|[0t]] > cs. We delete however only the output {y } in each iteration in
this algorithm.
“4For the biweight robust estimation, the weighting coefficients are chosen
as
1—(z/cs)?)? for ||z|| < cs
w(z) = { (() (Ffes) for HzH > cs

where ¢ = 5 ~ 9 is recommended [10]. Here we employed a simple cut
method with the threshold cs, where the actual value of ¢ is borrowed from
the biweight method.

The set D contains indices of y,; which are suspected as
outliers in each iteration, while the set Z contains columns
of Y;" to be deleted.

The number of indices contained in D increases monoton-
ically in Step 4 in each iteration. When the possible outliers
are not newly detected, the matrix © is determined so that all
the columns of Y;" related with outliers are expected to be
deleted. It should be noted that probability of outliers in the
given data must be not very high in order that this algorithm
successfully finishes.

The present algorithm computes iteratively a weighting
matrix, since }70+ is contaminated by outliers. The set D thus
contains possibly some normal outputs, which are suspected
as outliers in the proposed algorithm. Computing iteratively,
however, the algorithm captures outliers, and most of the
outliers outputs are expected to be contained in D.

C. Identification based on the weighting matrix

Assume (Yy",Y;")e > 0. We present a stochastic sub-
space identification method by using the weighting matrix
© constructed in Subsection IV-B.

Identification algorithm under outliers
Step 1: Compute the weighted LQ decomposition

Q",QMe =1,

instead of (23), and obtain £, RS and ¥, from
(24), (26) and (31), respectively.

Steps 2-5: Compute Steps 2-5 as in the stochastic sub-
space identification algorithm shown in Section
I11-B.

Step 1 is a major difference between the proposed algo-
rithm and the one in Section III-B. The weighting matrix ©
is thus incorporated in the stochastic subspace identification
method based on the block LQ decomposition [7], [8] in a
simple way.

Yyt = LQT,

V. NUMERICAL SIMULATION

In this section, we present a simulation result to show
effectiveness of the stochastic subspace identification cou-
pled with a scheme of attenuating outliers. Two stochastic
subspace identification algorithms, the algorithm shown in
Subsection III-B and the proposed one, are compared.

Finite strings of time-series data y, are given by different
noise realizations, where ¥, contains outliers output yy with
the probability Pr(o; = 1) = 0.01. The outliers output yy is
Gaussian noise with y? ~ N(0,6.5), and the normal output
yp is generated by y} = W (z)e:, where e, is also Gaussian
white noise with e; ~ N(0, 1). The transfer function W (z)
is a second-order system given by

_ 1-0.20271—0.4822
 140.752714+0.81z72°

A covariance matrix A9 = E{(y})(y2)T} is obtained by
solving a Lyapunov equation, and is equal to 6.4449. A
sample realization of the measurement output y; (¢t = 6070,
..., 6120) is shown in Fig. 1, and the outliers occur at

W(z)
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W70 6080 6090 6100 6110 6120

Fig. 1. A sample noise of y; (¢ = 6070, ..., 6120): the solid line expresses
yi', while “x” expresses yt.

t = 6091, 6099. It seems to be difficult to detect outliers from
only distribution of y, since Ay = 6.449 and y? ~ N(0,6.5).

We estimated the system for 30 simulation runs carried out
with different noise realizations where 7 = 6, v = 7,000 and
n = 2. In order to construct weighting matrices, we have set
cas ¢ = 2.1m = 6.5973. In average, the number of deleted
columns is 601, which is smaller than 27v x Pr(a; = 1) =
2 % 6 x 7000 x 0.01 = 840.

In every simulation, the algorithm successfully finished
after 10 iterations to construct a weighting matrix. It should
be however noted that the proposed algorithm failed for the
data subject to outliers with a higher probability Pr(a; =
1) = 0.05.

Fig. 2 shows the Bode plots of the estimated system for
30 simulations. These figures show that the Bode plots are
improved in the low frequency range.

0 0.5 1

25 3 “o 05 1 15 2 25 3
Frequency

15 2
Frequency

(a) Algorithm [8] (b) Proposed method

Fig. 2. Bode plots of the systems estimated by the algorithm [8] and the
proposed method, where the dotted line expresses the plots of estimates for
30 simulation and the dashed one gives the plot of W (2).

VI. CONCLUSION

We have considered a stochastic subspace identification
method for linear stochastic systems subject to observation
outliers, where the observation noise takes on large values
with a low probability. We have developed a stochastic
subspace identification method based on a weighted block
LQ decomposition, where a weighting matrix is automati-
cally constructed by means of an iterative calculation using
robust estimation. A numerical simulation result has shown
effectiveness of the proposed method.
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