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Abstract— In this paper we develop a systematic Lyapunov
approach to the regional stability and performance analysis
of saturated systems in a general configuration. The only
assumptions we make about the system are local stability
and well-posedness of the algebraic loop. Problems to be
considered include the estimation of the domain of attraction,
the reachable set under a class of norm-bounded disturbances
and the nonlinear L2 gain. The regional analysis is established
upon an effective treatment of the algebraic loop and the dead-
zone function. This treatment yields two forms of differential
inclusions, a polytopic differential inclusion (PDI) and a norm-
bounded differential inclusion (NDI), for the description of the
original system. The corresponding conditions for stability and
performance are derived as Linear Matrix Inequalities (LMIs).

keywords: saturation, deadzone, nonlinear L2 gain, reach-
able set, domain of attraction, Lyapunov functions.

I. INTRODUCTION

A. Background

Saturation is ubiquitous in engineering systems and is the
most studied in the literature as compared to other types
of nonlinearities. Intensified efforts have been devoted to
systems with saturation since the earlier 1990s due to a few
breakthroughs [32], [23], [30]. Saturation exists in different
parts of a control system, such as the actuator, the sensor, the
controller and within the plant. Most of the efforts have been
devoted to actuator saturation which involves fundamental
control problems such as time-optimal control, constrained
controllability and global/semi-global stabilization. These
problems have been addressed in great depth, e.g., in [14],
[19], [18], [23], [24], [29], [30], [32], [33], among which
[14], [19], [18] consider exponentially unstable systems.

Another major trend in the study of saturated systems can
be categorized as a Lyapunov approach. In this approach,
some quantitative measures of stability and performance,
such as the size of the domain of attraction, the convergence
rate, and the L2 gain, are characterized by using Lyapunov
functions or storage functions. Then the design parameters
(e.g., of a controller or of an anti-windup compensator) are
incorporated into an optimization problem to optimize these
quantitative measures. This trend is mostly fueled by the
numerical success in solving convex optimization problems
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with linear matrix inequalities (LMIs) (e.g., see [1]). This
is a general approach which can be applied to deal with
systems with saturations and deadzones occurring at different
locations. The first papers that use LMI-based methods to
deal with saturated systems include [13], [28], [5], [22],
[25], where [13], [28], [5] consider state feedback design and
[25], [22] analyze anti-windup systems. Since then, extensive
LMI-based algorithms have been developed for analysis and
design of saturated systems (see, e.g., [3], [2], [8], [6], [14],
[16], [15], [9], [11], [10], [26], [27], [35].)

There are mainly two steps involved in the Lyapunov
approach. The first step is to bound the saturation function
or the deadzone function with a sector so that the original
system can be cast into the general framework of abso-
lute stability, or can be described with a linear differential
inclusion (LDI). The second step applies available tools
from absolute stability theory or from general Lyapunov
approaches for LDIs, such as the circle criterion or the LMI
characterizations of stability and performance in [1]. Because
of the two-step framework, the effectiveness of a particular
method depends on how the original system is transformed
into LDIs and what kind of analysis tools for LDIs are used.
In many works involving anti-windup compensation, global
sectors are used to describe saturation/deadzone functions. It
is well known that a global sector can be very conservative
for regional analysis and can only be applied when the
closed-loop system is globally stable or to detect global
stability. In some other works, regional LDI descriptions
(some based on local sectors) are derived to reduce the
conservatism (see, e.g., [3], [2], [8], [13], [6], [16], [15],
[22], [28]). Along this direction, the regional LDI description
introduced in [16], [15] has proved very effective and easy
to manipulate. It has been used successfully for different
configurations or for different purposes in [3], [2], [8], [6],
[17], [21].

B. Problem formulation

With all the recent developments and effective tools men-
tioned in the previous section, we are now able to address
some stability and performance problems for systems with
saturation/deadzone in the following general form:⎧⎪⎨

⎪⎩
ẋ = Ax + Bqq + Bww
y = Cyx + Dyqq + Dyww
z = Czx + Dzqq + Dzww
q = dz(y) .

(1)

where x ∈ R
n, q, y ∈ R

m, w ∈ R
r, z ∈ R

p and “dz” is
the standard vector-valued deadzone function. This system
can be graphically depicted as in Fig. 1, where w is the
exogenous input or disturbance and z is the performance
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Fig. 1. Compact representation of a system with saturation/deadzone.

output. Many linear systems with saturation/deadzone com-
ponents can be transformed into the above general form
through loop transformation. This general form has been used
to study anti-windup systems in [9], [22], [27], [35]. When
Dyq �= 0, the system contains an algebraic loop, which may
present some difficulties in analysis. In many other works,
it is assumed that Dyq = 0. However, it was shown in [27]
that the algebraic loop can be purposely introduced into the
anti-windup configuration to reduce the global L2 gain. The
importance of the parameter Dyq will also be illustrated in
an example at the end of this paper.

We note that most of the previous works imposed different
assumptions on the system, such as exponential stability of
the original open-loop plant in an anti-windup configuration
(e.g., [9], [27], [35]). In these works, the global sector [0, I]
is used to describe the deadzone function. In some other
works such as [3], [2], [8], [6], [16], [15], [17], [4], regional
LDI descriptions are used to reduce the conservatism. In
these works, the algebraic loop is absent (Dyq = 0) and
the disturbance does not enter the deadzone function, i.e.,
Dyw = 0.

A recent attempt was made in [34] to perform regional
analysis on the general form without the assumption on
stability of the open-loop plant. The main idea, which had
also been suggested in some other works, was to use a
smaller sector [0,K] with K < I to bound the deadzone
function. However, this idea would not work on the general
form if Dyw �= 0. As it can be seen from the second equation
in (1), if the L2 norm of w is bounded, the L∞ norm of y
is not necessarily bounded. Hence there exists no K < I
to bound the deadzone function even at x = 0. After all,
as commented in [16], [17], even in the absence of w, this
kind of sector description is not only hard to manipulate, but
also has a much restricted degrees of freedom as compared
to the regional LDI description initiated in [16], which will
be extended in this paper to deal with the general situation
where Dyq �= 0 and Dyw �= 0.

The only assumptions that we will make about the system
(1) is a necessary local stability assumption (A is Hurwitz)
and the well-posedness of the algebraic loop, which will
be made precise in Section II. These were also the only
assumptions made in our recent paper [21].

By using quadratic Lyapunov functions, we address in this
paper the following problems for system (1):

1. Estimation of the domain of attraction (in the absence
of w) by using invariant ellipsoids.

2. With a given bound on the L2 norm of w, i.e, ‖w‖2 ≤ s
for a given s, we would like to determine a set S as
small as possible so that under the condition x(0) = 0,
we have x(t) ∈ S for all t. This set S will be considered
as an estimate of the reachable set.

3. With ‖w‖2 ≤ s for a given s, we would like to
determine a number γ > 0 as small as possible, so that
under the condition x(0) = 0, we have ‖z‖2 ≤ γ‖w‖2.
Performing this analysis for each s ∈ (0,∞), we obtain
an estimate of the nonlinear L2 gain.

To address these problems systematically, we will first
provide an effective treatment of the algebraic loop and the
deadzone function in Section II. In particular, the neces-
sary and sufficient condition for the well-posedness of the
algebraic loop will be made explicit. Moreover, we will
derive two forms of differential inclusions to describe the
original system (1). The first one is a polytopic differential
inclusion (PDI) involving a certain adjustable parameter or
nonlinear function. This parameter or nonlinear function
offers extra degrees of freedom associated with a local region
under consideration. It will be optimized in junction with
the Lyapunov functions in the final analysis problems. The
second differential inclusion is a norm-bounded differential
inclusion (NDI) which is derived from the PDI. The NDI is
more conservative than the PDI but may be more numerically
tractable for some cases.

In Section III, we will apply quadratic Lyapunov func-
tions via the PDI and the NDI to characterize stability and
performance of the original system (1). In Section IV, we
use a numerical example to demonstrate the effectiveness of
this paper’s results and the relationship between them. The
proofs are omitted due to space constraints.
Notation
- I[k1, k2]: For two integers k1, k2, k1 < k2, I[k1, k2] =
{k1, k1 + 1, · · · , k2}.
- sat(·): The standard saturation function. For u ∈ R

m,
[sat(u)]i = sign(ui)min{1, |ui|}.
- dz(u): The deadzone function, dz(u) = u − sat(u).
- co S: The convex hull of a set S.
- K: The set of diagonal matrices with 0 or 1 at each diagonal.
- HeX: For a square matrix X , HeX := X + XT .
- E(P ): For P ∈ R

n×n, P = PT > 0, E(P ) := {x ∈ R
n :

xT Px ≤ 1}.
- L(H): For H ∈ R

m×n, L(H) := {x ∈ R
n : |Hx|∞ ≤ 1}.

About the relationship between E(P ) and L(H), for a
given s > 0, we have (see, e.g., [16]),

sE(P ) ⊂ L(H) ⇐⇒
[

1/s2 H�

HT
� P

]
≥ 0 (2)

for all � ∈ I[1,m], where H� is the �th row of H .

II. TWO FORMS OF PARAMETERIZED DIFFERENTIAL

INCLUSIONS

Algebraic loops in linear systems can be easily solved (if
they are well-posed). For system (1), the presence of the
deadzone function makes the algebraic loop much harder to
deal with. Theoretically, an explicit solution can be derived
as a piecewise linear function by partitioning the vector space
R

m into 3m cells. However, the complexity of the partition
even for m = 2 or 3 makes the solution almost impossible to
manipulate. In this paper, we would like to use convex sets
to bound all the possible solutions. By doing that, we obtain
differential inclusion descriptions for the original system (1)
and make it more approachable with Lyapunov methods.
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Recall that the deadzone function belongs to the [0, I] sec-
tor, i.e., dz(y) = ∆y for some diagonal matrix ∆ ∈ R

m×m

such that 0 ≤ ∆ ≤ I . Let K be the set of diagonal matrices
whose diagonal elements are either 1 or 0. Then coK is
the set of diagonal ∆ satisfying 0 ≤ ∆ ≤ I . There are 2m

matrices in K and we denote them by Ki, i = 1, 2, · · · , 2m.
Then we have

dz(y) ∈ co{Kiy : i ∈ I[1, 2m]}.
This relation holds for all y ∈ R

m but could be conservative
over a local region where the system operates. In [16], [15],
a flexible description was introduced for dealing with the
saturated state feedback sat(Fx) (see also [7] and references
therein, where the same idea is exploited). This description
can be easily adapted for the deadzone function. The main
idea behind this description is the following simple fact:

Fact 1: Suppose v ∈ [−1, 1]. For any u ∈ R, we have
sat(u) ∈ co{u, v}. Equivalently, for the deadzone function,
we have dz(u) ∈ co{0, u − v}, i.e., dz(u) = δ(u − v) for
some δ ∈ [0, 1].

This simple fact has also been used in [8] to analyze
the nonlinear L2 gain for a special case of (1), where
Dyq,Dyw,Dzq and Dzw are all zero. For the general case
where Dyq may be nonzero, we have the following algebraic
loop,

y = Cyx + Dyqdz(y) + Dyww. (3)

This algebraic loop is said to be well-posed if there exists
a unique solution y for each Cyx + Dyww. A sufficient
condition for the algebraic loop to be well-posed is the
existence of a diagonal matrix W > 0 such that 2W −
DyqW − WDT

yq > 0 (see, e.g., [9], [27], [31]). In what
follows, we give a precise characterization of the well-
posedness of the algebraic loop.

Claim 1: Assume that φ is the deadzone function or the
saturation function. Then y = Dφ(y) + v has a unique
solution for every v ∈ R

m if and only if det(I − D∆) �= 0
for all ∆ ∈ coK.

Using similar arguments as those in page 57-58 in [1], it
can be shown that

{(I−Dyq∆)−1 : ∆ ∈ coK} ⊂ co
i∈I[1,2m]

{(I−DyqKi)−1},
(4)

{(I−∆Dyq)−1∆ : ∆ ∈ coK} ⊂ co
i∈I[1,2m]

{(I−KiDyq)−1Ki},
(5)

{det(I−Dyq∆) : ∆ ∈ coK} = co
i∈I[1,2m]

{det(I−DyqKi)}.
(6)

The relation (5) will be used to bound the solution of the
algebraic loop with a polytope. The relation (6) implies that
det(I −Dyq∆) �= 0 for all ∆ ∈ coK if and only if det(I −
DyqKi) �= 0 and have the same sign for all i ∈ I[1, 2m].
Hence we have the following criterion for the well-posedness
of the algebraic loop.

Claim 2: The algebraic loop (3) is well-posed if and only
if det(I − DyqKi) �= 0 and have the same sign for all i ∈
I[1, 2m].

The condition in Claim 2 can be easily verified. In what
follows, we assume that this well-posedness condition is

satisfied. For i ∈ I[1, 2m], denote Ti = (I − KiDyq)−1Ki,
Ai = A + BqTiCy , Bi = Bw + BqTiDyw, Ci = Cz +
DzqTiCy , Di = Dzw + DzqTiDyw.

Proposition 1: Let h : R
n → R

m be a given map and let
h� be the �th component of h. For system (1), if |h�(x)| ≤ 1
for all � ∈ I[1,m], then[

ẋ
z

]
∈ co

i∈I[1,2m]

{[
Aix + Biw − BqTih(x)
Cix + Diw − DzqTih(x)

]}
. (7)

By taking h(x) = 0 in (7), we obtain a polytopic lin-
ear differential inclusion (PLDI) representation which holds
globally for the original system (1). A nonzero term h(x) is
used to inject additional degrees of freedom in some subset
of the state space to reduce conservatism in regional analysis.
With quadratic Lyapunov functions, we choose h(x) = Hx,
where H can be used as an optimizing parameter. When
using non-quadratic Lyapunov functions, a nonlinear h(x)
may be more effective (see [20]).

The polytopic differential inclusion (PDI) (7) involves 2m

vertexes. It may present numerical difficulties when m is
large (e.g., m > 6) and the order of the system is high.
To reduce computational burden, we may use a more con-
servative description, namely, a norm bounded differential
inclusion (NDI) to approximate it, which is based on the
following result.

Claim 3: Let M be a positive diagonal matrix. Suppose
that 2I − M−1DyqM − MDT

yqM
−1 = S2, where S is

symmetric and nonsingular. Then
co{(I − KiDyq)−1Ki : i ∈ I[1, 2m]}

⊂ {M(S−2 + S−1ΩS−1)M−1 : ‖Ω‖ ≤ 1}, (8)

where ‖Ω‖ is the spectral norm of Ω. Furthermore, a vertex
of the left hand side is on the boundary of the right hand
side.

Proposition 2: Assume that there exists a diagonal M > 0
and a symmetric nonsingular S such that

S2 = 2I − M−1DyqM − MDT
yqM

−1.

Let H ∈ R
m×n be given. For Ω ∈ R

m×m, denote[
AΩ BΩ

CΩ DΩ

]
=

[
A Bw

Cz Dzw

]

+
[

Bq

Dzq

]
M(S−2 + S−1ΩS−1)M−1

[
Cy − H

Dyw

]T (9)

For system (1), if |Hx|∞ ≤ 1, then[
ẋ
z

]
∈

{[
AΩ BΩ

CΩ DΩ

][
x
w

]
: ‖Ω‖ ≤ 1

}
. (10)

We call (10) the norm bounded differential inclusion (NDI)
for (1). If m = 1, then the two sets in (8) are the same and the
NDI is the same as the PDI. If m > 1, the NDI is generally
strictly larger than the PDI. We also note that to obtain the
NDI, there must exist a positive definite diagonal matrix M
such that 2I − M−1DyqM − MDT

yqM
−1 > 0, which is a

stronger requirement than well-posedness.

III. LYAPUNOV STABILITY AND PERFORMANCE

ANALYSIS

A. Some general results for linear differential inclusions

In [1], extensive results were established for stability and
performance analysis of LDIs by using quadratic Lyapunov
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functions. Consider the LDI[
ẋ
z

]
∈

{[
A B
C D

][
x
w

]
:
[

A B
C D

]
∈ Φ

}
, (11)

where Φ is a given convex set of matrices. The following
lemma can be established similarly to the corresponding
results in [1] by extending a polytopic Φ to a general Φ.

Lemma 1: Given P = P T > 0, γ > 0 and let V (x) =
xT Px. Along the trajectories of (11),
1. we have V̇ < 0 for all x ∈ R

n \ {0} and w = 0, if

AT P + PA < 0 ∀A ∈ [
I 0

]
Φ

[
I
0

]
. (12)

2. we have V̇ ≤ wT w for all x ∈ R
n, w ∈ R

r, if

He
[

PA PB
0 −I/2

]
≤ 0 ∀ [

A B
] ∈ [

I 0
]
Φ.

3. we have V̇ + 1
γ2 zT z ≤ wT w for all x ∈ R

n, w ∈ R
r, if

He

⎡
⎣ PA PB 0

0 −I/2 0
C D −γ2I/2

⎤
⎦≤0 ∀

[
A B
C D

]
∈ Φ. (13)

The condition in item 1 guarantees that the ellipsoid E(P )
is contractively invariant in the absence of w. It will be used
for the estimation of the domain of attraction. The condition
in item 2 guarantees that if ‖w‖2 ≤ s, then under the initial
condition x(0) = 0, we will have x(t) ∈ sE(P ) for all t > 0.
This will be used to determine the reachable set under a class
of norm-bounded disturbances. Item 3 gives a condition for
γ to be a bound for the L2 gain, i.e., ‖z‖2 ≤ γ‖w‖2 for all
w and x(0) = 0. The result in item 3 can also be found in
[12]. For the case where Φ is a polytope, we only need to
verify the conditions at its vertexes.

Combining Lemma 1 with the two differential inclusion
descriptions, we will obtain different methods for the analysis
of the original system (1). The crucial point is to guarantee
that the PDI (7) (or the LDI (10)) is valid for all times under
the class of disturbances and the set of initial x(0)’s under
consideration. We are mainly concerned about the existence
of a matrix H , such that |Hx(t)|∞ ≤ 1 for all t. To this
end, we will construct a quadratic function V (x) = xT Px,
P = PT > 0, and use Lemma 1 to guarantee that x(t) ∈
sE(P ) ⊂ L(H) for all t ≥ 0.

B. Analysis based on the polytopic differential inclusion

When h(x) = Hx, the PDI (7) can be written as[
ẋ
z

]
= co

i∈I[1,2m]

{[
Ai − BqTiH Bi

Ci − DzqTiH Di

][
x
w

]}
. (14)

which corresponds to (11) with

Φ = co
{[

Ai − BqTiH Bi

Ci − DzqTiH Di

]
: i ∈ I[1, 2m]

}
. (15)

We will restrict our attention to a certain ellipsoid sE(P ).
For the purpose of presenting the results in terms of linear
matrix inequalities, we state the results using Q = P−1 and
Y = HQ. To apply the PDI description within the ellipsoid
sE(P ) = sE(Q−1), we need to ensure that sE(P ) ⊂ L(H)
so that |Hx|∞ ≤ 1 for all x ∈ sE(P ), which is equivalent
to (recall from (2)),[

1/s2 H�

HT
� P

]
≥ 0 � ∈ I[1,m], (16)

where H� is the �th row of H . Multiplying from left and
right with diag{I,Q}, we obtain[

1/s2 Y�

Y T
� Q

]
≥ 0, � ∈ I[1,m]. (17)

Theorem 1: Given Q ∈ R
n×n, Q = QT > 0. Let V (x) =

xT Q−1x. Consider system (1).

1. If there exists Y ∈ R
m×n satisfying (17) with s = 1

and for all i ∈ I[1, 2m],
QAT

i + AiQ − Y T TT
i BT

q − BqTiY < 0, (18)

then V̇ < 0 for all x ∈ E(Q−1) \ {0} and w = 0, i.e.,
E(Q−1) is a contractively invariant ellipsoid.

2. Given s > 0. If there exists Y ∈ R
m×n satisfying (17)

and for all i ∈ I[1, 2m],

He
[

AiQ − BqTiY Bi

0 −I/2

]
≤ 0, (19)

then V̇ ≤ wT w for all x ∈ sE(Q−1), w ∈ R
r. If x(0) =

0 and ‖w‖2 ≤ s, then x(t) ∈ sE(Q−1) for all t > 0.
3. Given γ, s > 0. If there exists Y ∈ R

m×n satisfying
(17) and for all i ∈ I[1, 2m],

He

⎡
⎣ AiQ − BqTiY Bi 0

0 −I/2 0
CiQ − DzqTiY Di −γ2I/2

⎤
⎦ ≤ 0, (20)

then V̇ + 1
γ2 zT z ≤ wT w for all x ∈ sE(Q−1), w ∈ R

r.
If x(0) = 0 and ‖w‖2 ≤ s, then ‖z‖2 ≤ γ‖w‖2.

The three parts in Theorem 1 can be respectively used
to estimate the domain of attraction, the reachable set and
the L2 gain for system (1). For these purposes, we may
formulate corresponding optimization problems with linear
matrix inequality (LMI) constraints.
Problem 1: Estimation of the domain of attraction. For
the purpose of enlarging the estimation of the domain of
attraction, we may choose a shape reference set XR (see
e.g., [14], [16], [15]) and maximize a scaling α > 0 such
that αXR ⊂ E(Q−1), with Q satisfying (17) and (18). The
optimizing parameters are Q and Y . When XR is a polygon
or an ellipsoid, the resulting optimization problem has LMI
constraints.
Problem 2: Estimation of the reachable set. Under the
condition (17) and (19), an estimate of the reachable set is
given by sE(Q−1). Since smaller estimates are desirable,
we may formulate an optimization problem to minimize the
size of sE(Q−1). There are different measures of size for
ellipsoids, such as the trace of Q and the determinant of
Q, among which the trace of Q is a convex measure and is
much easier to handle. In practical application, we may be
interested to know the range of a certain state or an output
during the operation of the system. For instance, given a row
vector C ∈ R

1×n, we would like to estimate the maximal
value of |Cx(t)| for all t ≥ 0. Since x(t) ∈ sE(Q−1), the
maximal value of |Cx(t)| is less than

ᾱ := (max{xT CT Cx : xT (s2Q)−1x ≤ 1})1/2

= min{α : CT C ≤ α2(s2Q)−1}
= min{α : CQCT ≤ α2/s2}.
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To minimize ᾱ, we can minimize α such that CQCT ≤
α2/s2 with Q satisfying (17) and (19). With α determined
this way, we have |Cx(t)| ≤ α for all t > 0. We may
choose different C’s, such as Ci, i = 1, 2, · · · , N , and obtain
a bound αi on |Cix(t)| for each i. The polytope formed as
{x ∈ R

n : |Cix| ≤ αi, i = 1, · · · , N} will also be an
estimate of the reachable set.
Problem 3: Estimation of the nonlinear L2 gain. The
problem of minimizing a bound on the L2 gain directly
follows from item 3 of Theorem 1 by minimizing γ along
with parameters Q and Y satisfying (17) and (20). For each
s > 0, denote γ∗(s) as the minimal γ, then we have

‖z‖2 ≤ γ∗(‖w‖2)‖w‖2,

for all w. In other words, γ∗(s) serves as an estimate for the
nonlinear L2 gain.

C. Analysis based on the norm-bounded differential inclu-
sion

The following result establishes an LMI-based technique
for stability and performance analysis of system (1), via the
NDI description (9), (10).

Theorem 2: Given Q ∈ R
n×n, Q = QT > 0. Let V (x) =

xT Q−1x. Consider system (1).

1. If there exist Y ∈ R
m×n and a diagonal U > 0

satisfying (17) with s = 1 and

He
[

AQ BqU
CyQ − Y −U + DyqU

]
< 0, (21)

then E(Q−1) is a contractively invariant ellipsoid.
2. Given s > 0. If there exist Y ∈ R

m×n and a diagonal
U > 0 satisfying (17) and

He

⎡
⎣ AQ Bw BqU

0 −I/2 0
CyQ−Y Dyw −U+ DyqU

⎤
⎦ ≤ 0, (22)

then V̇ ≤ wT w for all x ∈ sE(Q−1), w ∈ R
r. If x(0) =

0 and ‖w‖2 ≤ s, then x(t) ∈ sE(Q−1) for all t > 0.
3. Given γ, s > 0. If there exist Y ∈ R

m×n and a diagonal
U > 0 satisfying (17) and

He

⎡
⎢⎣

AQ Bw 0 BqU
0 −I/2 0 0

CzQ Dzw −γ2I/2 DzqU
CyQ−Y Dyw 0 −U+ DyqU

⎤
⎥⎦ ≤ 0,

(23)
then V̇ + 1

γ2 zT z ≤ wT w for all x ∈ sE(Q−1), w ∈ R
r.

If x(0) = 0 and ‖w‖2 ≤ s, then ‖z‖2 ≤ γ‖w‖2.
As with Theorem 1, different optimization problems with

LMI constraints can be formulated for stability and perfor-
mance analysis of the original system (1) based on the three
parts of Theorem 2. Since the NDI is a more conservative
description than the PDI and since Theorems 1 and 2 are
developed from the same framework, it is easy to see that the
analysis results from using Theorem 2 are more conservative
than those from using Theorem 1. The advantage of Theo-
rem 2 is that the conditions involve fewer LMIs (but with
higher dimensions, i.e., +m more than those in Theorem 1).

We should note that the results in Theorem 1 were
established in [21] through a quite different approach. The

approach taken in this paper helps us to understand the
relationship between the results based on two different types
of differential inclusions, and allows for the subsequent
developments proposed in [20].

IV. AN EXAMPLE STUDY

Consider system (1) with the following parameters:

⎡
⎣ A Bq Bw

Cy Dyq Dyw

Cz Dzq Dzw

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −1 1 0 0 1
1 0 −2 0 1 1 0
0 1 −3 1 −1 1 1
1 0 1 −3 −1 1 −1
0 1 0 −2 −4 0 1
0 1 0 1 0 −1 0
0 0 1 0 1 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

We use the two methods in Theorems 1 and 2 to estimate
the nonlinear L2 gain. The resulting estimates are plotted in
Fig. 2, where the solid curve results from applying quadratic
Lyapunov functions to the NDI description (Theorem 2) and
the dashed one results from applying quadratic functions to
the PDI description (Theorem 1). Additional results on this
same example by using non-quadratic Lyapunov functions
are reported in [20], where it is shown that non-quadratic
functions can further reduce the conservatism.
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Fig. 2. Different estimates of the nonlinear L2 gain: Case 1.

Both curves tends to a constant value as ‖w‖2 goes to
infinity. This constant value will be an estimate of the global
L2 gain. As expected, the results from PDI are always better
than those from NDI. In what follows, we present several
scenarios through some adjustment of the plant parameters.

Case 2: If we change Dyq to Dyq =
[ −3 −1.3

−2.3 −4

]
,

then the global L2 gain by using NDI is unbounded (or,
global stability is not confirmed), while that by using PDI
is 170.1473. Improved results are obtained by using non-
quadratic Lyapunov functions (see [20]).

Case 3: If we change Dyq to Dyq =
[ −3 −2

−2 −4

]
, then

the global L2 gain by using NDI or PDI is unbounded. Global
L2 gain can be established by using non-quadratic Lyapunov
functions (see [20]).

The above three situations also show how the stability and
performance results by the same method can be affected by
the parameter Dyq which describes the algebraic loop. As
discussed in [27], this parameter can be adjusted through
anti-windup compensation.
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Case 4: Next we replace the matrix A with its transpose

and take Dyq =
[ −3 −2

−2 −4

]
. The two different bounds on

the L2 gain are plotted in Fig. 3.
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Fig. 3. Different estimates of the nonlinear L2 gain: Case 4.

Due to space limitation, we will not present computational
results about the estimation of the domain of attraction or the
estimation of the reachable set. It is interesting however to
point out that Case 2 suggests that the estimate of the domain
of attraction by using NDI is bounded while that by using
PDI is the whole state space. Similar interpretations can be
given to the other cases.

V. CONCLUSIONS

For a general system with saturation or deadzone com-
ponents, regional stability and performance analysis relies
on an effective regional treatment of the algebraic loop and
the deadzone function. This paper provides such a treatment
which yields two forms of parameterized differential inclu-
sions. Applying available tools based on quadratic Lyapunov
functions to these differential inclusions, we obtained condi-
tions for stability and performance in the form of LMIs.
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