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Abstract— State-of-the-art, uni-processor algebraic Riccati
equation solvers for automatic control computations are investi-
gated and compared for various problem sizes. General-purpose
SLICOT solvers are very efficient for small-size problems,
but they cannot compete for larger problems with specialized
solvers designed for certain problem classes, such as Newton
solvers using low rank Cholesky factors of the solutions of
Lyapunov equations built at each iteration.

Index Terms— algebraic Riccati equations, numerical algo-
rithms, computer-aided control system design, numerical linear
algebra, software library

I. INTRODUCTION

Systems and control algorithms are widely used to model,
simulate, and/or optimize industrial, economical, and biolog-
ical processes. Systems analysis and design procedures often
require the solution of general or special linear or quadratic
matrix equations. Most high-level algorithms are based on
these low-level kernels. The numerical solution of algebraic
Riccati equations (AREs) is a cornerstone in computer-aided
control systems analysis and design.

Let A, E ∈ IRn×n, B ∈ IRn×m, and Q, R, F be sym-
metric matrices of suitable dimensions, with F = BR−1BT .
The continuous-time algebraic Riccati equation (CARE)

0 = Q + AT XE + ET XA − ET XFXE (1)

and the discrete-time algebraic Riccati equation (DARE)

ET XE = Q + AT XA − AT XB(R + BT XB)−1BT XA
(2)

play a fundamental role in many computational procedures
for linear and nonlinear control problems. Applications in-
clude computing linear-quadratic regulators and Kalman fil-
ters, solving linear-quadratic Gaussian (H2-) optimal control
problems, finding (sub)optimal H∞ controllers, and model
and controller order reduction based on stochastic and posi-
tive real balancing. In these applications, usually E = In in
(1) and (2). The case E �= In appears, for instance, in factor-
ization procedures for transfer functions matrices, or optimal
control problems for second-order systems. Common to all
these applications is that among the possibly infinitely many
solutions of an ARE, usually the unique stabilizing solution
X∗ is required; this is the solution for which all eigenvalues
of the matrix pencils λE − (A−FX∗E) in the continuous-
time case, and λE − (A − B(R + BT X∗B)−1BT X∗A) in
the discrete-time case, are in the appropriate stability region
(the left half plane, and the open unit disk, respectively). The
∗ subscript will be dropped in the sequel.
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Theoretical results devoted to AREs and related topics
abound both in systems and control, as well as in the linear
algebra literature; see, e.g., the monographs [1], [2]. Due to
their paramount importance, many numerical methods have
been proposed for solving AREs; see, e.g., [2], [3]. There
are also a lot of associated software implementations, both
commercial (e.g., in MATLAB1 [4]), copyrighted freeware
(e.g., in the SLICOT Library [5], [6]), or in the public domain
(e.g., in Scilab [7]).

The capabilities and limitations of the general-purpose
solvers available in the SLICOT Library and MATLAB

are studied, in comparison with some specialized solvers.
SLICOT Library (Subroutine Library In COntrol Theory)
provides Fortran 77 implementations of many numerical
algorithms in systems and control theory, as well as stan-
dardized interfaces to MATLAB and Scilab. Built around a
nucleus of basic numerical linear algebra subroutines from
the state-of-the-art software packages LAPACK and BLAS
(see [8] and the references therein), the potential of modern
high-performance computer architectures can be exploited.
While very efficient for small-size problems, the SLICOT
and MATLAB solvers cannot compete for larger problems
with specialized solvers designed for certain problem classes.

II. ALGEBRAIC RICCATI EQUATIONS AND
STANDARD SOLVERS

Let L ∈ IRn×m. To simplify the notation, define

op(F ) := op(B)R−1 op(B) T ,

op(R̂(X)) := R + op(B) T X op(B) (for DARE),

op(L(X)) := op(L) + op(E) T X op(B) (for CARE),

op(L̂(X)) := op(L) + op(A) T X op(B) (for DARE),

where op(M) is either M or MT . Then, generalized (de-
scriptor) CAREs and DAREs can be written as

0 = Q + op(A) T X op(E) + op(E) T X op(A) (3)

− op(L(X))R−1 op(L(X)) T ,

0 = Q − op(E) T X op(E) + op(A) T X op(A) (4)

− op(L̂(X)) op(R̂(X))−1 op(L̂(X)) T .

These forms are more general than (1) and (2). Standard
CAREs and DAREs follow using E = In, and L = 0,

0 = Q + op(A) T X + X op(A) − X op(F )X, (5)

X = Q + op(A) T X op(A) (6)

− op(A) T X op(B) op(R̂(X))−1 op(B) T X op(A) .

1MATLAB is a registered trademark of The MathWorks, Inc.
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The ability to work with the op(·) operator is important for
notational convenience. For instance, an optimal regulator
problem involves the solution of an ARE with op(M) =
M , while an optimal estimator problem involves the solution
of an ARE with op(M) = MT , B replaced by C, where
C ∈ IRp×n is the system output matrix, and m replaced by
p. The Riccati solution can be used for computing the gain
matrix of the optimal regulator, G, or estimator, K = GT ,

G = R−1 op(L(X)) T , (7)

G = op(R̂(X))−1 op(L̂(X)) T , (8)

for continuous-time and discrete-time systems, respectively.
The basic methods for solving AREs are the Schur vector
method [9] and the deflating subspaces method [10], [11],
which use Hamiltonian or symplectic matrices or matrix
pencils. The Hamiltonian matrix associated to (5) is

H =
[

op(A) − op(F )
−Q − op(A) T

]
, (9)

while the symplectic matrix associated to (6) is

H =
[

op(A) + op(F ) op(A)−T Q − op(F ) op(A)−T

− op(A)−T Q op(A)−T

]
,

(10)
assuming A is well-conditioned. When A is ill-conditioned,
it is preferable to work with the symplectic pencil

L − λM =
[

op(A) 0
−Q In

]
− λ

[
In op(F )
0 op(A) T

]
. (11)

The Schur vector method computes the ordered real Schur
form T of the Hamiltonian or symplectic matrix H , i.e., an
orthogonal matrix U ∈ IR2n×2n is computed such that with
a partitioning according to (9), (10),

HU = UT =
[

U11 U12

U21 U22

] [
T11 T12

0 T22

]
,

and the eigenvalues of T11 are the n stable eigenvalues of H
(if H has no eigenvalues on the boundary of the stability
region). Hence, the columns of [UT

11, UT
21 ]T span the stable

H-invariant subspace. If the stabilizing solution exists, then
U11 is invertible and this solution is X = U21U

−1
11 .

The deflating subspace approach proceeds analogously.
Define the extended Hamiltonian pencil associated to (3),

L − λM =

⎡
⎣ op(A) 0 op(B)

Q op(A) T op(L)
op(L) T op(B) T R

⎤
⎦

−λ

⎡
⎣ op(E) 0 0

0 − op(E) T 0
0 0 0

⎤
⎦ ,

and extended symplectic pencil corresponding to (4),

L − λM =

⎡
⎣ op(A) 0 op(B)

Q − op(E) T op(L)
op(L) T 0 R

⎤
⎦

−λ

⎡
⎣ op(E) 0 0

0 − op(A) T 0
0 − op(B) T 0

⎤
⎦ .

Then the ordered generalized real Schur form of L −
λM is computed, i.e., orthogonal matrices U, V ∈
IR(2n+m)×(2n+m) are found such that (L − λM)U =
V (TL − λTM ), and the first n columns of U , denoted by
[UT

11, UT
21, UT

3 ]T , span the stable deflating subspace of
L − λM . Then, the stabilizing solution of the generalized
CARE or DARE is given via XE = U21U

−1
11 and the gain

matrices in (7), (8) are given by G = −U3U
−1
11 . The deflating

subspace approach is also used to solve the DARE via (11);
the deflating subspace is given by the first n Schur vectors of
the ordered generalized real Schur form of L−λM in (11),
denoted by [UT

11, UT
21 ]T , and X = U21U

−1
11 . It should also

be noted that the approach using the extended pencils yields
better numerical accuracy if R is ill-conditioned as rounding
errors introduced by forming R−1 are avoided.

The methods above are implemented in SLICOT and
MATLAB. For the standard continuous-time case (5) with
op(M) = M , SLICOT also includes an implementation
of the matrix sign function method [12]. It is planned to
extend SLICOT by integrating CARE and DARE solvers
based on Newton’s method (with line search). This will
be particularly useful for refining an approximate solution
to maximal accuracy. Moreover, solvers based on structure-
preserving methods for the underlying eigenproblems are
under consideration. These methods can deal with situations
where eigenvalues of the corresponding matrix (pencil) are
close to, or on the boundary of the stability region. SLICOT
Library also includes condition estimators for AREs, which
enable to assess the solution accuracy and problem sensitivity
to small perturbations in the data.

III. SPECIALIZED SOLVERS FOR RICCATI
EQUATIONS

The results in [13] and other papers, show that the high-
level MATLAB interfaces to the SLICOT codes offer im-
proved efficiency (at comparable accuracy) over the standard
software tools, such as those included in MATLAB 6.5.1 and
previous versions. The results in this paper (Section IV) also
show that SLICOT interfaces have performances comparable
with MATLAB 7.0.1 codes. (Note that MATLAB 7.0.1 Lya-
punov and Riccati solvers have significantly better efficiency
than the solvers available in MATLAB 6.5.1 and previous
versions.) However, the SLICOT and MATLAB solvers do
have some limitations, mainly coming from their generality.
These solvers cannot compete in terms of efficiency with
specialized solvers designed for specific classes of large-
scale problems, such as the iterative algorithms solving stable
Lyapunov equations with low rank solutions.

Several efficient numerical methods for solving large Lya-
punov equations appeared in the last years. These meth-
ods can be used for solving Riccati equations using New-
ton’s algorithm. One approach was developed in [14] for
continuous-time stable Lyapunov equations, extended also
for CAREs. The proposed techniques have been incorpo-
rated in LYAPACK (LYApunov PACKage), implemented in
MATLAB, and freely available on the SLICOT Web site.
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The considered Lyapunov equations have the form

FX + XFT = −PPT , (12)

where F ∈ IRn×n and P ∈ IRn×t. When solving CAREs
iteratively, the matrix F has the form F = AT − KBT .
It is assumed that F is stable, A is structured or sparse,
t � n, the order n is large enough, for instance, n > 500,
and the equations are sufficiently well-conditioned. Sufficient
conditions to ensure that t � n are m � n, p � n, and Q
in (5) is given in a factored form, Q = CT Q̂C. A variant
of Newton method is used to solve Riccati equations by this
approach, and a factor Z of the solution matrix X , X =
ZZT , can be obtained.

The LYAPACK approach uses the Low Rank Cholesky
Factor Alternate Directions Iterations (LRCF-ADI) tech-
nique. The LRCF-ADI performance depends on certain real
or complex conjugate ADI shift parameters, p, computed
by an heuristic algorithm, see [14]. The ADI iteration for
Lyapunov equation (12) is given by

(F + piIn)Xi−1/2 = −PPT − Xi−1(FT − piIn),

(F + p̄iIn)XT
i = −PPT − XT

i−1/2(F
T − p̄iIn),

for i = 1, 2, . . ., where X0 = 0. The technique adopted for
Riccati equations is LRCF-NM (Low Rank Cholesky Factor
Newton Method), including its implicit variant, LRCF-NM-I,
which directly determines the optimal regulator gain matrix,
KT , without computing the Riccati equation solution X .
The LRCF-NM and LRCF-NM-I techniques are essentially a
combination of the classical Newton method with the LRCF-
ADI iteration for Lyapunov equations. Newton method per-
forms the following calculations at the kth iteration:

1) /∗ Solve in X(k) the stable Lyapunov equation ∗/

(A − BK(k−1)T

)T X(k) + X(k)(A − BK(k−1)T

) =

− CT Q̂C − K(k−1)RK(k−1)T

;

2) K(k) = X(k)BR−1; /∗ Update K(k). ∗/

for k = 1, 2, . . ., which generates a sequence of matri-
ces X(k). Under usual conditions, this sequence converges
to the stabilizing solution X , if the initial matrix K(0) is
stabilizing, that is, A − BK(0)T

is stable. The convergence
is global and ultimately quadratic. A suitable matrix K(0)

can be computed using a partial pole placement algorithm,
for instance, described in [15].

A. Newton Algorithm Using Low Rank Cholesky Factors

The LRCF-NM technique determines a matrix Z, so that
ZZH approximates the solution X of (5). Assuming Q̂ ≥ 0,
R > 0, the matrices Q̂ and R can be factored (using, for
example, Cholesky factorization) in the form

Q̂ = Q̃Q̃T , R = R̃R̃T ,

where the matrices Q̃ ∈ IRp×h (h ≤ p) and R̃ ∈ IRm×m

have maximal rank. Consequently, the Lyapunov equations
have the structure

F (k)X(k) + X(k)F (k)T

= −P (k)P (k)T

, (13)

where F (k) = AT −K(k−1)BT , P (k) =
[
CT Q̃ K(k−1)R̃

]
,

and P (k) has only t = h + m � n columns. Therefore,
these Lyapunov equations can be efficiently solved using the
LRCF-ADI iteration, [14]. The Lyapunov equations solutions
form a sequence of approximations to the solutions of Riccati
equation (5). The following algorithm is obtained:

Algorithm LRCF NM :

Z = LRCF NM( A,B,C, Q̂, R,K(0) )

/∗ Compute the Cholesky factor Z = Z(kmax) so that ZZH

approximates the stabilizing solution X of CARE (5). It is
assumed that the matrix A − BK(0)T

is stable. ∗/

Q̂ = Q̃Q̃T ; R = R̃R̃T ;

FOR k = 1: kmax,
F (k) = AT − K(k−1)BT ; /∗ 1. Compute F (k). ∗/

/∗ 2. Determine (sub)optimal ADI parameters. ∗/(
p
(k)
1 , p

(k)
2 , · · · ) = LP PARA( F (k) );

P (k) =
[
CT Q̃ K(k−1)R̃

]
;

/∗ 3. Determine Cholesky factor Z(k) for (13). ∗/
Z(k) = LRCF ADI( F (k), P (k), p

(k)
1 , p

(k)
2 , · · · );

K(k) = Z(k)
(
Z(k)H

BR−1
)
; /∗ 4. Update K(k). ∗/

END FOR

The algorithm LRCF NM is implemented in the LYAPACK
function lp lrnm; the algorithms LP PARA and
LRCF ADI are implemented in the LYAPACK functions
lp para and lp lradi, respectively [14]. The advantage
of LRCF NM is that it delivers an approximation of the
low rank Cholesky factor, Z, of the solution X , without
storing the solution, sometimes impossible when the system
order, n, is very high. Moreover, LRCF NM often requires
a significantly lower computational effort than the standard
algorithms, based on the real Schur form reduction.

B. Implicit Newton Algorithm Using Low Rank Factors

The implicit version of the Newton algorithm using low
rank Cholesky factors, called LRCF NM I, is based on the
fact that the solution of the optimal regulator problem is
determined by the gain matrix K, which generally has much
fewer columns than the low rank Cholesky factor of the
solution X of the associated CARE, and than X itself.
Mathematically, LRCF NM I is equivalent to LRCF NM,
but the approximation of the matrix K is obtained without
forming the iterates Z(k) of LRCF NM, nor the iterates Z

(k)
i

of the inner algorithm, LRCF ADI. The calculation of Z(k)

at step 3 of LRCF NM and of K(k) at step 4 are replaced by
directly finding the matrix K(k) during the inner LRCF ADI
iterations, via

K(k) = lim
i→∞

K
(k)
i ,

K
(k)
i := Z

(k)
i Z

(k)H

i BR−1 =
i∑

j=1

V
(k)
j

(
V

(k)H

j BR−1
)
.

Specifically, the steps 3 and 4 above are replaced by
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/∗ 3. Initialize. �p denotes the real part of p. ∗/

V
(k)
1 =

√
−2�p

(k)
1

(
F (k) + p

(k)
1 In

)−1
P (k);

/∗ 4. Update V
(k)
i and K

(k)
i . ∗/

FOR i = 2: i(k)
max,

V
(k)
i =

√
−2�p

(k)
i /�p

(k)
i−1

(
V

(k)
i−1 −

(
p
(k)
i +

+ p̄
(k)
i−1

) (
F (k) + p

(k)
i In

)−1
V

(k)
i−1

)
;

K
(k)
i = K

(k)
i−1 + V

(k)
i

(
V

(k)H

i BR−1
)
;

END FOR

K(k) = K
(k)
imax

; /∗ 5. Update K(k). ∗/

The algorithm LRCF NM I is available as an option, called
lp lrnm i below, in the LYAPACK function lp lrnm.
This function uses several stopping criteria, including:

• tolerance for the normalized residual norm, NRN;
• stagnation of the normalized residual norm;
• smallness of the relative changes of matrix K;
• stagnation of the relative changes of matrix K.

The normalized residual norm corresponding to the low rank
Cholesky factor Z(k) is computed by the formula

NRN(Z(k)) =
‖ R (

Z(k)Z(k)H ) ‖F

‖ CT Q̂C ‖F

,

where R(X) denotes the expression in the right hand side
of the CARE (5) as a function of X .

IV. NUMERICAL RESULTS

This section presents few results of an extensive perfor-
mance investigation of some ARE solvers. The numerical
results have been obtained on an Intel Pentium 4 computer at
3 GHz, with 1 GB RAM, with the relative machine precision
ε ≈ 2.22 × 10−16, using Windows XP (Service Pack 2)
operating system, and Compaq Visual Fortran V6.5 compiler.
Besides the version MATLAB 7.0.1.24704 (R14) Service
Pack 1, some tests used the version MATLAB 6.5.1.199709.
The SLICOT-based MATLAB executable MEX-functions
have been built using MATLAB 6.5.1.199709 and MATLAB-
provided optimized LAPACK and BLAS subroutines (ex-
cept for LAPACK real Schur form routines dgees and
dgges, since the MATLAB ones did not work). Note that the
MATLAB 7.0.1 version for Windows machines does not offer
the possibility to directly incorporate optimized LAPACK
and BLAS routines.

A. Numerical Results for Standard Algorithms

A first set of tests refer to continuos-time AREs (5) with
matrices randomly generated from a uniform distribution in
the (0,1) interval, with order n a multiple of 30 (from 30
to 600) and m = n/5. (See [16] for the results obtained
on random AREs and on SLICOT CARE/DARE benchmark
collections using MATLAB 6.1. The system and weighting
matrices have been obtained using the MATLAB commands

A = rand(n,n); B = rand(n,m);
Q = rand(n,n) + n*eye(n); Q = Q + Q’;

R = rand(m,m) + m*eye(m); R = R + R’;

Fig. 1 presents, in the top part, the execution times using
SLICOT slcares and MATLAB care, and in the bottom
part, the ratios between the MATLAB and SLICOT execution
times. The SLICOT calculations are usually somewhat faster,
and delivered solutions with smaller relative residuals than
MATLAB calculations, as illustrated in Fig. 2.

B. Numerical Results for Standard and Specialized Algo-
rithms

The test matrices have been generated using the LYAPACK
functions fdm 2d matrix and fdm 2d vector. The ma-
trix A ∈ IRn×n is band with 5 nonzero diagonals, obtained
by finite difference discretization on an equidistant grid of
a partial differential equation for an instationary convection-
diffusion heat equation on a unit square with homogeneous
first kind boundary conditions. The matrices B ∈ IRn

and CT ∈ IRn are delivered by the LYAPACK function
fdm 2d vector.

Several Riccati equations of small, medium and large size
have been considered, solved using the functions slcaresc
from SLICOT, care from MATLAB, and lp lrnm( i)
from LYAPACK. Fig. 3, 4, and 5 illustrate the execution
times for the mentioned solvers in the ranges n ≤ 196,
225 ≤ n ≤ 400, and 441 ≤ n ≤ 1024, respectively, as
well as their ratios taking slcaresc as a reference. For
these calculations, slcaresc and care are comparable in
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Fig. 1. Top: execution times using SLICOT slcares and MATLAB care.
Bottom: ratios between the MATLAB and SLICOT execution times.
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Fig. 2. Relative residuals of the solutions computed by SLICOT and
MATLAB.

speed for all sizes, with slcaresc possibly slightly slower
for large orders. Both functions are faster than lp lrnm and
lp lrnm i for orders less than 150, and could be faster
than or comparable to lp lrnm also for larger orders, till
about 300. But for Riccati equations of order larger than
300, lp lrnm and, especially lp lrnm i, are very fast
for this problem. Actually, the execution times needed for
lp lrnm and lp lrnm i vary approximately linearly with
the equation order, while for slcaresc and care the
execution times increase as n3. The normalized residuals for
lp lrnm and lp lrnm i are approximately one or two
orders of magnitude smaller and increase slower with the
Riccati equation order than for the other two solvers.

The results above show the superiority of the solvers
lp lrnm and lp lrnm i over slcaresc and care, for
solving Riccati equations of order larger than, say 300,
concerning both the execution times and the residuals of
computed solutions. However, it should be mentioned that,
contrary to (sl)care(sc), lp lrnm and lp lrnm i are
not general solvers. In order to use them advantageously,
the following assumptions (and additional ones) must be
fulfilled:

• the matrix A is structured or sparse;
• the solution X has a small rank in comparison with n.

The functions lp lrnm and lp lrnm i use the (sparse)
structure of matrix A and operations of the form Ab or A−1b,
where b is a vector.

For comparison purposes, some results obtained using
MATLAB 6.5.1.199709 (R13) Service Pack 1, are illustrated
in Fig. 6. For these calculations, the SLICOT function
slcares is faster than the MATLAB function care, and
over 10-fold faster for CAREs of order larger than 400.
Again, for Riccati equations of order larger than 300,
lp lrnm and, especially, lp lrnm i are much faster.

V. CONCLUSIONS

Various state-of-the-art, uni-processor algebraic matrix
Riccati equation solvers for automatic control computations
have been investigated and compared for various prob-
lem sizes. The results confirm the natural expectation that
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Fig. 3. Riccati solvers comparison, n ≤ 196. Top: Execu-
tion times. Bottom: Ratios between execution times care/slcaresc,
lp lrnm/slcaresc and lp lrnm i/slcaresc, or the performance
gain of slcaresc (SLICOT) compared to care (MATLAB), lp lrnm
(LYAPACK 1) and lp lrnm i (LYAPACK 2).

general-purpose solvers, such as those currently implemented
in the SLICOT Library and MATLAB, cannot compete in
efficiency, for large-scale problems, with specialized solvers
designed for certain problem classes. One specialized ap-
proach, applicable to a class of continuous-time algebraic
Riccati equation, uses an iterative algorithm based on low
rank Cholesky factorization. The structure of the matrix
A−BKT is exploited. It is assumed that the right hand side
terms of the Lyapunov equations solved at each iteration of
the Newton algorithm, and the solution X , have a small rank.
However, the SLICOT solvers are very efficient for small-
size problems. Moreover, they are general solvers and offer
extended functionality and broad computational abilities.
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