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Abstract— The Nyquist stability criterion is extended to a
class of spatially periodic systems with spatially distributed
inputs and outputs. It is demonstrated that the exponential
stability of this class of systems can be guaranteed by checking
the Nyquist stability criterion for a family of finite-dimensional
systems. In order to show this result, a new version of the
argument principle is derived that is applicable to systems with
infinite-dimensional input/output spaces and unbounded system
operators.

I. INTRODUCTION

Of the frequency-domain methods of stability analysis, the
Nyquist criterion is of particular interest as it offers a simple
visual test to determine the stability of a closed-loop system
for a family of feedback gains [1].

Extensions of the Nyquist stability criterion exist for
certain classes of time periodic [2] and distributed systems
[1], where by distributed it is meant that the state-space
of the system is infinite-dimensional. Time-delay (retarded)
systems and systems governed by partial differential equa-
tions (spatially extended systems) are examples of distributed
systems. But to the authors’ best knowledge, the existing
literature on the Nyquist stability criterion for distributed
systems deals only with those systms that have finite-
dimensional input and output spaces. An example of such
a system would be one described by a partial differential
equation with pointwise sensing and pointwise actuation.

In contrast, in the present work we aim to extend the
Nyquist stability criterion to a class of spatially periodic sys-
tems that possess spatio-temporal (i.e. infinite-dimensional)
input and output spaces, and possibly unbounded system
operators.

Some of the difficulties in the application of the Nyquist
criterion to the class of systems described above include (a)
the concept of the characteristic function and its zeros are
not immediately extendable to unbounded system operators,
and (b) due to the infinite dimensionality of the input/output
spaces one has to locate an infinite number of eigenloci.

Hence the main contributions of this paper are to (a) derive
a version of the argument principle that lends itself to un-
bounded system operators, and (b) show that one can always
truncate the infinite-dimensional system operators so that the
problem can be reduced to checking the Nyquist stability
criterion for (a family of) finite-dimensional systems.
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Our presentation is organized as follows: Section II gives
a short overview of the frequency-domain representation
of periodic operators. We lay out the problem setup in
Section III and describe the general conditions for stability of
spatially-periodic systems in Section IV. Section V contains
the main contributions of the paper, where the Nyquist
stability criterion is developed for spatially-periodic systems.
We apply the theory to a simple example in Section VI,
and finish with some conclusions and directions for future
research in Section VII. All proofs and technical details have
been placed in the Appendix.

Notation: k ∈ R denotes the spatial-frequency variable,
also known as the wave-number. Σ(T ) is the spectrum of
T , Σp(T ) its point spectrum, and ρ(T ) its resolvent set.
σn(T ) is the nth singular-value of T . B(�2) denotes the
bounded operators on �2, B0(�2) the compact operators on
�2, and B1(�2) the nuclear operators on �2, i.e. operators
T that have the property

∑∞
n=1 σn(T ) < ∞; B1(�2) ⊂

B0(�2) ⊂ B(�2). tr[T ] denotes the trace of T and det[T ]
its determinant. C

+ and C
− denote the closed right-half and

the open left-half of the complex plane, respectively, and
j :=

√−1. C(z0; P) is the number of counter-clockwise
encirclements of the point z0 ∈ C by the closed path P.

II. PRELIMINARIES

Let us consider a linear time invariant (LTI) spatially
distributed system of the form ∂tψ = Aψ, where A is a
spatial operator on L2(R) and ψ(t, x) is a spatio-temporal
function. An example of such a system would be the heat
equation on the real line ∂tψ = ∂2

xψ, x ∈ R.
Now for those systems where A is a spatially invariant

operator (i.e., the action of A on ψ can be represented by a
convolution), Fourier methods can significantly simplify the
problem. For example in the heat equation introduced above,
∂2

x is a spatially invariant operator on L2(R), and thus the
system can be rewritten in the spatial-frequency domain as
∂tψ̂ = −k2ψ̂. Here ψ̂(t, k) is the spatial Fourier transform
of ψ(t, x), Â(k) = (jk)2 = −k2 is the Fourier symbol of
the spatial operator ∂2

x, and k ∈ R is the spatial-frequency
variable.

In general if an LTI system is composed of only spatially
invariant operators then as illustrated above, the spatial
Fourier transform ‘diagonalizes’ all such operators (i.e., turns
them into multiplication by a function of k). Therefore the
Fourier-transformed system collapses to a ‘continuum’ of
finite-dimensional LTI systems parameterized by k. This
means that the original infinite-dimensional problem has
been effectively ‘decoupled’ in the spatial-frequency domain.
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But in this paper we will be dealing with the broader class
of spatially periodic systems, i.e., systems of the form ∂tψ =
Aψ where A is a spatially periodic operator on L2(R). An
example of such a system would be ∂tψ = ∂2

xψ + cos(x)ψ.
In light of the previous discussion, the difficulty faced

in the analysis of spatially periodic systems becomes clear.
For the Fourier methods described above to simplify the
representation of a spatially periodic system, the Fourier
transform has to simultaneously diagonalize the spatially in-
variant and spatially periodic operators present in the system.
But this is not possible since these two classes of operators,
in general, do not commute.1 For example take the two
spatial operators ∂x and cos(x). Clearly cos(x) ∂x ψ(x) �=
∂x cos(x) ψ(x) = − sin(x) ψ(x) + cos(x) ∂x ψ(x), for a
general nonzero differentiable function ψ(x). Thus cos(x),
viewed as a spatially periodic pure multiplication operator,
does not commute with the spatially invariant differentiation
operator ∂x.

Yet this does not mean that Fourier methods are not
applicable or are not useful in the analysis of periodic
systems. Quite to the contrary, analysis of periodic systems
in the Fourier (frequency) domain often leads to numerical
tractability and valuable insight.

In [3] and [4] it is demonstrated that a general spatially
periodic operator A on L2(R) with spatial-period X = 2π/Ω
can be represented in the Fourier domain by a family of
operators on �2. These operators can be written as bi-infinite
matrices Aθ parametrized by a variable θ ∈ [0, Ω]. In this
paper we only give the Aθ representation of certain special
subclasses of spatially periodic operators, namely spatially
invariant operators and spatially periodic pure multiplication
operators, with the additional note that any spatially periodic
operator can be written as the summation and/or multiplica-
tion of a countable number of such operators.

1) A spatially-invariant operator A has the diagonal
representation

Aθ =

⎡
⎢⎢⎣

. . .
Â(θ + Ωn)

. . .

⎤
⎥⎥⎦,

where Â( · ) is the Fourier symbol of A, and for every
given θ ∈ [0, Ω] the diagonal elements of Aθ are the
equally-spaced samples {Â(θ + nΩ)}n∈Z of Â( · ).

2) A spatially-periodic pure multiplication operator F has
the Toeplitz representation

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

.
.
.

.
.
.

.
.
.

.
.
.

.
.
. f0 f−1 f−2

.
.
. f1 f0 f−1

.
.
.

f2 f1 f0

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

1TS = ST is a necessary and sufficient condition for T and S to be
simultaneously diagonalizable by a transformation U .

where fl are the Fourier series coefficients of F (x),
i.e. F (x) =

∑∞
l=−∞ fl ejlΩx. Notice that F is inde-

pendent of θ.

Remark 1: If A is a bounded operator on L2(R), then
supk∈R

|Â(k)| ≤ M for some M > 0, and thus Aθ is a
bounded operator on �2 for every θ ∈ [0, Ω].

III. PROBLEM SETUP

Consider the spatially-invariant system Sol

(
∂tψ

)
(t, x) =

(
Aψ

)
(t, x) +

(
Bu

)
(t, x),

y(t, x) =
(
Cψ

)
(t, x), (1)

where t ∈ [0,∞), x ∈ R, A, B, and C, which we call the
system operators, are spatially invariant and are all defined
on a dense domain D ⊂ L2(R). u, y and ψ are the spatio-
temporal input, output and state of the system, respectively.
Clearly, for any given time t, ψ(t, · ) is a spatial function on
L2(R), and thus (1) is an infinite-dimensional linear system.

Next, we place the spatially-invariant system Sol in feed-
back with a spatially-periodic operator γF (x), ‖F (x)‖ = 1,
γ ∈ C, to form the closed-loop system Scl as in Figure 1. It
is our aim here to determine the stability properties of Scl

as the feedback gain γ varies in C.

Fig. 1. The closed-loop system Scl.

For simplicity, in this paper we assume that all operators
A, B, C and F are scalar. We also make the following
assumptions on Sol.

Assumption (i): A is such that Re
(
Â(k)

) ≤ β for |k| >

K1, and |Â(k)| ≥ a |k|1+η for |k| > K2, for some
β < 0, a > 0, η > 0, K1 > 0 and K2 > 0,

Assumption (ii): B and C are bounded operators.

[3] and [4] show how (1) can also be represented as(
∂tψθ

)
(t) =

(Aθψθ

)
(t) +

(Bθuθ

)
(t),

yθ(t) =
(Cθψθ

)
(t), (2)

with θ ∈ [0, Ω], with Aθ, Bθ, and Cθ being the bi-infinite ma-
trices introduced previously. (2) describes the open-loop sys-
tem Sol

θ with temporal impulse response Gθ(t) := Cθ eAθt Bθ,
and transfer function

Gθ(s) := Cθ (sI − Aθ)−1 Bθ

= diag
{
· · · ,

Ĉ(θ + Ωn)B̂(θ + Ωn)
s − Â(θ + Ωn)

, · · ·
}

. (3)

Finally, using the same bi-infinite representation for the pe-
riodic operator γF (x) to get γF , and placing it in feedback
with Sol

θ , we obtain the close-loop system Scl
θ in Figure 2

with A-operator Acl
θ := Aθ − Bθ γF Cθ.
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Fig. 2. The closed-loop system Scl
θ .

IV. STABILITY OF LINEAR SPATIALLY-PERIODIC

SYSTEMS

A semigroup eAt on a Hilbert space is called exponentially
stable if there exist constants M ≥ 1 and α > 0 such
that ‖eAt‖ ≤ Me−αt for t ≥ 0. It is well-known [5] [6]
that if A is an ifinite-dimensional operator, then in general
Σ(A) ⊂ C

− is not sufficient for the exponential decay of
‖eAt‖. In this paper we focus on systems which do satisfy
the so-called spectrum-determined growth condition, namely
systems for which Σ(A) ⊂ C

− implies exponential decay of
the semigroup. Examples of such semigroups are numerous
and include analytic semigroups [7] [8].

In [3] it is shown that for a general spatially periodic
operator A we have

Σ(A) =
⋃

θ∈[0,Ω]

Σ(Aθ). (4)

Thus to prove Σ(Acl) ⊂ C
−, as needed to guarantee the

exponential stability of Scl, it is necessary and sufficient to
show that Acl

θ = Aθ − Bθ γF Cθ has spectrum inside C
−

for all θ ∈ [0, Ω]. In the next section we aim to develop a
graphical method of checking whether or not Σ(Acl

θ ) ⊂ C
−.

Also, henceforth in this paper wherever we use the term
stability we mean exponential stability.

V. THE NYQUIST STABILITY CRITERION FOR SPATIALLY

PERIODIC SYSTEMS

A. The Determinant Method

To motivate the development in this section, let us first
consider a finite-dimensional (multi-input multi-output) LTI
system G(s) placed in feedback with a constant gain γI .
In analyzing the closed-loop stability of such a system, we
are concerned with the eigenvalues in C

+ of the closed-loop
A-matrix Acl. If s is an eigenvalue of Acl, then it satisfies
det[sI − Acl] = 0. Now to check whether the equation
det[sI − Acl] = 0 has solutions inside C

+, one can apply
the argument principle to det[I +γG(s)] as s traverses some
curve D enclosing C

+. More precisely, since

det[I + γG(s)] =
det[sI − Acl]
det[sI − A]

,

if one knows the number of unstable open-loop poles, then
one can determine the number of unstable closed-loop poles
by looking at the plot of det[I + γG(s)]

∣∣
s∈D

.
But in the case of spatially-distributed systems the open-

loop and closed-loop A-operators Aθ and Acl
θ are, in general,

unbounded. Hence it does not make sense to talk about the
characteristic functions det[sI −Aθ] and det[sI −Acl

θ ], and
one has to resort to operator theoretic arguments to relate

Fig. 3. The closed contour Dθ traversed in the clockwise direction taken
as the Nyquist path as r → ∞. The indentations are arbitrarily made to
avoid open-loop modes on the imaginary axis.

the plot of det[I + γFGθ(s)]
∣∣
s∈D

to the unstable modes of
the open-loop and closed-loop systems. But first it has to be
clarified what is meant by det[I+γFGθ(s)] for the infinite-
dimensional operator I + γFGθ(s). We need the following
lemma.

Lemma 1: FGθ(s) ∈ B1(�2) for all s ∈ ρ(Aθ).
Proof: See Appendix.

Since FGθ(s) ∈ B1(�2), one can now define [9] [10]

det[I + γFGθ(s)] :=
∞∏

n=−∞

(
1 + γλθ

n(s)
)
,

where λθ
n(s), n ∈ Z, are the eigenvalues of Gθ(s). We

are now ready to state a generalized form of the argument
principle applicable to systems with unbounded A-operators.

Theorem 2: If det[I + γFGθ(s)] �= 0 for all s ∈ Dθ,

C
(
0; det[I + γFGθ(s)]

∣∣
s∈Dθ

)
=

tr
[

1
2πj

∫
Dθ

(sI − Acl
θ )−1ds

]
− tr

[
1

2πj

∫
Dθ

(sI − Aθ)−1ds

]
=

− (number of eigenvalues of Acl
θ in C

+) +
(number of eigenvalues of Aθ in C

+),

where Dθ is the Nyquist path shown in Figure 3 that does
not pass through any eigenvalues of Aθ, and encloses a finite
number of them.

Proof: See Appendix.
Remark 2: P = − 1

2πj

∫
Dθ (sI − Aθ)−1ds is the group-

projection [11] [10] corresponding to the eigenvalues of Aθ

inside Dθ, and tr[P] gives the total number of such eigen-
values [12]. Similarly tr[− 1

2πj

∫
Dθ (sI−Acl

θ )−1ds] gives the
total number of eigenvalues of Acl

θ in Dθ. Thus Theorem 2
allows us to determine the number of C

+ eigenvalues of Acl
θ

from knowledge of the number of C
+ eigenvalues of Aθ

and the number of encirclements of the origin by the plot
of det[I + γFGθ(s)] as s traverses Dθ. Notice that since
Aθ = diag

{ · · · , Â(θ + Ωn), · · ·}, the eigenvalues of Aθ

are known and we have Σp(Aθ) =
{
Â(θ + Ωn), n ∈ Z

}
.

Remark 3: It now becomes clear why we have used the
Aθ representation of the operator A; in this representation
and under the assumptions of Section III, the open- and
closed-loop A-operators enjoy the property of having discrete
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(pure point) spectrum. This allows for an extension of the
argument principle to be invoked.

Remark 4: Since Aθ has discrete spectrum, it has no finite
accumulation points in the complex plane [12]. In particular,
the eigenvalues of Aθ can not converge to any finite point
jω0 of the imaginary axis. Yet this does not rule out the
possibility of the eigenvalues accumulating at ±j∞. But
Assumption (i) guards against this by requiring that Â(k) be
bounded away from the imaginary axis as |k| → ∞. Thus
the Nyquist path can be taken to run to infinity along the
imaginary axis without any technical difficulties.
As a direct consequence of Theorem 2 we have

Theorem 3: Assume pθ
+ denotes the number of eigenval-

ues of Aθ inside C
+. For Dθ taken as above, Σp(Acl

θ ) ⊂ C
−

iff

(a) det[I + γFGθ(s)] �= 0, ∀ s ∈ Dθ,
and
(b) C

(
0; det[I + γFGθ(s)]

∣∣
s∈Dθ

)
= pθ

+.

Finally, the closed-loop system Gcl is exponentially stable iff
Σp(Acl

θ ) ⊂ C
− for all θ ∈ [0, Ω].

B. The Eigenloci Method

The setback with the method described in the previous
paragraph is that to show Σp(Acl

θ ) ⊂ C
−, Acl

θ = Aθ −
BθγFCθ, for different values of γ, one has to plot det[I +
γFGθ(s)]

∣∣
s∈Dθ for each γ. This also includes having to

calculate the determinant of an infinite dimensional matrix.
This motivates the following eigenloci approach to Nyquist
stability analysis, which is very similar to that performed in
[2] for the case of time-periodic systems.

Let λθ
n(s), n ∈ Z, constitute the eigenvalues of FGθ(s).

Then

∠ det[I + γFGθ(s)] = ∠
∞∏

n=−∞

(
1 + γλθ

n(s)
)
. (5)

But recall from Lemma 1 that FGθ(s) ∈ B1(�2) for every
s ∈ ρ(Aθ). This, in particular, means that FGθ(s) is a
compact operator and thus its eigenvalues λθ

n(s) accumulate
at the origin as |n| → ∞ [13]. As a matter of fact one can
make a much stronger statement.

Lemma 4: The eigenvalues λθ
n(s) converge to the origin

uniformly on Dθ.
Proof: See Appendix.

Take the positive integer Nε to be such that |λθ
n(s)| < ε,

s ∈ Dθ, for all |n| > Nε. Let us rewrite (5) as

∠ det[I + γFGθ(s)] =

∠
∏

|n|≤Nε

(
1 + γλθ

n(s)
)

+ ∠
∏

|n|>Nε

(
1 + γλθ

n(s)
)

=

∑
|n|≤Nε

∠
(
1 + γλθ

n(s)
)

+
∑

|n|>Nε

∠
(
1 + γλθ

n(s)
)
. (6)

It is clear that if |γ| < 1
ε then for |n| > Nε, |γλθ

n(s)| <
1, and 1 + γλθ

n(s) can never circle the origin as s travels
around Dθ. Thus for |γ| < 1

ε the final sum in (6) will not
contribute to the encirclements of the origin, and hence we

lose nothing by considering only the first Nε eigenvalues.
There still remain some minor technicalities.

First, let Dε denote the disk |s| < ε in the complex
plane. Then said truncation may result in some eigenloci
(part of which resides inside Dε) not forming closed loops.
But notice that these can be arbitrarily closed inside Dε, as
this does not affect the encirclements [2].

The second issue is that for some values of s ∈ Dθ,
FGθ(s) may have multiple eigenvalues, and hence there
is ambiguity in how the eigenloci of the Nyquist diagram
should be indexed. But this poses no problem as far as
counting the encirclements is concerned, and it is always
possible to find such an indexing; for a detailed treatment
see [1].

Let us denote by λθ
n the indexed eigenloci that make up

the generalized Nyquist diagram. From (6) and the above
discussion it follows that

C
(
0; det[I + γFGθ(s)]

∣∣
s∈Dθ

)
=

∑
|n|≤Nε

C
(
− 1

γ
; λθ

n

)

which together with Theorem 3 gives
Theorem 5: Assume pθ

+ denotes the number of eigenval-
ues of Aθ inside C

+. For Dθ and Nε as defined previously,
Σp(Acl

θ ) ⊂ C
− for |γ| < 1

ε iff

(a) − 1
γ

/∈ (
λθ

n

)
|n|≤Nε

,

and
(b)

∑
|n|≤Nε

C
(
− 1

γ
, λθ

n(s)
)

= pθ
+.

Finally, the closed-loop system Gcl is exponentially stable iff
Σp(Acl

θ ) ⊂ C
− for all θ ∈ [0, Ω].

C. Finite Truncations of System Operators

The above development means that for a given ε > 0, the
eigenloci that fall within the disk Dε = {s s.t. |s| < ε} play
no role in the Nyquist stability analysis and can be ignored
as long as | 1γ | > ε.

This suggests that one could truncate FGθ, or equaiva-
lently truncate Aθ, Bθ, Cθ, and F , and effectively treat the
stability problem as one for a family of (finite-dimentional)
multivariable systems parameterized by the variable θ.

The complication here is that although a truncation re-
moves the infinite number of eigenloci that shrink to zero,
it also affects all other eigenloci, no matter how large the
truncation is taken to be. Nevertheless, it can be shown that
by increasing the size of the truncation, the eigenloci of FGθ

can be recovered to any accuracy.
Let ΠN be the projection on the first 2N+1 standard basis

elements of �2, {e−N , · · · , e0, · · · , eN}. Thus ΠNFGθΠN is
the (2N + 1) × (2N + 1) truncation of FGθ. We have

Lemma 6: If ζ ∈ ρ(ΠNFGθΠN ) and

‖FGθ − ΠNFGθΠN‖ ‖(ζ − ΠNFGθΠN )−1‖ < 1,

then ζ ∈ ρ(FGθ).
Proof: This is a direct consequence of Theorem 3.17,

Chap IV of [12].
The decay of the diagonal elements of Gθ, and the decay

with increasing l of the fl elements of F , can be used to
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show that ‖FGθ−ΠNFGθΠN‖ can be made arbitrarily small
for large enough N .2 Hence, by Lemma 6 the eigenloci of
ΠNFGθΠN approximate those of FGθ arbitrarily well as N
grows.

D. Regularity in the θ Parameter

Regarding Theorems 3 and 5, one would hope for some
kind of ‘regularity’ with respect to the variable θ. More
precisely, in practice one would like to plot the eigenloci
and check the Nyquist stability criterion for a finite number
of θl, say θ1, · · · , θL, and be able to conclude stability for
all θ ∈ [0, Ω] if the θl are chosen close enough to each other.

It is possible to show that under certain mild conditions
on A, B and C, all points of the plot det[I+γFGθ(s)]

∣∣
s∈Dθ

change continuously with θ. Moreover we can show that the
eigenloci λθ

n of FGθ(s) change continuously with θ. We do
not present the details here.

VI. AN ILLUSTRATIVE EXAMPLE

In this section, we will consider the example of an open-
loop system governed by

∂tψ(t, x) = ∂2
xψ(t, x) + ψ(t, x) + u(t, x),

y(t, x) = ψ(t, x),

put in feedback with γF (x) = γ cos(x). Here Ω = 1, and B,
C are the identity operator. The representation of the system
in the frequency domain is ∂tψθ(t) = (Aθ − γF)ψθ(t),
where Aθ = diag{· · · ,−(θ + n)2 + 1, · · · } for every θ ∈
[0, 1], and F has the form shown at the end of Section II
with f1 = f−1 = 1 and fi = 0, i �= ±1. Notice that the
open-loop system is unstable.

Recall that to test the stability of the closed-loop system,
one has to apply the Nyquist criterion for every θ ∈ [0, 1].
We take Nyquist paths Dθ of the form shown in Figure 4(a)
with r = 20. The indentation is chosen appropriately as to
avoid the eigenvalues of Aθ at the origin. Let us take a look
at the Nyquist plots for two particular values of θ:

θ = 0 : λ = 0, 0, 1 are the eigenvalues of A0 inside
D0, hence p0

+ = 3, and we need three counter-clockwise
encirclements of −1/γ to achieve closed-loop stability. As
can be seen in Figure 4(b) and its blown-up version (c),
one possible choice would be to take −1/γ to be purely
imaginary and −0.2j ≤ −1/γ ≤ 0.2j. Clearly such −1/γ
is encircled three times by the eigenloci.

θ = 0.5 : λ = 0.75, 0.75 are the eigenvalues of A0.5

inside D0.5, hence p0.5
+ = 2, and we need two counter-

clockwise encirclements of −1/γ to achieve closed-loop
stability. Again, from Figure 4(d), if −1/γ is taken to be
purely imaginary and −0.2j ≤ −1/γ ≤ 0.2j, then −1/γ is
encircled twice by the eigenloci.

As a matter of fact, it can be shown that −0.2j ≤ −1/γ ≤
0.2j stabilizes the closed-loop system for all values of θ ∈
[0, 1].

2This is also a direct consequence of the fact that FGθ ∈ B1(�2) is a
compact operator and can therefore be approximated arbitrarily well by a
sequence of finite-dimensional operators [13].

(a)

(b)

(c)

(d)

Fig. 4. (a) The Nyquist path Dθ ; (b) Nyquist plot for θ = 0; (c) Blown-up
version of plot in (b); (d) Nyquist plot for θ = 0.5.

VII. CONCLUSIONS AND FUTURE WORK

We develop a generalized Nyquist stability criterion that
is applicable to a class of spatially-distributed systems with
infinite-dimensional input/output spaces and unbounded sys-
tem operators.

Future work in this direction would include considering
a wider class of spatially-distributed systems, for example
those for which the Fourier symbol of A is itself a matrix
(i.e., the state has Euclidean dimension larger than one).
Also, the affect on stability of different basic frequencies Ω
of the periodic feedback, and the occurrence of parametric
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resonance, can be investigated in this framework. It would be
of interest to compare such results to those already obtained
using norm and spectral analysis [4] [14].

VIII. APPENDIX

Proof of Lemma 1: Since s ∈ ρ(Aθ), then s �= Â(θ +Ωn)
for any n ∈ Z, which together with (3) and the boundedness
of B and C implies that all diagonal elements of Gθ(s) are
finite. Let �n

(Gθ(s)
)
, n = 1, 2, · · · , be a reordering of these

elements such that |�1

(Gθ(s)
)| ≥ |�2

(Gθ(s)
)| ≥ · · · ≥ 0.

Then clearly σn

(Gθ(s)
)

= |�n

(Gθ(s)
)|. But from

Assumption (i) it follows that
∑∞

n=1 σn

(Gθ(s)
)

< ∞. Hence
Gθ(s) ∈ B1(�2), and since F ∈ B(�2), FGθ(s) ∈ B1(�2)
[10].

To prove Theorem 2 we need the following lemma.
Lemma A1: For s ∈ ρ(Aθ), det[I + γFGθ(s)] is analytic

in both γ and s.
Proof: For s ∈ ρ(Aθ), γFGθ(s) ∈ B1(�2) by Lemma

1. Also γFGθ(s) = γFCθ(sI −Aθ)−1Bθ is clearly analytic
in both γ and s for s ∈ ρ(Aθ). Then it follows from [10,
p163] that det[I + γFGθ(s)] too is analytic in both γ and s
for s ∈ ρ(Aθ).

Proof of Theorem 2: Since Dθ does not pass through
any eigenvalues of Aθ, s ∈ ρ(Aθ) and thus γFCθ(sI −
Aθ)−1Bθ ∈ B1(�2) from Lemma 1. Then from [9],

(I +
γFCθ(sI − Aθ)−1Bθ

)−1
exists and belongs to B(�2) iff

det[I + γFCθ(sI − Aθ)−1Bθ] �= 0, which is satisfied
by assumption. Applying the matrix inversion lemma to(I +γFCθ(sI −Aθ)−1Bθ

)−1
, we conclude that s ∈ ρ(Acl

θ )
and (sI − Acl

θ )−1 = (sI − Aθ + BθγFCθ)−1 ∈ B(�2).
Now since (sI − Acl

θ )−1, Bθ, Cθ, and F all belong
to B(�2), and (sI − Aθ)−1 ∈ B1(�2), we have (sI −
Acl

θ )−1BθγFCθ(sI −Aθ)−1 ∈ B1(�2) [10]. Thus, from the
identity

(sI − Acl
θ )−1 − (sI − Aθ)−1 =

− (sI − Acl
θ )−1BθγFCθ(sI − Aθ)−1,

it follows that (sI − Acl
θ )−1 ∈ B1(�2). In particular (sI −

Aθ)−1 and (sI − Acl
θ )−1 are both in B0(�2), which means

that Aθ and Acl
θ both have discrete spectrum [12] and in

1
2πj

∫
Dθ

(sI − Acl
θ )−1ds − 1

2πj

∫
Dθ

(sI − Aθ)−1ds =

− 1
2πj

∫
Dθ

(sI − Acl
θ )−1BθγFCθ(sI − Aθ)−1ds

each term on the left side is a finite-dimensional projection
[10, p11, p15]. Taking the trace of both sides and changing
the order of integration and trace on the right3 we have

tr
[

1
2πj

∫
Dθ

(sI − Acl
θ )−1ds

]
− tr

[
1

2πj

∫
Dθ

(sI − Aθ)−1ds

]
=

− 1
2πj

∫
Dθ

tr[(sI − Acl
θ )−1BθγFCθ(sI − Aθ)−1]ds. (A1)

3Since (sI−Acl
θ )−1BθγFCθ(sI−Aθ)−1 ∈ B1(�2), its trace is well-

defined and finite.

From [12], the left side of (A1) is equal to the number of
eigenvalues of Aθ in C

+ minus the number of eigenvalues
of Acl

θ in C
+.

On the other hand, let the path Cθ be that traversed by
det[I + γFGθ(s)] as s travels once around Dθ (where Dθ

lies entirely in ρ(Aθ)). By Lemma A1, det[I + γFGθ(s)] is
analytic in s, and if det[I + γFGθ(s)] �= 0 on Dθ we have

C
(
0; det[I + γFGθ(s)]

∣∣
s∈Dθ

)
=

1
2πj

∫
Cθ

dz

z

=
1

2πj

∫
Dθ

d
ds det[I + γFGθ(s)]
det[I + γFGθ(s)]

ds. (A2)

Using [10, p163] and the assumption det[I+γFGθ(s)] �= 0,
s ∈ Dθ, we arrive at
d
ds det[I + γFGθ(s)]
det[I + γFGθ(s)]

= tr
[(I + γFGθ(s)

)−1 d

ds
γFGθ(s)

]

= −tr[(sI − Acl
θ )−1BθγFCθ(sI − Aθ)−1].

This, together with (A2) and (A1) gives the required result.

Proof of Lemma 4: For s ∈ ρ(Aθ), det[I + γFGθ(s)]
is analytic in both γ and s by Lemma A1. The proof now
proceeds exactly as in [2, p140] and is omitted.
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