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Abstract— A frame work of dissipativity theory for switched
systems using multiple storage functions and multiple supply
rates is set up. The exchange of “energy” between the activated
subsystem and an inactivated subsystem is characterized by
cross supply rates. Stability is reached when all supply rates
are non-positive, as long as the total exchanged energy between
the activated subsystem and any inactivated subsystems is
finite. Passivity and L2-gain are addressed. For both cases,
asymptotic stability is guaranteed under certain “negative”
output feedback. Feedback invariance of passivity and a small-
gain theorem are also given.

I. INTRODUCTION

Dissipativity theory of nonlinear systems, which was ini-
tiated by Willems [20] and developed further by Hill and
Moylan [8], has become one of the major approaches to
the study of complex systems. Storage functions induced by
dissipativity usually provide natural candidates for Lyapunov
functions. Therefore, in many cases, stability and stabiliza-
tion problems can be solved once the dissipativity property
is assured.

On the other hand, switched systems as an important class
of hybrid systems have drawn considerable attention in recent
years. Stability issues are the main concern when studying
switched systems [1], [2], [11]. A common Lyapunov func-
tion method provides stability under an arbitrary switching
law but is usually very restrictive [11]. The multiple Lypunov
function technique, proposed by Peleties and DeCarlo [16],
and further extended by Branicky [1] is a powerful tool for
finding stabilizing switching laws [2], [11].

Dissipativity concepts are useful not only for smooth
systems, but also for hybrid and switched systems. This
has not received much attention until now with few results
appearing on the topic. Dissipativity and stability analysis for
impulsive systems of a single continuous vector field with
impulsive terms were given in [4]. Passivity of nonlinear
control systems based on completeness and using controller
switching was discussed in [18]. There are many applications
of passivity-based control of electrical systems with hybrid
nature [3], [17]. However, all of the results mentioned above
adopt a unified “storage function” to characterize dissipa-
tivity or passivity. This classical notion of dissipativity is
obviously too restrictive in a hybrid and switching setting. To
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overcome this restriction, [21] proposed a notion of passivity
by using multiple storage functions. Stability and feedback
invariance were proven. However, this passivity concept
requires each storage function to be non-increasing on the
switching sequence of consecutive “switched on” times as
a prerequisite to meet the Branicky’s non-increasing condi-
tion of multiple Lyapunov functions and then to guarantee
stability. Besides, no asymptotic stability is induced by this
passivity property.

This paper presents a dissipativity theory for switched
systems using multiple storage functions and multiple supply
rates. Unlike continuous systems, a switched system has
an unusual phenomenon that must taken into consideration
when dealing with change of energy. A storage function of
a subsystem is still “changing” or even grows on the time
intervals when the subsystem is inactivated. This is simply
because that all subsystems share the same state variables.
This “changing” energy of any inactivated subsystem, though
not necessarily real energy, is viewed as “exported energy”
from the activated subsystem, and is characterized by cross
supply rates.

II. PRELIMINARIES

In this paper, we consider a switched system of the form:

ẋ = fσ(x, uσ),
y = hσ(x), (1)

where σ : R+ = [0,∞) → M = {1, 2, · · · , m} is the
switching signal of any form, which may depend on time
or state, or both, or even generated by higher level hybrid
feedback in the loop, x ∈ Rn is the state, ui and hi(x)
are the input vector and output vector of the i-th subsystem
respectively. Further, fi(·, ·) ∈ Rn, fi(0, 0) = 0, hi(0) = 0.
Here, we adopt the standard notations as in [1], [11]. The
switching signal σ can be characterized by the switching
sequence:

Σ = {x0; (i0, t0), · · · , (in, tn), · · · , |in ∈ M, n ∈ N}, (2)

in which t0 is the initial time, x0 is the initial state and
N is the set of nonnegative integers. When t ∈ [tk, tk+1),
σ(t) = ik, that is, the ik-th subsystem is activated.

For any j ∈ M , let

Σ | j = {tj1 , tj2 , · · · , tjn
, · · · , ijq

= j, q ∈ N}
be the sequence of switching times when the j-th subsystem
is switched on, and thus

{tj1+1, tj2+1, · · · , tjn+1, · · · , ijq
= j, q ∈ N}
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is the sequence of switching times when the j-th subsystem
is switched off.

Assumption 2.1. For any finite T > t0, there exist a
positive integer K = KT , such that during the time interval
[t0, T ] the system (1) switches no more than K times,
independently of the initial states in a vicinity of the origin.

This assumption is adopted to rule out arbitrarily fast
switching. We also assume the existence and uniqueness of
solutions of the system (1). More discussion can be found
in [11].

By L1[0, ∞) we denote the usual L1 function space over
[0, ∞), that is, µ = µ(t) ∈ L1[0, ∞) if

∫ ∞
0

| µ(t) | dt < ∞.
Let L+

1 [0, ∞) denote the subset of L1[0, ∞) consisting of
all no-negative functions. For simplicity, sometime we use
hj(t) to denote hj(x(t)).

III. DISSIPATIVITY

This section gives the description of dissipativity for
switched systems by using multiple storage functions and
multiple supply rates.

A. Definition of Dissipativity

The classical form of dissipativity is still applicable to
switched system (1) with a supply rate function ω(·, ·) and
a storage function S(x) as

S(x(t)) − S(x(t0)) ≤
∫ t

t0

ω(uσ(t), hσ(t))dt. (3)

However, this property that is standard for general non-
linear systems is much too restrictive for switched systems
because each subsystem usually has its individual supply rate
ωi and thus a storage function Si(x) when this subsystem
is activated. A common supply rate ω and thus a common
storage function S(x) for all subsystems may be difficult
to find or may not exist at all. Therefore, it is reasonable
and necessary to adopt multiple supply rates and multiple
storage functions to characterize the dissipativity property for
switched systems. However, a simple adoption of multiple
storage functions and supply rates of each subsystem may
result in the loss of some desirable properties that are
expected to be induced by dissipativity, namely, stability.
This may happen mainly because the negative impact of
inactivated subsystems on the behavior of the whole switched
systems. The major difficulty here is that unlike Branicky’
multiple Lyapunov functions where a non-increasing condi-
tion on a “switched on” time sequence is a basic assumption,
storage functions are allowed to grow when corresponding
subsystems are inactivated. Therefore, the change of storage
functions must be taken into account when the corresponding
subsystems are inactivated.

Definition 3.1. System (1) is said to be dissipative under
the switching law Σ if there exist positive definite continuous
functions S1(x), S2(x), · · · , Sm(x), called storage functions,
and functions ωi

i(ui, hi), 1 ≤ i ≤ m, called supply rates, and
functions ωi

j(x, ui, hi, t), 1 ≤ i, j ≤ m, i �= j, called cross

supply rates, such that

(i)

Sik
(x(t)) − Sik

(x(s))

≤
∫ t

s

ωik
ik

(uik
(τ), hik

(τ))dτ,

tk ≤ s ≤ t < tk+1, k = 0, 1, 2, · · · ,
(4)

(ii)

Sj(x(t)) − Sj(x(s))

≤
∫ t

s

ωik
j (x(τ), uik

(τ), hik
(τ), τ)dτ,

j �= ik, tk ≤ s ≤ t < tk+1, k = 0, 1, 2, · · · ,
(5)

(iii) For any i, j, there exist ui(t) under which the origin
is the equilibrium of all subsystems of the system (1),
and φi

j(t) ∈ L+
1 [0,∞), which may depend on ui and the

switching sequence Σ, such that

ωi
i(ui(t), hi(t)) ≤ 0,∀i. (6)

and

ωi
j(x(t), ui(t), hi(t), t) − φi

j(t) ≤ 0,∀j �= i. (7)

Remark 3.2. In Definition 3.1, Sj and ωj
j are the usual

storage function and supply rate respectively for the j-th
subsystem when being activated. It is worthwhile noticing
that the j-th subsystem is inactivated on the time interval
[tk, tk+1) and thus the “energy” Sj(x) may apparently re-
main unchanged. However, because all subsystems share the
same state variable, Sj(x) indeed changes from Sj(x(tk)) to
Sj(x(tk+1)). This can be viewed as the result of “imported
energy” from the activated ik-th subsystem into the inacti-
vated j-th subsystem. This “energy” is characterized by the
“cross supply rate” ωi

j from the i-th subsystem to the j-th
subsystem and satisfies the dissipation inequalities (5).

Condition (iii) simply means that for at least one ui(t), if
no external energy is supplied to the i-th subsystem when
being activated, then the total “energy” coming from the
activated i-th subsystem to the inactivated j-th subsystem
is finite. This condition is natural and reasonable because
otherwise infinitely large energy would be produced by the i-
th subsystem without external energy. When the cross supply
rates are of the form

ωi
j(x(t), ui(t), hi(t), t) = ϑi

j(x(t))ωi
i(ui(t), hi(t)) + φi

j(t)

with positive functions ϑi
j(x(t)) and φi

j(t) ∈ L+
1 [0,∞),

Condition (iii) is automatically satisfied. In the sequel, for
simplicity, we assume that any ui(t) satisfying (6) also
satisfies (7).

Though all subsystems are assumed to be time invariant,
the switched systems will have time variant features because
of switching. This is even more so for the case of time-
dependent switching laws. Considering this, the cross supply
rates are defined to be time dependent to cover more general
situations.

Remark 3.3. When all subsystems share a common supply
rates and cross supply rates ωi

j(·, ·) = ω(·, ·), and thus
share a common storage function Sj(x) = S(x), then, (ii)
and (iii) are automatically satisfied. Therefore, this notion of
dissipativity is a natural generalization of the classical one.
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B. Stability Analysis

Theorem 3.4. Under Assumption 2.1, if the system (1) is
dissipative with storage function Si(x) satisfying Si(0) = 0,
then, the origin is stable in the sense of Lyapunov for any
control ui(t) satisfying (6).

Proof. Condition (iii) says ωi
i(ui(t), hi(t)) ≤ 0, and

ωi
j(x(t), ui(t), hi(t), t) ≤ φi

j(t) for some φi
j(t) ∈ L+

1 [0,∞).
For any constant c > 0, let B(c) = {x| ‖ x ‖≤ c},
ri(c) = min

x
{Si(x)| ‖ x ‖= c} and r(c) = min

i
{ri(c)}.

For any ε > 0, since φi
j(t) ∈ L+

1 [0,∞) , there exists
T > 0 such that for any T1, T2 , T ≤ T1 ≤ T2 ≤ ∞, it
holds that∫ T2

T1

φi
j(t)dt <

1
2m

r(ε), i, j ∈ M, i �= j. (8)

Assumption 2.1 says that the system (1) switches at most K
times on the time interval [t0, T ] for some integer K. Thus,
tK ≥ T , no matter where to start. Note that Si is positive
definite and Si(0) = 0, we can find δ1 > 0, δ1 < ε, such that
Si(x) < 1

2r(ε) when x ∈ B(δ1). For this δ1 > 0, we can find
δ2 > 0, δ2 < δ1 such that Si(x) < r(δ1) when x ∈ B(δ2).
Continuing this procedure, we finally have a sequence

ε = δ0 > δ1 > δ2 > · · · > δK > 0

with the property:

Si(x) < r(δp), when x ∈ B(δp+1), p = 1, 2, · · · , K − 1,∀i,
Si(x) < 1

2r(ε), when x ∈ B(δ1),∀i
(9)

Note that Sik
(x(t)) decreases when the ikth subsystem is

activated, if we start within B(δK), we will stay in B(δ1)
as long as we switch no more than K times and no matter
how we switch. This implies x(t) ∈ B(δ1), t ∈ [t0, tK ] if
x(0) ∈ B(δK). In particular, Si(x(tK)) < 1

2r(ε), i ∈ M .
Now, for any j ∈ M , let tjq

∈ Σ | j and tjq
> tK .

Obviously, jq ≥ K + 1. It is easy to deduce from (4), (5)
that

Sj(x(tjq )) − Sj(x(tK))

=
jq−K−1∑

λ=0

(Sj(x(tK+λ+1)) − Sj(x(tK+λ)))

≤
jq−K−1∑

λ=0

∫ tK+λ+1

tK+λ

ψ
iK+λ

j (t)dt,

(10)

where

ψ
iK+λ

j (t) ={
ωj

j (uj(t), hj(t)) if iK+λ = j,

ω
iK+λ

j (x(t), uiK+λ
(t), hiK+λ

(t), t) if iK+λ �= j
(11)

Note that ωj
j ≤ 0 by assumption and ω

iK+λ

j ≤ φ
iK+λ

j , we

know that ψ
iK+λ

j ≤ φ
iK+λ

j .

Therefore,

Sj(x(tjq )) − Sj(x(tK))

≤
jq−K−1∑

λ=0, iK+λ�=j

∫ tK+λ+1

tK+λ

φ
iK+λ

j (t)dt < 1
2r(ε) (12)

That is,

Sj(x(tjq )) ≤ Sj(x(tK)) +
1
2
r(ε) < r(ε)

Thus, x(t) ∈ B(ε) for all t and stability follows.
Remark 3.5. Normally, stability is addressed for the

system (1) with ui = 0. Here we consider stability with
respect to a specific class of inputs satisfying (6).

IV. PASSIVITY

Passivity is one of the most useful forms of dissipativity. In
this section we define passivity for system (1) and establish
a passivity theorem.

Definition 4.1. System (1) is said to be passive under the
switching law Σ if it is dissipative with respect to

ωj
j (uj , hj) = uT

j hj − δju
T
j uj − εjh

T
j hj , j = 1, 2, · · · , m.

for some δj ≥ 0, εj ≥ 0, and strict input (output) passive if
δj > 0 (εj > 0).

Remark 4.2. We only need the supply rates ωj
j (uj , hj) to

be quadratic. Other cross supply rates which represent energy
exchange between different subsystems are allowed to take
arbitrary forms. This makes the passivity concept vary broad.

A. Switched KYP Condition

We analyze conditions for passivity of switched systems in
this subsection. We focus on smooth affine switched systems
of the form:

ẋ = fσ(x) + gσ(x)uσ,
y = hσ(x). (13)

and look for smooth storage functions and continuous supply
rates and cross supply rates.

Since for the system (13) strict input passivity is never
satisfied, we only consider passivity with supply rates

ωi
i(ui, hi) = uT

i hi − εih
T
i hi.

We have infinitely many choices of cross supply rates. Here,
for simplicity, we limit ourself to cross supply rates of the
form

ωi
j(x, ui, hi, t) = ϕi

j(x)ωi
i(ui, hi). (14)

for some positive continuous functions ϕi
j(x).

Also, we only consider a state-dependent switching law of
the form σ(t) = σ(x(t)) = i if x(t) ∈ Ωi, and

⋃m
i=1 Ωi =

Rn, int Ωi

⋂
Ωj = ∅, i �= j .

Note that in this case, Condition (i) and (ii) in Definition
3.1 can be written into a unified form:

Sj(x(t)) − Sj(x(s))

≤
∫ t

s

ϕik
j (x(τ))ωik

ik
(uik

(τ), hik
(τ))dτ,

∀j, k, tk ≤ s ≤ t < tk+1

(15)
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with ϕi
i(x) = 1, which yields the localized form of the well-

known passivity (or KYP) conditions [9]

Lfi
Sj ≤ −εiϕ

i
jh

T
i hi, x ∈ Ωi,

Lgi
Sj = ϕi

jh
T
i , x ∈ Ωi.

(16)

Condition (iii) is obviously satisfied due to (14).

B. Stabilization by Output Feedback

In this subsection, we show how passivity induces asymp-
totic stability via output feedback.

We first introduce the concept of asymptotic zero state
detectability for nonlinear systems, which will be used to
prove the asymptotic stability.

Definition 4.3. A system

ẋ = f(x),
y = h(x) (17)

is called asymptotically zero state detectable if for any ε > 0,
there exists δ > 0, such that when ‖ y(t + s) ‖< δ holds for
some t ≥ 0, ∆ > 0 and 0 ≤ s ≤ ∆, we have ‖ x(t) ‖< ε.

Remark 4.4. This asymptotic zero state detectability is a
weaker version of small-time norm observability [5].

Theorem 4.5. If the system (1) is passive, then, the origin
is stable in the sense of Lyapunov for any control ui(t)
satisfying uT

i (t)hi(t) ≤ 0. If in addition, all Si are globally
defined radially unbounded, there exist at least one j such
that limk→∞(tjk+1 − tjk

) �= 0, and all subsystems of (1)
are asymptotically zero state detectable, then, the origin
is globally asymptotically stable by the output feedback
ui = −hi.

Proof. Stability follows from Theorem 3.4. We now show
global attractiveness.

Substituting the output feedback ui = −hi into the
passivity inequality (4) gives rise to

ζik

∫ t

s

‖hik
(t)‖2dt

≤ Sik
(x(s)) − Sik

(x(t)), tk ≤ s ≤ t < tk+1

(18)

with ζi = 1 + δi + εi. For the integer j satisfying
limk→∞(tjk+1− tjk

) �= 0, we can select δ > 0 such that the
set Λ = {k|tjk+1 − tjk

≥ δ} is infinite. Define a function

h̃j(t) =

⎧⎨
⎩

hj(x(t)), t ∈
⋃
k∈Λ

[tjk
, tjk+1)

0, otherwise
(19)

For any t > 0, when tjk
≤ t < tjk+1 for some k ∈ Λ, (18)

gives

ζj

∫ t

t0

h̃T
j (t)h̃j(t)dt ≤ Sj(x(tj1)) − Sj(tjk+1)

+
k−1∑
p=1

(
Sj(x(tjp+1)) − Sj(x(tjp+1))

)
≤ Sj(x(tj1)) − Sj(tjk+1)

+
k−1∑
p=1

jp+1−jp−1∑
λ=1

∫ tjp+1+λ

tjp+λ

φ
ijp+λ

j (t)dt

≤ Sj(x(tj1)) − Sj(tjk+1)

+
m∑

i=1, i �=j

∫
t0

∞
φi

j(t)dt < ∞.

(20)

When t /∈ [tjk
, tjk+1) for any k ∈ Λ, there exists k ∈ Λ such

that t ≥ tjk+1 and t < tjq for any q ∈ Λ and q > k. In this
case, we have h̃j(s) ≡ 0, s ∈ [tjk+1, t], and (20) still holds.
It follows from (20) that

∫ ∞
t0

h̃T
j (t)h̃j(t)dt is finite. Now ,

we show h̃j(t) → 0 as t → ∞. Suppose this is false, then
there exist ε > 0 and a sequence of time t, say, q1, q2, · · · ,
qk → ∞, satisfying

h̃T
j (qi)h̃j(qi) ≥ ε,∀i.

Note that (18) and Condition (ii) in Definition 3.1 guaran-
tee the boundedness of x(t), and ẋ = fσ(x,−hσ(x)) is
also bounded. Hence, h̃j(t) is uniformly continuous over⋃

k∈Λ[tjk
, tjk+1). In view of tjk+1 − tjk

≥ δ, we
have

∫ ∞
t0

h̃T
j (t)h̃j(t)dt = ∞, which contradicts the fact

that
∫ ∞

t0
h̃T

j (t)h̃j(t)dt is finite. Therefore, h̃j(t) → 0. So,
x(tjk

) → 0 as k → ∞ and k ∈ Λ follows from the
asymptotic zero state detectability of the j-th subsystem, and
this in turn implies x(t) → 0 as t → ∞ due to stability of
the closed-loop system and continuity of x(t).

Remark 4.6. The control ui can be chosen as output
feedback of the form ui = −ξi(hi) satisfying ξT

i (y)y > 0
for any y.

Remark 4.7. If the system (1) is strict output passive,
global asymptotic stability follows for ui = 0. The proof is
similar.

C. Passivity Theorem

Consider the passive switched systems

H1 :
ẋ1 = f1

σ1
(x1, u1

σ1
),

y1 = h1
σ1

(x1)
(21)

with x1 ∈ Rn1 , and

H2 :
ẋ2 = f2

σ2
(x2, u2

σ2
),

y2 = h2
σ2

(x2)
(22)

with x2 ∈ Rn2 . The feedback interconnection of H1 and H2

is depicted in Fig.3 below.
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Fig.3. Feedback interconnection

Theorem 4.8. Suppose switched systems H1 and H2 are
passive. Then, the feedback interconnected system shown
in Fig.3 is again a passive switched system as long as the
corresponding interconnected subsystems are compatible in
the sense of dimensions.

Furthermore, if both H1 and H2 are strictly passive, then
the interconnected system is also strictly passive.

Proof. Since we do not need the assumption of minimal
switching sequence, without loss of generality, we suppose
the two switched systems share the same switching times
{t0, t1, · · · , tk, · · ·}.

Suppose the switching sequences of switched systems H1

and H2 are respectively

Σ1 =
{

x1
0; (i

1
0, t0), (i

1
1, t1), · · · , (i1j , tj), · · · ,∣∣ i1j ∈ M1 = {1, 2, · · · , m1}, j ∈ N

} (23)

and

Σ2 =
{

x2
0; (i

2
0, t0), (i

2
1, t1), · · · , (i2j , tj), · · · ,∣∣ i2j ∈ M2 = {1, 2, · · · , m2}, j ∈ N

} (24)

and the storage functions are S1
j (x1) and S2

j (x2). The supply
rates and cross supply rates are

ωj
1j = (u1

j )
T h1

j − ε1j(h1
j )

T h1
j , ωi

1j(x
1, u1

i , h
1
i , t),

ωj
2j = (u2

j )
T h2

j − ε2j(h2
j )

T h2
j , ωi

2j(x
2, u2

i , h
2
i , t),

The feedback interconnected system of H1 and H2 has
the state space representation given by

H :

ẋ =
(

ẋ1

ẋ2

)
=

⎛
⎝ f1

σ1
(x1, r1

σ1
− y2)

f2
σ2

(x2, r2
σ2

+ y1)

⎞
⎠

= fσ(x, uσ),

y =
(

y1

y2

)
=

(
h1

σ1

h2
σ2

)
= hσ(x)

(25)

where

uσ =

⎛
⎝ r1

σ1

r2
σ2

⎞
⎠ , σ =

⎛
⎝ σ1

σ2

⎞
⎠ : [0, ∞) → M = M1×M2.

The composite switching law is

Σ = {x0; (i0, t0), (i1, t1), · · · , (ij , tj), · · · , |ij ∈ M, j ∈ N},

where x0 = (x1
0
T
, x2

0
T )T , ij =

(
i1j
i2j

)
=

(
σ1(tj)
σ2(tj)

)
Now, define

Sij(x) = Si(x1) + Sj(x2), (i, j) ∈ M1 × M2,

Note that

uT
σ hσ = u1

σ1

T
h1

σ1
+ u2

σ2

T
h2

σ2
,

it is easy to check (i) , (ii) and (iii) in Definition 3.1. with
cross supply rates

ωpq
ij (x, u(p,q)T , h(p,q)T , t)

= ωp
i (x1, r1

p − h2
q, h

1
p, t) + ωq

j (x2, r2
q + h1

p, h
2
q, t).

Therefore, the feedback interconnected system is passive.
The proof for strict passivity is trivial.

V. L2-GAIN

Definition 5.1. The system (1) is said to have L2-gain
γ > 0 if it is dissipative with respect to ωi

i = 1
2γ2uT

i ui −
1
2hT

i hi, i = 1, 2, · · · , m.
Similar to the definition of passivity, we do not specify

the form of cross supply rates ωj
i , i �= j.

A. Switched Hamilton-Jacobi Inequalities

For affine switched system (13), cross supply rates (14)
and state-dependent switching, we can easily have

Lfi
Sj +

1
2ϕi

jγ
2
(Lgi

Sj)(Lgi
Sj)T +

1
2
ϕi

jh
T
i hi ≤ 0, x ∈ Ωi.

(26)

B. Stability

Theorem 5.2. If the system (1) has L2-gain γ, then, the
origin is stable for any control ui(t) satisfying

‖ ui(t) ‖2≤ (1 − ζ2
i )

γ2 ‖ hi(t) ‖2 (27)

for some ζi, 0 ≤ ζi ≤ 1. If in addition, 0 < ζi ≤ 1, all Si are
globally defined radially unbounded, there exist at least one
j such that limk→∞(tjk+1 − tjk

) �= 0, and all subsystems of
(1) are asymptotically zero state detectable, then, the origin
is globally asymptotically stable.

Proof. Similar to the proof of Theorem 4.5.

C. Small-gain Theorem

Suppose we have two switched systems:

H1 :
ẋ = fσ1(x, uσ1),
y = hσ1(x), (28)

and

H2 :
ż = gσ2(z, vσ2),
w = lσ2(z), (29)

where σi : R+ → Mi = {1, 2, · · · , mi}, i = 1, 2. The
meaning of other variables are the same as those in the
system (1).

Without loss of generality, we assume that the two
switched systems have the same switching time sequence
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{t0, t1, · · · , tk, · · ·}. When t ∈ [tk, tk+1), the i1k-th and i2k-th
subsystems of H1 and H2 are activated respectively.

Theorem 5.3. Suppose that H1 has L2-gain γ1 with
S1i, ω

i
1j , and H2 has L2-gain γ2 with S2i, ω

i
2j respectively.

If γ1γ2 < 1, and

ωi
1j(x(t), ui(t), hi(t), t)

≤ C(t)
(
ωi

1i(ui(t), hi(t))
)

+ ϕi
1j(t),

ωi
2j(z(t), vi(t), li(t), t)

≤ C(t)
(
ωi

2i(vi(t), li(t))
)

+ ϕi
2j(t)

(30)

for some nonnegative function C(t), functions ϕi
1j(t), ϕ

i
2j ∈

L+
1 [0,∞), then, the feedback interconnected system of H1

and H2 with

uσ1 = −lσ2(z), vσ2 = hσ1(x) (31)

is stable. If in addition, all S1i, S2i are globally defined
radially unbounded, there exists at least one interconnected
subsystem having infinite activated time intervals with pos-
itive dwell time, and all subsystems of H1 and H2 are
asymptotically zero state detectable, then, the feedback in-
terconnected system is globally asymptotically stable.

Proof. Applying the method used by Hill and Moylan for
non-switched systems[10], [19], we can easily complete the
proof.

Remark 5.4. It is not surprising that in addition to the
usual small-gain condition γ1γ2 < 1, we still need the con-
dition (30), which is a constraint on cross supply rates. This
constraint can be regarded as a generalization of the small-
gain condition between inactivated coupled subsystems. In
particular, when cross supply rates are the same as supply
rates, this condition is automatically satisfied. In general, the
cross supply rates are allowed to take any forms.

VI. CONCLUDING REMARKS

We have established a framework of dissipativity the-
ory for switched systems. Multiple storage functions and
multiple supply rates are adopted to describe dissipativity.
The introduction of cross supply rates relates the active
subsystem and inactivated subsystems. As in classic notion
of dissipativity, where the supply rate may represent abstract
energy, cross supply rates in dissipativity of switched systems
are abstract “exchanged energy” which simply represents the
change of storage functions of inactivated subsystems cause
by the activated subsystem. Therefore, we do not limit the
form of cross supply rates in the description of dissipativity
to cover more general situations. In particular, cross supply
rates are allowed to be positive even though all supply rates
are negative. This feature makes the dissipativity theory
established here different to Branicky’s theory of multiple
Lyapunov functions, in which the non-decreasing condition
of a Lyapunov function on the “switched on” time sequence
is a key prerequisite.

It is worthwhile pointing out that sometimes this general
cross supply rates may “weaken” the results. For example,
the L2-gain property only describes the input-output gain

over the active time intervals. In order to have the input-
output gain over the infinite time domain, which is related
to H∞ control, certain constraints must be imposed on the
cross supply rates. This will be considered in our separate
papers.
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