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Abstract— The design problem of fault detection and isolation
filters is formulated as a model matching problem and solved
using an H2- or H∞-norm optimization approach. A systematic
procedure is proposed to choose appropriate filter specifications
which guarantee the existence of proper and stable solutions
of the model matching problem. This selection is integral
part of numerically reliable computational methods to design
of H2- or H∞-optimal fault detection filters. The proposed
design approach is completely general, being applicable to both
continuous- and discrete-time systems, and can easily handle
even unstable and/or improper systems.

I. INTRODUCTION

Consider the linear time-invariant system described by the

input-output relations

y(λ) = Gu(λ)u(λ) + Gf (λ)f(λ) + Gd(λ)d(λ), (1)

where y(λ), u(λ), f(λ), and d(λ) are Laplace- or Z-

transformed vectors of the p-dimensional system output

vector y(t), mu-dimensional plant input vector u(t), mf -

dimensional fault signal vector f(t), and md-dimensional

disturbance vector d(t), respectively, and where Gu(λ),
Gf (λ) and Gd(λ) are the transfer-function matrices (TFMs)

from the plant control inputs to outputs, fault signals to

outputs, and disturbances to outputs, respectively. According

to the system type, λ = s in the case of a continuous-time

system or λ = z in the case of a discrete-time system.

The fault detection and isolation (FDI) problem can be

formulated as follows: determine a physically realizable (i.e.,

proper and stable) linear residual generator filter (or fault

detector) of least dynamical order having the general form

r(λ) = R(λ)
[

y(λ)
u(λ)

]
(2)

such that: (i) ri(t) = 0 when fi(t) = 0; and (ii) ri(t) �= 0
when fi(t) �= 0, for i = 1, . . . ,mf . The simpler fault
detection (FD) problem requires besides (i) above the sim-

pler condition (ii′) r(t) �= 0 when any fi(t) �= 0, for

i = 1, . . . ,mf .

One possibility to determine a least order R(λ) which

solves the FDI problem is to solve the following model

matching problem [1], [2]: choose a suitable M(λ) (i.e.,

stable, proper, diagonal and invertible) and find a least

McMillan degree solution R(λ) of the linear equation with

rational matrices

R(λ)
[

Gf (λ) Gd(λ) Gu(λ)
O O Imu

]
= M(λ)

[
Imf

O O
]

(3)
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which is stable and proper. This equation arises by imposing

for the filter (2) the specification that r(λ) = M(λ)f(λ) for

all d(λ) and u(λ), thus achieving an exact decoupling of

faults from the disturbance and system inputs. The solution

of a FD problem corresponds to filter specification M(λ)
which is stable, proper and full row rank (e.g., a single row

matrix).

If for a properly chosen M(λ) the compatibility condition

rank

[
Gf (λ) Gd(λ)
M(λ) O

]
= rank

[
Gf (λ) Gd(λ)

]
is fulfilled (for example, if [Gf (λ) Gd(λ) ] is left invertible),

then the rational matrix equation (3) can be solved using,

for example, the recently developed numerically reliable ap-

proach proposed in [3] based on orthogonal pencil reduction

methods.

Unfortunately, in many practical applications the above

rank condition is not fulfilled and therefore the equation (3)

can not be exactly solved. Instead, we can determine R(λ)
by solving the H2- or H∞-norm minimization problem

‖R(λ)G̃(λ) − M(λ)F̃ (λ)‖ = min (4)

with

G̃(λ) =
[

Gf (λ) Gd(λ)Wd(λ) Gu(λ)Wu(λ)
O O Wu(λ)

]
F̃ (λ) =

[
Imf

O O
]

where Wd(λ) and Wu(λ) are optional frequency weightings.

For example, by choosing Wd(λ) = γdImd
and Wu(λ) =

γuImu
, with γd � 1 and γu � 1, we can achieve an in-

creased attenuation of the effects of disturbances and control

inputs in the residual signals. Alternatively, by appropriately

chosen weights, the attenuation can be achieved only in a

certain frequency region of interest.

The H2- and H∞-optimal solution of the FDI problem has

been considered by many authors (see [4], [2] and references

cited therein). In what follows we discuss shortly the two

main approaches used to solve these problems.

The filtering based approaches, pioneered in [5], (see also

[6] for recent developments) convert the problem into a

standard H2- or H∞-filter synthesis problem to be solved

using standard Riccati equation based techniques [7], [8].

The applicability of this approach is conditioned by several

technical assumptions, as for example, full row rank of G̃(λ)
and lack of zeros on the extended imaginary axis in the

continuous-time or on the unit-circle in the discrete-time.

Although these conditions are not necessary for the existence

of a solution, the approach still fails when they are not
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fulfilled. Since the filtering-based approach provides no clear

guidance how to choose appropriate filter specification for

successful design, the whole filter design reduces to an ad-
hoc trial-and-error procedure [9].

The second approach, proposed in [10], is basically

a continuous-time H2-optimal design. It compensates the

presence of zeros of G̃(s) on the imaginary axis or at

infinity by including the same zeros contents in the filter

specification M(s). This leads to automatic poles-zeros

cancellations when determining the detection filter. However,

the computational approach proposed in [10] involves highly

sensitive computations like the determination of the Smith-

McMillan form of a rational matrix, and thus is not suited

as computational procedure for FDI filter design.

In this paper the approach of [11] is extended to solve

the underlying model matching problem (3) in an H2- or

H∞-optimal sense to obtain a least order stable and proper

solution R(λ) by choosing a suitable filter specification

M(λ). For this purpose, we develop methods to compute

stable and proper approximate solutions of linear rational

equations by adjusting the free term via multiplications with

stable and proper factors. The proposed approach relies on

the manipulation of rational matrices by using descriptor

system representations and is able to address the optimal

FDI design problem in the most general setting (i.e., arbitrary

rational matrices in the system model (1), no restrictions on

poles, zeros or rank of G̃(λ)). Some key computations in

the proposed approach are the inner-outer factorization of

a rational matrix, the solution of linear rational equations,

coprime and spectral factorizations, solution of Nehari’s

problem. The underlying numerical computations rely on

numerically reliable algorithms and are well-suited for robust

software implementations.

II. APPROXIMATE SOLUTION OF RATIONAL EQUATIONS

To solve the FDI problem, we can solve the rational

equation (3), exploiting the additional freedom of choosing

a diagonal M(λ) such that the resulting R(λ) is proper and

stable. Since in general the solution is not unique, we would

like to compute a solution of least McMillan degree.

For convenience, we consider the more general dual
problem to solve a linear rational system of the form

G(λ)X(λ) = F (λ)M(λ) (5)

where G(λ) and F (λ) are given l × m and l × q rational

TFMs, respectively. Equation (5) corresponds to the trans-

posed equation (3) with M(λ) redefined. To solve (5), we

need additionally to choose an q×q invertible diagonal, stable

and proper M(λ) such that the resulting m×q solution X(λ)
is proper, stable and has the least possible McMillan degree.

The system (5) has a solution provided the rank condition

rank G(λ) = rank [G(λ) F (λ) ] (6)

is fulfilled. When this condition is not fulfilled, we want to

compute a stable and proper X(λ) which minimizes the H2-

or H∞-norm of the residual

R(λ) := G(λ)X(λ) − F (λ)M(λ)

Note that in this setting, there are no restrictions of any

kind on G(λ) and F (λ) (they are arbitrary and can be even

polynomial matrices), but we assume that an M(λ) can be

chosen such that a proper and stable solution X(λ) exists

and the corresponding norm ‖R(λ)‖ is finite.

The approach we propose has two main computational

stages. The first stage is common to both the H2- or H∞-

norm minimization and basically achieves the reduction of

the original problem to a simpler one for which, in the second

step, either the exact algorithm of [11] is used to solve the

H2-norm minimization problem or an H∞-model matching

approach can be applied (see [12]).

The main computation in the first stage is the determina-

tion of the quasi inner-outer of factorization

G(λ) = Gi(λ)Go(λ),

where Gi(λ) is square and inner and Go(λ) has the form

Go(λ) =
[

Go,1(λ)
O

]
(7)

with Go,1(λ) full row rank. Recall that Gi(λ) is inner if

it has only stable poles and satisfies G∗
i (λ)Gi(λ) = Il,

where G∗
i (s) := GT

i (−s) in a continuous-time setting and

G∗
i (z) := GT

i (1/z) in a discrete-time setting. The full row

rank part Go,1(λ) is quasi outer, having no zeros in the

open-right half complex plane in a continuous-time setting

or outside the unit circle in a discrete-time setting. Note

that in the standard inner-outer factorization of a stable

G(λ) without zeros on the extended imaginary axis in a

continuous-time setting or on the unit circle in a discrete-

time setting (see for example [8]), the full row rank part

Go,1(λ) is an outer TFM (i.e., stable and minimum-phase).

We partition the inner factor column-wise in accordance

with the row structure of the factor Go(λ)

G(λ) = [Gi,1(λ) | Gi,2(λ) ]
[

Go,1(λ)
O

]
(8)

It follows that

‖R(λ)‖=‖Go(λ)X(λ) − G∗
i (λ)F (λ)M(λ)‖

=
∥∥∥∥[

Go,1(λ)
O

]
X(λ) −

[
G∗

i,1(λ)
G∗

i,2(λ)

]
F (λ)M(λ)

∥∥∥∥
=

∥∥∥∥∥
[
Go,1(λ)X(λ) − F̂1(λ)M(λ)

−F̂2(λ)M(λ)

]∥∥∥∥∥
where F̂1(λ) = G∗

i,1(λ)F (λ) and F̂2(λ) = G∗
i,2(λ)F (λ).

In the next two sections we address the second stage of

the proposed approach and give in terms of TFMs high-level

algorithms to solve the H2- and H∞-norm minimization

problems. In Section V, we discuss numerically reliable state

space algorithms for the solution of the key computational

problems.

III. COMPUTATION OF THE H2-SOLUTION

The approach to solve the H2-norm minimization problem

(5) extends the exact solution method proposed in [11]. If

X(λ) is an exact solution of the equation

Go,1(λ)X(λ) = F̂1(λ)M(λ) (9)
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then

‖R(λ)‖2 = ‖F̂2(λ)M(λ)‖2

Note that the computed solution X(λ) is exact for the

original linear system provided F̂2(λ) = 0. Since Go,1(λ)
has full row rank, the corresponding compatibility condition

(6) for the equation (9) is fulfilled, and thus the system (9)

has a solution which can be made proper and stable by

appropriately selecting M(λ). The general solution of (9)

can be expressed as

X̂(λ) = X0(λ) + XN (λ)Y (λ), (10)

where X0(λ) is a particular solution of (9) and XN (λ) is

a rational basis matrix for the right nullspace of Go,1(λ).
The parametrization (10) of all H2-optimal solutions allows

to determine suitable Y (λ) leading to a solution of least

McMillan degree. The choice of M(λ) must guarantee that

X(λ) := X̂(λ)M(λ) is proper and stable and the residual

norm is finite. Therefore, we need to choose M(λ) to

additionally ensure that R̂(λ) := F̂2(λ)M(λ) is stable and

strictly proper in the continuous-time case, or stable and only

proper in the discrete-time case.

IV. COMPUTATION OF THE H∞-SOLUTION

To compute the H∞-solution we have to solve the two-

blocks minimal distance problem

γopt = inf

∥∥∥∥∥
[
Y (λ) − F̂1(λ)M(λ)

−F̂2(λ)M(λ)

]∥∥∥∥∥
∞

where we denoted Y (λ) := Go,1(λ)X(λ). In this phase

we assume that M(λ) has been chosen to ensure that the

above infimum exists. This implies that F̂1(λ)M(λ) and

F̂2(λ)M(λ) must be proper and have no poles on the

imaginary axis in a continuous-time setting or on the unit

circle in a discrete-time setting. Note that γopt can be easily

bounded as γl ≤ γopt ≤ γu, where

γl = ‖F̂2(λ)M(λ)‖∞, γu =

∥∥∥∥∥
[
F̂1(λ)M(λ)
F̂2(λ)M(λ)

]∥∥∥∥∥
∞

.

A standard approach to solve the above norm-

minimization problem is the well-known γ-iteration [12],

which allows to compute suboptimal solutions which are

arbitrarily close to the optimal one. For a given γ >
‖F̂2(λ)M(λ)‖∞ (e.g., γ = (γl + γu)/2), consider the

solution of the suboptimal problem∥∥∥∥∥
[
Y (λ) − F̂1(λ)M(λ)

−F̂2(λ)M(λ)

]∥∥∥∥∥
∞

≤ γ (11)

First we compute the left spectral factorization (see [8])

γ2I − M∗(λ)F̂ ∗
2 (λ)F̂2(λ)M(λ) = W ∗(λ)W (λ) (12)

where by construction, W (λ) is biproper, stable and

minimum-phase. Further, we compute the stable-unstable

additive decomposition

Ls(λ) + Lu(λ) = F̂2(λ)M(λ)W−1(λ) (13)

If γ > γopt, the two-blocks problem (11) is equivalent to

the one-block problem (see [12, Theorem 1, page 106])∥∥∥(
Y (λ) − F̂1(λ)M(λ)

)
W−1(λ)

∥∥∥
∞

≤ 1 (14)

and γH := ‖L∗
u(λ)‖H < 1 (‖ · ‖H denotes the Hankel norm

of a stable TFM). In this case we readjust γu = γ. Otherwise

(i.e., γH ≥ 1), we readjust γl = γ. Then, for γ = (γl+γu)/2
we redo the factorization (12) and decomposition (13). This

process is repeated until γu − γl ≤ ε (a given tolerance).

If γu ≥ γ > γopt, the stable solution of (14) can be

expressed as

Y (λ) = (Ls(λ) + Ys(λ))W (λ),

where, for 1 ≥ γ1 > γH , Ys(λ) is a stable solution of the

γ1-suboptimal Nehari problem

‖Ys(λ) − Lu(λ)‖∞ < γ1 (15)

The H∞-solution X(λ) is the exact least McMillan degree

solution of the linear rational equation

Go,1(λ)X(λ) = Y (λ) (16)

Since Go,1(λ) is only a quasi-outer factor, it can still have

zeros on the extended imaginary axis in a continuous-time

setting or on the unit circle in a discrete-time setting. In the

case when these zeros are not cancelled in the solution, the

resulting X(λ) can be replaced by X(λ)M̃(λ), where M̃(λ)
is chosen such that X(λ)M̃(λ is proper and stable, and the

norm condition (11) is still fulfilled when replacing Y (λ) by

Y (λ)M̃(λ). For example, to ensure properness, M̃(λ) can

be chosen diagonal with the diagonal terms of the form

M̃i(s) =
1

(τs + 1)ki
or M̃i(z) =

1
zki

for continuous- or discrete-time settings, respectively. Note

that these factors have unit H∞-norm.

V. NUMERICAL ISSUES

The high-level computations in terms of TFMs in the

proposed approaches can be performed via state-space mod-

els based reliable numerical computations. In what follows

we shortly discuss some of these techniques giving more

details on the basic computational step common to both H2

and H∞-approaches, namely, the computation of the exact

solution of a linear rational equation G(λ)X(λ) = F (λ).
1) Computation of inner-outer factorization: For the com-

putation of the quasi inner-outer factorization in continuous-

time, the algorithm developed in [13] can be employed.

This algorithm achieves basically a row compression of the

underlying G(s) and moves all unstable zeros into symmetric

positions with respect to the imaginary axis. In the discrete-

time case, a similar algorithm can be employed, with obvious

modifications to include the infinite zeros among the unstable

ones. In this case, the unstable zeros are reflected with

respect to the unit circle. For the determination of the full

discrete-time inner factor special formulas (see for example

[8]) are available. An implementation of both continuous-

and discrete-time algorithms is available in the Descriptor

Systems Toolbox for MATLAB [14].
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2) Computation of a particular solution X0(λ): Let as-

sume that the compound TFM [G(λ) F (λ) ] has a minimal

descriptor realization of the form

Eλx(t) = Ax(t) + BGu(t) + BF ν(t)
ξ(t) = Cx(t) + DGu(t) + DF ν(t) (17)

satisfying

[G(λ) F (λ) ] = C(λE −A)−1[BG BF ]+ [DG DF ] (18)

According to the system type, λ represents here either

the differential operator λx(t) = ẋ(t) in the case of a

continuous-time system or the advance operator λx(t) =
x(t + 1) in the case of a discrete-time system.

It is easy to see that X(λ) = [O Im ]Y (λ) is a solution

of G(λ)X(λ) = F (λ) if and only if Y (λ) satisfies[
A − λE BG

C DG

]
Y (λ) =

[
BF

DF

]
(19)

To solve (19), we isolate a full rank part of the pencil

SG(λ) :=
[

A − λE BG

C DG

]
by reducing it to a particular Kronecker-like form. Let Q and

Z be orthogonal matrices to reduce SG(λ) to the Kronecker-

like form

SG(λ) = QSG(λ)Z =
[
BrAr − λErAr,reg − λEr,reg

0 0 Areg − λEreg

]
,

where Areg − λEreg is a regular subpencil and the pair

(Ar − λEr, Br) is controllable with Er nonsingular. The

above reduction can be computed by employing numerically

stable algorithms as those proposed in [15], [16].

If Y (λ) is a solution of the reduced equation

SG(λ)Y (λ) = Q

[
BF

DF

]
(20)

then Y (λ) = ZY (λ) and thus

X(λ) =
[

O Im

]
ZY (λ)

is a solution of the equation G(λ)X(λ) = F (λ). Partition

Q

[ −BF

−DF

]
=

[
B1

B2

]
in accordance with the row structure of SG(λ).

In general we can determine Y (λ) of the form

Y (λ) =

⎡⎣ O
Y 2(λ)
Y 3(λ)

⎤⎦ ,

where the partitioning of Y (λ) corresponds to the column

partitioning of SG(λ). We obtain[
Y 2(λ)
Y 3(λ)

]
= (A − λE)−1

[
B1

B2

]
where

A − λE =
[
Ar − λErAr,reg − λEr,reg

0 Areg − λEreg

]

Let partition [O Im ]Z in accordance with the column

structure of SG(λ) as

[O Im ]Z = [Dr Cr Creg ] (21)

and denote

B =
[

B1

B2

]
, C = [Cr Creg ]

Then a particular solution X0(λ) of the equation

G(λ)X(λ) = F (λ) can be expressed in the form

X0(λ) = C(λE − A)−1B

This descriptor realization is generally non-minimal, since

poles-zeros cancellations can take place in the case G(λ) and

F (λ) share some common zeros. For a non-square G(λ), the

poles of X0(λ) also contains a set of freely assignable poles

(so called ”spurious” poles) which originate from the column

singularity of G(λ). For more details on the pole structure

of X0(λ) see [11].

3) Computation of the nullspace basis XN (λ): A right

nullspace basis XN (λ) of G(λ) can be computed from a

right nullspace basis Y N (λ) of SG(λ) as

XN (λ) = [O Im ]ZY N (λ)

From the Kronecker-like form SG(λ), we can determine

Y N (λ) in the form

Y N (λ) =

⎡⎣ I
(λEr − Ar)−1Br

O

⎤⎦ .

With Cr and Dr defined in (21), we obtain a descriptor

realization of XN (λ) as

XN (λ) = Cr(λEr − Ar)−1Br + Dr.

Note that XN (λ) is a proper TFM which has least McMil-

lan degree [17]. Moreover, the poles of XN (λ) are freely

assignable by appropriately choosing the transformation ma-

trices Q and Z to reduce the system pencil SG(λ).
4) Computation of least McMillan degree solution X̂(λ):

X0(λ) and XN (λ) can be set up to share the same state and

output matrices and have very particular input and feedtrough

matrices. To determine a least McMillan degree solution

X̂(λ) in the form (10), a suitable Y (λ) can be computed by

employing the technique proposed in [3] which extends the

approach of [18] to possibly non-proper particular solutions

X0(λ). The key computational ingredient is the minimal

cover algorithm for proper descriptor systems recently pro-

posed in [19].

5) Computation of filter specification M(λ): As a last

step, usually a diagonal filter specification M(λ) is deter-

mined such that X(λ) := X̂(λ)M(λ) is proper and stable.

The diagonal structure can be enforced by computing for

each column of X̂(λ) a stable and proper right coprime

factorization. Suitable algorithms for this purpose have been

proposed in [20]. Note that, we can determine M(λ) in

a factored form M(λ) = Mf (λ)Ms(λ), where Mf (λ) is

chosen to compensate the finite zero-pole excess in the
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solution X̂(λ), while Ms(λ) must cancel unstable poles

in each columns of X̂(λ). To have finite residuals in the

continuous-time case, Mf (λ) must be chosen to additionally

ensure that R(λ)M(s) is strictly proper. Note that this

condition is not required to be fulfilled in the discrete-time

case.

6) Left spectral factorization: For a stable and proper

F (λ), state-space formulas for both continuous- and discrete-

time settings are provided in [8] to compute a left spectral

factor W (λ) satisfying

γ2I − F ∗(λ)F (λ) = W ∗(λ)W (λ)

The underlying algorithm relies on solving appropriate Ric-

cati equations. If F (λ) is unstable but has no poles on the

imaginary axis in continuous-time or on the unit circle in

the discrete-time, a preliminary left coprime factorization

with inner denominator must be computed as F (λ) =
M−1(λ)N(λ), where both M(λ) and N(λ) are stable, and

M(λ) is inner (i.e., M∗(λ)M(λ) = I). Then, W (λ) can

be computed as above using N(λ) instead of G(λ). Suitable

algorithms to compute this factorization are proposed in [20].

Software implementations to compute spectral factorizations

are available in the HTOOLS Toolbox for MATLAB [21].

7) Solution of Nehari problem: To solve the suboptimal

Nehari problem, a state-space approach for a continuous-

time setting has been developed in [22]. For the discrete-

time setting, bilinear transformation can be employed by

converting the problem into a continuous-time one [22].

Software implementations are available in the HTOOLS

Toolbox for MATLAB [21].

VI. NUMERICAL EXAMPLE

The example used in this section is only intended to

illustrate the basic algorithms to solve linear rational equa-

tions in a least-squares sense. All computations have been

performed using tools available in the Descriptor Toolbox1

for MATLAB elaborated by the author [14]. Although state-

space representation based computations have been used in

all steps, we converted all intermediary results to a nicer

TFM form to allow a compact presentation.

Consider the rational system G(s)X(s) = F (s)M(s) with

G(s) =

⎡⎢⎣
s + 2

(s + 1)2
1

s + 1
1

s + 1
1

s + 2

⎤⎥⎦ , F (s) =

⎡⎣ s

s + 1
s

s + 3

⎤⎦
where a proper and stable solution X(s) has to be determined

by suitably choosing M(s). The matrix G(s) has rank 1

and the system is not compatible. Therefore we compute

solutions which minimize the H2- and H∞-norms of the

residual R(s) = G(s)X(s)−F (s)M(s). First we determine

1See http://www.robotic.dlr.de/˜varga/num/desctool.html for the contents
of current version V1.04c

the inner-outer factorization of G(s) in the form (8), where

[Gi,1(s) | Gi,2(s) ] =
√

2
2

⎡⎢⎢⎣ − s + 2
s +

√
5/2

−s + 1
s +

√
5/2

− s + 1
s +

√
5/2

s − 2
s +

√
5/2

⎤⎥⎥⎦
Go,1(s) =

√
2

[
−s +

√
5/2

(s + 1)2
− s +

√
5/2

(s + 1)(s + 2)

]
and compute

F̂1(s) = G∗
i,1(s)F (s) = −

√
2

2
s(s + 2.137)(s − 1.637)

(s + 3)(s + 1)(s − √
5/2)

F̂2(s) = G∗
i,2(s)F (s) = −

√
2

2
s

(s + 3)(s − √
5/2)

The H2-solution: A particular solution X0(s) of the

equation Go,1(s)X(s) = F̂1(λ) is

X0(s) =
0.5s(s + 1)(s + 2)(s + 2.137)(s − 1.637)
(s − √

5/2)(s +
√

5/2)(s + 1.5)(s + 3)

[
1
1

]
and a rational right nullspace basis XN (s) of Go,1(s) is

XN (s) =
√

2
2

⎡⎢⎣ s + 1
s + 1.5

− s + 2
s + 1.5

⎤⎥⎦
The particular solution X0(s) has McMillan degree 5 and we

can determine Y (s) such that X̂(λ) = X0(λ)+XN (λ)Y (λ)
has the least possible McMillan degree 4. An appropriate

proper Y (s) is

Y (s) = −
√

2
4

s(s + 2.137)(s − 1.637)
(s − √

5/2)(s +
√

5/2)(s + 3)

for which the corresponding solution of order 4 is

X̂(λ) =

⎡⎢⎢⎣
0.5s(s + 1)(s − 1.637)(s + 2.137)
(s − √

5/2)(s +
√

5/2)(s + 3)

−0.5s(s + 2)(s − 1.637)(s + 2.137)
(s − √

5/2)(s +
√

5/2)(s + 3)

⎤⎥⎥⎦
By choosing

M(s) =
s − √

5/2
(s + 1)(s + 2)

we get a proper and stable solution of order 3

X(s) =

⎡⎢⎢⎣
0.5s(s + 2.137)(s − 1.637)
(s +

√
5/2)(s + 2)(s + 3)

0.5s(s + 2.137)(s − 1.637)
(s +

√
5/2)(s + 1)(s + 3)

⎤⎥⎥⎦
Interestingly, with the above choice of M(s) we can directly

solve Go,1(s)X(s) = F̂1(s)M(s) and get an order 2 proper

and stable solution

X(s) =

⎡⎢⎢⎣
1.05s2 − 1.628s + 0.3216

(s +
√

5/2)(s + 3)
−0.05025s2 + 0.077865s − 0.6433

(s +
√

5/2)(s + 3)

⎤⎥⎥⎦
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The explanation of this fact is that the above choice of M(s)
leads to poles-zeros cancellations when forming F̂1(s)M(s),
thus the resulting particular solution X0(s) has a lower order

too. The H2-norm of the residual R(s) = F̂2(s)M(s) is in

both cases 0.0645.

The H∞-solution: With M(s) = I , the lower and upper

bounds for γ are γl = ‖F̂2(s)‖∞ = 0.1544 and γu =
‖F (s)‖∞ = 1.4142. After 10 iterations, we obtain γ =
0.1556 for which the spectral factor W (s) in (12) is

W (s) =
0.15558(s2 + 0.575s + 4.743)

(s + 3)(s +
√

5/2)

The stable-unstable additive decomposition (13) gives

Ls(s) =
−9.09s3 − 33.74s2 − 29.43s + 1.357

(s + 1)(s2 + 0.575s + 4.743)

Lu(s) =
0.4523

s − √
5/2

The solution of the Nehari problem (15) for γ1 =
1.01‖Lu(−s)‖H = 0.1445 is

Ys(s) =
−22.5

s + 158.9

Since Y (s) = (Ys(s)+Ls(s))W (s) is proper, while Go,1(s)
is strictly proper (having an infinite zero), the resulting

solution of (16) with M̃(s) = I will be improper. To obtain

a proper solution, we chose M̃(s) = 1/(0.1s+1) for which

the least order solution of (16) is

X(s) =

⎡⎢⎢⎣
5s4 + 822.6s3 + 2510s2 + 1654s − 37.88
(s +

√
5/2)(s + 10)(s + 3)(s + 158.9)

5s4 + 827.6s3 + 3328s2 + 3347s − 75.77
(s +

√
5/2)(s + 10)(s + 3)(s + 158.9)

⎤⎥⎥⎦
The resulting H∞-norm of the residual R(s) is 0.1510. A

second order approximation of X(s) obtained by using the

singular perturbation approximation approach [23] leads to

Xr(s) =

⎡⎢⎢⎣
5.088s2 + 5.944s − 0.1311

(s + 2.564)(s + 10.17)
5.064s2 + 11.36s − 0.2621

(s + 2.564)(s + 10.17)

⎤⎥⎥⎦
with a residual norm of 0.1511.

VII. CONCLUSIONS

We proposed general approaches to solve H2- or H∞-

norm optimal FDI filter design problems. The new ap-

proaches reformulate the filter design problems as equivalent

model matching problems for which algorithms are proposed

able to solve these problems in the most general setting.

In this way, the technical difficulties often encountered by

the existing methods when trying to reduce the approxi-

mation problems to standard H2- or H∞-norm synthesis

problems are completely avoided. For example, the presence

of zeros or poles on the boundary of stability domains or

problems with non-full rank and even improper transfer-

function matrices can be easily handled. The underlying main

computational algorithms are based on descriptor system rep-

resentations and rely on orthogonal matrix pencil reductions.

For all basic computations, reliable numerical software tools

are available for MATLAB in the Descriptor Systems Toolbox

[14] and HTOOLS Toolbox [21]. Prototype implementations

of the proposed methods are available and will be part of a

forthcoming Fault Detection Toolbox for MATLAB.
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