
An Extended Robust H infinity Filter for 
Nonlinear Uncertain Systems with Constraints 
Jaewon Seo, Member, IEEE, Myeong-Jong Yu, Chan Gook Park, Member, IEEE, and Jang Gyu Lee, 

Member, IEEE

Abstract— In this paper, a robust filter is proposed to 
effectively estimate the system states in the case where system
model uncertainties as well as disturbances are present. The
proposed robust filter is constructed based on the linear
approximation methods for a general nonlinear uncertain
system with an integral quadratic constraint. We also derive the 
important characteristic of the proposed filter, a modified H
performance index. Analysis results show that the proposed 
filter has robustness against disturbances such as process and 
measurement noises, and against parameter uncertainties. 
Simulation results show that the proposed filter effectively
improves the performance.

Index Terms— extended robust H filter, nonlinear
estimation, nonlinear uncertain system, robust estimation

I. INTRODUCTION

uring the last four decades, the Kalman filter and the extended
Kalman filter (EKF) have been widely used in the estimation
problems. They require not only a precise system model, but 

also the statistical property of the noise to achieve accurate 
performance. However, model uncertainty and incomplete statistical 
information are often encountered in real applications and make it
difficult to precisely estimate the system states, potentially leading
to very large estimation errors. These difficulties can be overcome
by studying a robust filter [1,2,3].

Recently, a robust filter has received considerable attention. It has
robustness against 1) unknown statistics of the noise processes, and
2) system model uncertainty. They can be categorized as H2 filters,
H filters, and mixed H2 / H  filters [4,5,6,7]. The H filter
minimizes the H norm of the transfer function between the noise
and the estimation error. Thus, the H filter is usually employed
when the energy of the system noise is bounded and the statistical

properties of the noise are unknown. This filter minimizes the 
highest energy gain of the estimation error for all initial conditions 
and noises. In particular, a robust H
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filter, a robust filter with a 
modified H performance, can be established for a system with 
model uncertainty as well as unknown statistical noise properties 
[3].

For a nonlinear system, an extended Kalman filter has been
widely used. For the design of the EKF, with the help of the Taylor
expansion, a nonlinear system is linearized and approximated. 
Therefore, when it is applied to a highly nonlinear system, excessive
estimation errors can occur. The EKF requires statistical information
about the noise inputs, e.g. whether or not they are white, what kinds
of probability density functions (PDFs) they have. In many cases, it
is not easy to obtain the information. Several studies on the 
nonlinear robust filter have been accomplished [3,8,9,10,15]. The
H nonlinear filter with Hamilton- Jacobi inequality (HJI) is one 
result of such studies, but its computation procedures for obtaining 
the filter are somewhat complicated [8]. To avoid complicated
computation procedures, an approximated solution to the robust
filtering problem has been recently developed based on a 
linearization method. The robust filter derived by this approach is 
called the extended robust filter or extended H filter [3,9]. In [10],
the nonlinear state estimation by an approximation is proposed for a
nonlinear system with uncertainties described by an integral
quadratic constraint (IQC). In that, a set-valued state estimation is
given firstly, and then a Kalman filter-like characterization of the 
set-valued state estimation is presented. That characterization makes
the estimator simple and familiar because its structure resembles that
of the EKF.

In this paper, a robust H filter for nonlinear uncertain systems
with an integral quadratic constraint is derived based on the 
approach of [10]. For the filter derivation, a set-valued state estimate
is introduced and it is approximated on the local solution. Then H
filter-like structure is established. The system has additive 
disturbance inputs, and the disturbances must satisfy the IQC. Then 
the performance index of the filter is proposed and analyzed.
Similarly, Zhang, et al., also proposed a robust H  filter for 
nonlinear uncertain systems in [8]. The robust filter is obtained by
solving a second-order nonlinear HJI. It has no constraint such as the
IQC for the disturbance inputs, but has multiplicative white noise. 
For a class of special nonlinear systems, a linear matrix
inequality-based algorithm is used for the robust filter design. It is 
much easier than the algorithm for HJI.

The paper consists of the following Sections. In Section 2, the 
problem to be solved is presented, and Section 3 derived the 
extended robust H  filter. The performance index for the proposed 
filter is derived in Section 4, and the example is given in Section 5. 
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The conclusion is in Section 6. 

II. PROBLEM FORMULATION

Consider a nonlinear uncertain system described by

1 1 2 0( ) ( ( )) ( ) ( ) ( ( )) ( ) ( )x t f x t B t t N x t B t w t    (1) 

2( ) ( ( )) ( ) ( ( )) ( )y t h x t t N x t v t0 .        (2)

In the above, ( ) nx t R is the state,  is the

measurement, and  and  are nonlinear system

dynamic and observation model, respectively, which are of class
with bounded first derivative.  and  are the process and 
measurement noises, and their statistical properties are unknown. 

 and  represent the system

model uncertainties.  and are known matrices. 

 and  are unknown matrices satisfying the condition 

( ) my t R

( ( ))f x t ( ( ))h x t
1C

0 ( )w t 0 ( )v t

1 1( ) ( ) ( ( ))B t t N x t 2 ( ) ( ( ))t N x t

1( )B t ( ( ))N x t

1( )t 2 ( )t
1/ 2

1 1
1/ 2

1 2

( )
1

( )
Q t
R t

where  and  are bounded positive definite matrices.1Q 1R
By converting the uncertainties to the fictitious noises and

introducing a freedom parameter, the uncertain system (1) and (2) 
can be transformed into, 

( ) ( ( )) ( ) ( )x t f x t B t w t            (3)

( ) ( ( )) ( )y t h x t v t              (4)

where 1 2( ) ( ) ( )B t B t B t , ,

, , and 

1( ) ( ( ))n t N x t

1

0

( ) ( ( ))
( )

( )
t n x t

w t
w t

2

0

( ) ( ( ))
( )

( )
t n x t

v t I I
v t

is a free parameter. For the nonlinear uncertain system (3) and (4), 
we will design a robust filter which has an H  filter-like structure. 
The filter output is of the form

( ( )) ( ( ) ( )) ( ( ))
TTz x t L t x t n t T         (5)

where is a given positive real value that indirectly indicates
the level of noise attenuation in this robust filter design. 

For the nonlinear uncertain system, suppose that the following
constraint is satisfied [10,11].

1 20 0
( (0)) ( , ) ( , )

T T
x L w v dt d L n z dt      (6)

where  and is an assigned positive real number. For
the system (3)-(5) and the constraint (6), the following assumptions 
are required. [10]

0 t T d

Assumption 1: Every function shown in (3)-(6) belongs to
and the first derivative is bounded. 

1C

Assumption 2: The matrix  is bounded. ( ( ))N x t

Assumption 3: The functions , 1L , and 2L  are bounded
nonnegative functions. They also satisfy

2 1 2 1 2( ) ( ) (1 ) 1x x x x x x       (7)

where 0  and , 1L , or 2L .

Assumption 4: The function  satisfies a coercivity condition, 1L

2
1( , )L w v c w  where .0c

III. EXTENDED ROBUST H FILTER

In this section, an extended robust H  filter based on a local 
solution of the filtering problem is derived by linearizing the system
in the neighborhood of the estimated trajectory, x̂ . This approach 
for the extended robust H  filter is similar to that of [10]. Through 
this approach, an H  filter-like characterization of a set-valued state
estimation is obtained. 

Theorem 1[10] : Assume that the uncertain system (3), (4) with 
(6) satisfies Assumptions 1~4. Then, the corresponding set of
possible states is given by

{ : ( , )n
s }x R V x s d

where is the unique viscosity solution of (8) in 

.

( , )V x t

( [0, ]nC R s )

1 2

max[ ( ( ) )

( , ) ( ( ), ( ))] 0

xw
V V f x B

t
L w v L n x z x

w
         (8)

where ( ,0) ( (0))V x x . Assumptions 1~4 ensure that 

 is finite [12].( , )V x t
Based on the Theorem 1, the extended robust H  filter will be 

derived. We assume that there exist bounded positive definite M ,
, and R such that the following IQC holds for the nonlinear 

uncertain system (3) and (4); 
Q

0 0

1 1

0

2
1 10

( (0) ) ( (0) )
1 [ ( ) ( ) ( ) ( )]
2

1 [ ( ) (
2

T

T T T

T T T

x x M x x

w t Q w t v t R v t dt

d n n z z z z)]dt

      (9)

where 1 ˆ( )z z x .
According to the Theorem 1 and equation (9), the partial 

differential equation is obtained as 

1

2
1 1

1( )
2

1 1( ( )) ( ( )) ( ) (
2 2
1 ( ( )) ( ( )) 0
2

T T
x x x

T T

T

V Vf x VBQB V
t

y h x R y h x n x n x

z z x z z x

)    (10) 

where .0 0( ,0) ( (0) ) ( (0) )TV x x x M x x
An estimate of the state variable is defined to be 
ˆ( ) arg min ( , )

x
x t V x t             (11)

which satisfies two conditions: 
ˆ( ( ), ) 0xV x t t               (12)

2 ˆ ˆ ˆ( ( ), ) ( ) ( ( ), ) 0T
x xV x t t x t V x t t

t
.      (13)

The gradient of (10) with respect to x  is given by
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2

2 1

2
1

( )

( ) ( ) ( ( ))

( ) ( ) ( ) ( ( )) 0

T T T T
x x x x x

T
x x

T T
x x

V f x V VBQB V
t

Vf x h x R y h x

n x n x z x z z x

T

   (14) 

Using (12) and (13), and evaluating at ˆx x , (14) is simplified
as

2 2

1

2
1

ˆ ˆ ˆ ˆ( , ) ( ) ( , ) ( ( ))
ˆ ˆ( ( )) ( ( ( )))
ˆ ˆ ˆ ˆ( ( )) ( ( )) ( ( )) ( ( ( )))

x x

T
x

T T
x x

V x t x t V x t f x t

h x t R y h x t

n x t n x t z x t z z x t

(15)

Furthermore, provided that the matrix  is nonsingular
for all t , the dynamic equation of state estimate satisfying (11) can 
be written as 

2 ˆ( , )xV x t

2 1

1

ˆ ˆ ˆ( ) ( ( )) ( ( ( ), ))
ˆ ˆ ˆ[ ( ( )) ( ( ( ))) ( ( )) ( ( ))].

x

T T
x x

x t f x t V x t t

h x t R y h x t n x t n x tˆ
(16)

In addition, the gradient of (14) with respect to x is expressed as 

2 2 2

2 3 3

2 2 1

2 1 2
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1

2

( ) ( )

( ) ( )

( ) ( )

( ) ( ( )) ( ) ( )

( ) ( ) ( ) ( ( ))
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T T T T
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T T
x x x x x

T T
x x x x

T T
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T T
x x x

T
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V f x V f x V
t

V f x Vf x VBQB V

VBQB V h x R h x

h x R y h x n x n x

n x n x z x z z x

z x z x

   (17) 

Using (12) and (13), evaluating at ˆx x , and neglecting high 
order gradient terms, (17) is reduced to the approximated equation 
(18)

T T

T 1 T

2 T

ˆ ˆ ( ) ( )
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

ˆ ˆ( ) ( ) 0

x x

x x x x

x x

f x f x BQB

h x R h x n x n x

z x z x

   (18) 

where  and 2
xV (0) M . From (18), a differential 

equation for  is given as 1( ) ( )P t t

1

2

ˆ ˆ( ) ( ) ( ) ( ) ( )
ˆ ˆ ˆ( )[ ( ) ( ) ( ) ( )

ˆ ˆ( ) ( )] ( ).

T T
x x

T
x x x x

T
x x

P t P t f x f x P t BQB

P t h x R h x n x n x

z x z x P t

ˆT    (19) 

From these results, an extended robust H  filter can be 
summarized as

1

2

ˆ ˆ ˆ ˆ( ) ( ( )) ( ) ( ( )) ( ( ( )))
ˆ ˆ( ) ( ( )) ( ( ))

T
x

T
x

x t f x t P t h x t R y h x t

P t N x t N x t
  (20) 

ˆ ˆ ˆ( ( )) ( ( ) ( )) ( ( ( )))
T

Tz x t L t x t N x t T      (21)

2
1 1 1

1
2 2 2

2 2

ˆ ˆ( ) ( ) ( ) ( ) ( )
ˆ ˆ( )[ ( ) ( )

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )] ( )

T T
x x

T T
x x

T T
x x x x

P t P t f x f x P t B Q B

B Q B P t h x R h x

N x N x z x z x P t

  (22) 

where ,1(0) (0)P M 0ˆ(0)x x , and M is a matrix which 

reflects the initial errors of the estimate. The extended robust H
filter exists if and only if the Riccati differential equation (22) has a
solution. Although (22) is a partial differential equation, it can be 
regarded as a problem of the ordinary differential equation because
it is enough to solve the differential equation with respect to only ,
not

t
x , for the filter design. 

Without  and  in 
(20) and (22), the proposed filter has the structure of the extended 
H

2 ˆ( ) ( ) ( )T
xP t N x N x̂

ˆ

2 ˆ ˆ( ) ( )T
x xN x N x

 filter. In addition, if in (22) is omitted, it 
reverts to the extended Kalman filter. Therefore, the proposed filter
has the structure of an extended Kalman filter but with (21) and 
slight modifications in (20) and (22). However, by virtue of (21) and 
the added terms, this filter can have modified H

2 ˆ( ) ( )T
x xz x z x

 performance index, 
as shown in the next section. 

IV. ANALYSIS OF EXTENDED ROBUST H FILTER

In this section, the performances of the filter proposed in section 3
are analyzed. We will derive a modified H  performance index, 
which is the energy ratio between the disturbances and the 
estimation error. It is an important characteristic of the filter. 

The estimation error is defined as 
ˆ( ) ( ) ( )t x t x t               (23)

and the dynamic equation of the estimation error ( )t  is 
expressed as 

( ) ( ( ) ( ) ( )) ( ) ( ) ( )
ˆ ˆ ˆ( ) ( ( )) ( ( )) ( ( ), ( ))

ˆ( ) ( ( ), ( )) ( ) ( )

T
x

t A t K t C t t B t w t

P t n x t n x t x t x t

K t x t x t K t v t

     (24)

where ˆ( ) ( ( ))f
A t x

x
t , ˆ( ) ( ( ))h

C t x t
x

, and 

1( ) ( ) ( )TK t P t C t R . Nonlinear functions ˆ( ( ), ( ))x t x t  and 

ˆ( ( ), ( ))x t x t  are defined as 

ˆ ˆ( ( )) ( ( )) ( )( ( ) ( )) ( ( ), ( ))ˆf x t f x t A t x t x t x t x t
ˆ ˆ( ( )) ( ( )) ( )( ( ) ( )) ( ( ), ( ))h x t h x t C t x t x t x t x tˆ .

ˆ( ( ), ( ))x t x t  and ˆ( ( ), ( ))x t x t are higher order terms in the
Taylor expansion.

We require Assumptions 5~7. 
Assumption 5: The matrix  is bounded by( )L t

1 2( ) ( ) ,Tl I L t L t l I t

where  and  are positive real numbers.1l 2l

Assumption 6: .1 1( ) ( ( )) ( ) ( )n t N x t N t x t

Assumption 7: There exist positive real numbers, , ,k ,  and 

k , to bound the nonlinear terms ˆ( ( ), ( ))x t x t  and ˆ( ( ), ( ))x t x t
as follows: 

2ˆ ˆ( ( ), ( )) ( ) ( )x t x t k x t x t , ,
2ˆ ˆ( ( ), ( )) ( ) ( )x t x t k x t x t , .

Lemma 1 [13]: Suppose that Assumption 1 and Assumption 7 are
satisfied. For an estimation error 1 , there exists a real scalar
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k  such that 
1

3

ˆ ˆ( ( ) ( )) ( ) [ ( ( ), ( )) ( ( ), ( ))]

ˆ( ) ( )

T ˆx t x t P t x t x t K x t x t

k x t x t
(25)

where 1 min( , ) , 2

1

k c k
k

p r
, 2( )C t c ,

1P p I , and .rI R

Proof: Applying the triangular inequality, 1TK PC R  yields
for 1ˆ( ) ( )x t x t  with 1 min( , ) :

1

1

1

1

ˆ ˆ( ( ) ( )) ( ) ( ( ), ( ))

ˆ ˆ( ( ) ( )) ( ) ( ( ), ( ))

ˆ ˆ( ( ) ( )) ( ) ( ( ), ( ))

ˆ ˆ( ( ) ( )) ( ( ), ( )) .

T

T

T

T T

x t x t P t x t x t

x t x t P t K x t x t

x t x t P t x t x t

x t x t C R x t x t

With Assumption 7, 1P p I , 2C c , and , we obtainrI R
1

1

2

1

22

ˆ ˆ( ( ) ( )) ( ) ( ( ), ( ))

ˆ ˆ( ( ) ( )) ( ) ( ( ), ( ))

ˆ ˆ( ) ( ) ( ) ( )

ˆ ˆ( ) ( ) ( ) ( )

T

T

x t x t P t x t x t

x t x t P t K x t x t

k
x t x t x t x t

p

c k
x t x t x t x t

r
And equation (25) follows immediately with 

2

1

k c k
k

p r
.

The above lemma will be used for derivation of the performance
index. By the inequality, the performance index will be bounded. 

Suppose that a Lyapunov function is chosen as 
1( ( )) ( ) ( ) ( )TV t t P t t           (26)

where ( )P t is the solution of (22). Differentiating ( ( ))V t
over time yields

1

1 1

( ( )) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ).

T

T T

V t t P t t

t P t t t P t t
      (27)

Substituting (22) and (24) in (27), it is easy to show that (27) 
becomes

2

1 1 1

1 2

( ( )) ( ) [ ( ) ( )] ( )
2 ( ) ( )

ˆ2( ( ) ) ( ) ( ) { ( ) [ 2 ( ( ))
ˆ ˆ ˆ( ( ))] ( ) ( ) ( ( )) ( ( ))

ˆ ˆ( ( ( )) ( ( ))) ( )}

T T T

T T T T

T T
x

T T
x x

T T
x

V t t L t L t t w Q w

s s v R v R P t t

1

TK t P t t t N x t

N x t t t N x t N x t

N x t N x t t

(28)

where
1 1

12 2( ( ) ) ( ) ( )Ts Q w B t Q P t t ,
1 1
2 2

T
Q Q Q ,

( ) ( )v C t t , and 
1 1
2 2

T
R R R .

Utilizing the Assumption 6 and the triangle inequality property,
(28) can be expressed as 

2 1

1 1

2

( ( )) ( ) [ ( ) ( )] ( )
2 ( ) ( ) 2( ( ) ) ( ) (

ˆ ˆ( ( )) ( ( )).

T T T

T T T

T

V t t L t L t t w Q w

v R v P t t K t P t t

N x t N x t

1 )   (29) 

Applying Lemma 1 to (29), we obtain the following inequality,
32

1 1 2

( ( )) ( ) [ ( ) ( )] ( ) 2 ( )

ˆ ˆ( ( )) ( ( ))

T T

T T T

V t t L t L t t k t

w Q w v R v N x t N x t
 (30) 

Because 1 ( ) ( )Tl I L t L t l I2 from Assumption 5, (30) 
can be modified to 

32 1
1

1 2

2 32 1
1

1 2

2
2 1 11

2

( ( )) ( ) ( ) 2 ( )

ˆ ˆ( ( )) ( ( ))

( ) 2 ( )

ˆ ˆ( ( )) ( ( ))

( )
2

ˆ ˆ( ( )) ( ( ))

T T

T T

T

T T

T T

T

V t l t t k t w Q w

v R v N x t N x t

l t k t w Q w

v R v N x t N x t

l
t w Q w v R v

N x t N x t

  (31) 

provided that the estimate errors satisfy 2( )t  where 
2

1
2 1min( , )

4
l

k
. Using that 

2

1 ( ) ( )TL t L t I
l

, following 

is obtained. 
2

11

2
1 2

( ( )) ( ) [ ( ) ( )] ( )
2

ˆ ˆ( ( )) ( ( ))

T T T

T T

l
V t t L t L t t w Q w

l

v R v N x t N x t

  (32) 

By integrating both sides of (32), the modified H  performance 
index J  of the derived filter is expressed as 

1 1 2

2

2
2 2 2 1
2 2 2

2 1 2

( ) (0) (0) (0)T
Q R

t

L
J

w v N x P  (33) 

where 1

22
l
l

. The performance index J of the filter is less 

than 2
t . As is less than 1 , the new value t is always greater 

than . t is not only an index of disturbance attenuation level, but 
also an important parameter describing filter’s estimation ability in 
the worst case. Decreasing t means that robustness of the filter 
increases. Equation (33) shows that the proposed filter guarantees
robustness against the noises including the process noise and the 
measurement noise, and against the system model uncertainty. On
the contrary, when the extended Kalman filter or the H2 filter is 
applied to the nonlinear system, the performance index (33) cannot 
be defined since the value of is infinity. Therefore they cannot 
guarantee robustness against the noises and the uncertainty, and they
cannot have the effect of disturbance attenuation. 

V. EXAMPLE

To verify the performance of the proposed filter, an FM
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demodulation problem is considered. For the FM demodulation 
problem, the extended Kalman filter is commonly applied [14]. In 
this paper, a modified version of the problem examined in [10] is
considered with an integral quadratic constraint as followings: 

0

1 ( ) 0 ( ) 1( ) ( )
1 0 ( ) 0( )

t tt
w t

tt
    (34)

( ) 2 sin( ( )) ( )y t t t v t          (35)

where ( ) 1t  and
100 2 2

00

100 2 2 2 2 2 2

0

[50 ( ) 100 ( ) ]

110 [ ( ) ( ) ( ) ] .
2

w t v t dt

t t t dt
(36)

The initial conditions of the system (34) are assumed to be known
as (0) 0  and (0) 0 . For the extended robust H filer, the 
filter output is designed to be 

1

( )
( ) ( )

( )

t

z t t
t

.

The variable ( )t is the signal to be estimated and  is the

measured FM signal. In this simulation, is chosen from a 

white Gaussian noise distribution and is chosen from a 
uniform distribution. The intensity of the noises is adjusted to satisfy
the constraint (36). Note that the disturbance signal  is not
white Gaussian noise.

( )y t

0 ( )w t

( )v t

( )v t
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Fig. 1. Results of the proposed filter 
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Fig. 2. Results of the extended Kalman filer 

The result of the simulation is shown in Fig. 1 for ( )t  with true
trajectory. The result of the proposed filter is somewhat noisy, but it
is tracking the true trajectory. For the comparison, the result of the 
extended Kalman filter for the same nonlinear uncertain system is
also shown in Fig. 2. The estimation result of the extended Kalman
filter has large errors and can be considered to be divergent.

In this example, since ( )L t is identity matrix, the largest  and 

the smallest in Assumption 5 can be unity. Therefore, the largest
1l

2l
in (33) is 0.5 and the smallest modified H  performance index is 

two times as large as the given 2 which is used to design the filter.
The modified performance index of the proposed filter is 1.5 for

in this example. That means the energy gain from the
disturbances to the estimation errors is bounded by 1.5. Compared 
with the result of [10], although the improvements are alike, the 
proposed filter guarantees the upper bound of the energy gain by
analytic method. 

2 0.75

VI. CONCLUSION

The extended robust H filter has been proposed. For a nonlinear
uncertain system with an integral quadratic constraint, it has been
derived by introducing the notion of a set-valued state estimate and a
local solution to the filtering problem. The proposed filter possesses
the modified H performance index. Thus, we can guarantee a 
bounded energy gain from disturbances to estimation errors of the 
proposed filter, and on the other hand, for the prespecified level of 
energy gain, we can design the extended robust H  filter if the
Riccati differential equation has a solution. The simulation results
for an FM demodulation have shown that the proposed filter is 
robust to the uncertainty and can yield more accurate results than the 
extended Kalman filter.
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