
Nonblocking Directed Control of Discrete Event Systems

Jing Huang and Ratnesh Kumar

Department of Electrical and Computer Engineering

Iowa State University, Ames, Iowa 50011

Abstract— We introduce the notion of directed control, where
a directed controller, simply referred as director, is one that
selects at most one controllable event to be enabled at any
instant. This is in contrast to supervisory control, where a
supervisory controller, simply referred as supervisor, enables
a maximum allowable set of controllable events at any instant,
i.e., no specific selection for executing an enabled event is made.
While a supervisor design is meaningful for plants that are
generator of controllable events, a director design makes more
sense for plants that are executor of controllable events. In
this paper we prove that a nonblocking director exists if and
only if a nonblocking supervisor exists, thereby proving the
polynomiality of verifying existence. We also develop a set of
algorithms of polynomial complexity to compute a nonblocking
director.

Index Terms— discrete event system, directed control, direc-
tor, supervisory control, supervisor, nonblocking, uncontrollable
disturbance input, uncontrollable sensor output, maximally
permissive supervisor, automata

I. INTRODUCTION

Most prior work on logical control of discrete event

systems deals with supervisory control [6], [4], [2], a goal

of which is to enforce a given specification by minimally

restricting the behavior of a given discrete event system

(called plant). In a transportation system, for example, a

supervisory control action will specify a maximal set of

permissible routes for a vehicle. However, what is more

appropriate is a directed control action commanding the

vehicle to follow a specific route. So for systems that are

executor of events, it is more meaningful to issue a command

consisting of a single possible controllable event, rather than

a set of controllable events as issued by a supervisor.

In [1], an antenna rotor control system (ARCS) has

been designed where a controller enforces the given safety,

liveness, and real-time control constraints, while selecting a

single controllable event at each state of the system. The

controllable event is selected from the ones allowed by a

maximally permissive supervisor. This selection, however,

is done on an ad hoc basis. Similar ad hoc selection of

controllable event is made in another application consisting

of an educational assembly line [3].

While it is possible to arbitrarily select one of the con-

trollable events among the ones enabled by a supervisor to

“extract” a director, such an ad hoc selection can lead to

blocking. For example, consider a plant under the control of

This work was supported in part by the National Science Foundation
under the grants NSF-ECS-0218207, NSF-ECS-0244732, NSF-EPNES-
0323379, NSF-0424048 and a DoD-EPSCoR grant through the Office of
Naval Research under the grant N000140110621.

1 32

(a) Supervised Plant

(b) Blocking Directed Plant

1 32

(c) Nonblocking Directed Plant

1 32

Fig. 1. From Supervisor to Director

a supervisor shown in Figure 1(a). An arbitrary disablement

of all but one controllable event to obtain a director may

result in blocking, as shown in Figure 1(b). On the other

hand, another way of disabling all but one controllable event

results in a nonblocking director, as shown in Figure 1(c).

Thus it is clear that one needs an algorithmic approach to

search for a director. A contribution of the paper is to provide

a polynomial complexity algorithm to obtain a nonblocking

director. We also show that a nonblocking director exists if

and only if a nonblocking supervisor exists, i.e., existence

and synthesis are both polynomially solvable. (Recall that

existence of a nonblocking supervisor is polynomially veri-

fiable.)

The remainder of this paper is organized as follows.

Section II gives the basic notation and preliminaries. Section

III introduces the notion of directed control. Section IV

presents an existence condition of a nonblocking director.

Section V presents an algorithm to compute a nonblocking

director, along with some examples to aid the understanding

of the approach, while Section VI concludes the paper. An

appendix is provided containing some relevant algorithms.

II. NOTATION AND PRELIMINARIES

A DES to be controlled, called plant, is modeled as an

automaton, denoted by a five tuple G := (X, Σ, α, x0, Xm),
where X denotes the set of states, Σ denotes the finite set

of events, α : X × Σ → X denotes the partial deterministic

state transition function, x0 ∈ X denotes the initial state,

and Xm ⊆ X denotes the set of marked states. Σ∗ is used

to denote set of all finite-length sequences of events, called

traces, which include the zero-length trace ε. A subset of Σ∗

is called a language. The generated language of G, denoted

as L(G) ⊆ Σ∗, contains all traces s for which α(x0, s)
is defined. The marked language of G, denoted as Lm(G),
contains all traces t ∈ L(G) such that α(x0, t) ∈ Xm. For

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

ThIB19.3

0-7803-9568-9/05/$20.00 ©2005 IEEE 7627

x ∈ X , we use Σ(x) ⊆ Σ to denote the set of events defined

at x, i.e., Σ(x) := {σ ∈ Σ | α(x, σ) is defined}. We use

K\s to denote the set of traces that can occur in the language

K after the trace s has occurred, i.e., K\s := {t ∈ Σ∗ | st ∈
K}. For traces s and t, we use s ≤ t to denote that s is a

prefix of t and s < t to denote that s is a proper prefix of t.
For control purposes, the event set of G is partitioned

into the set of controllable events Σc ⊆ Σ and the set of

uncontrollable events Σu ⊆ Σ. An uncontrollable event can

be either a disturbance input or a sensor output. Occurrence

of a disturbance input is uncertain while that of a sensor

output is something expected. The set of uncontrollable

events that are disturbance inputs is denoted as Σd ⊆ Σu.

A supervisory controller is a map S : L(G) → 2Σ−Σu

that determines the set of events S(s) ⊆ (Σ − Σu) to be

disabled after the occurrence of a trace s ∈ L(G). Events

not belonging to the set S(s) remain enabled at trace s. In

particular, the uncontrollable events remain enabled.

III. NOTION OF DIRECTED CONTROL

A director enables at most one controllable event at each

state. This control selection is what distinguishes a director

from a supervisor. A useful class of directors consists of

those that enable exactly one controllable event following

certain plant traces. These traces are candidates for control

(i.e., one or more controllable events are executable in

the next step) and all executable uncontrollable events are

disturbance inputs. For such traces, disabling all controllable

events is not a desirable option since this will make the

controlled system either wait for a disturbance input to occur

before evolving further, or idle forever if no disturbance input

is feasible.

Definition 1: A trace s ∈ L(G) is a control-candidate if

L(G)\s∩Σc �= ∅; it is called a disturbance trace if L(G)\s∩
Σu ⊆ Σd. We represent the set of all control-candidate traces

that are also disturbance traces as LCD(G) ⊆ L(G), i.e.,

LCD(G) := {s ∈ L(G) | L(G)\s ∩ Σc �= ∅ and

L(G)\s ∩ Σu ⊆ Σd}.
Then a director is a map D : L(G) → 2Σc such that

∀s ∈ L(G) : |D(s)| ≤ 1 and ∀s ∈ LCD(G) : |D(s)| = 1.

The set of events enabled by such a director following a trace

s ∈ L(G) is given by D(s) ∪ Σu. After the execution of a

trace s ∈ L(G), the director enables at most one controllable

event unless s ∈ LCD(G), in which case the director enables

exactly one controllable event. Also note that no control

decision is defined with respect to uncontrollable events;

such events remain enabled.

The directed plant is denoted by GD, and the languages

generated and marked by the directed plant are denoted

by L(GD) and Lm(GD) respectively, which are defined as

follows:

ε ∈ L(GD);
[s ∈ L(GD), σ ∈ D(s)∪Σu, sσ ∈ L(G)] ⇔ [sσ ∈

L(GD)];
Lm(GD) := L(GD) ∩ Lm(G).

It is clear that pr(Lm(GD)) ⊆ L(GD). A director D is

said to be nonblocking if pr(Lm(GD)) = L(GD).
For simplicity, we will consider state-based specification

and control. It is known that a language-based specification

(resp. control) can be converted to a state-based specification

(resp. control) on a suitably refined plant model. A state-

based specification is given using a set of illegal states Xi ⊆
X that must never be visited, whereas a director D is state-

based if it computes control action as a function of plant

state, i.e., D : X → 2Σc .

Definition 2: A state x ∈ X is said to be a control-

candidate if it has at least one controllable event defined;

it is called a disturbance state if all uncontrollable events

defined at the state are disturbance inputs. We represent the

set of all control-candidate states that are also disturbance

states as XCD ⊆ X , i.e.,

XCD := {x ∈ X | Σ(x) ∩ Σc �= ∅ and

Σ(x) ∩ Σu ⊆ Σd}.
Then a state-based director is a map D : X → 2Σc such that

∀x ∈ X : |D(x)| ≤ 1 and ∀x ∈ XCD : |D(x)| = 1.

Under the control of a state-based director D, the controlled

plant is a subgraph of the plant graph,

GD := (X, Σ, αD, x0, Xm),

where the state-transition function αD(x, σ) is defined as

follows.

αD(x, σ) :={
α(x, σ) if σ ∈ D(x) ∪ Σu and α(x, σ) is defined

undefined otherwise

For a state-based director to be nonblocking, the following

must hold: if x ∈ X is such that there exists s ∈ Σ∗

with αD(x0, s) = x, then there exists t ∈ Σ∗ such that

αD(x0, st) ∈ Xm.

Definition 3: Given a plant G := (X, Σ, α, x0, Xm), a

component (X̂, α̂) of G is a subgraph of G satisfying X̂ ⊆ X
and α̂ ⊆ α|X̂ .

The set of all possible directors for a component (X̂, α̂)
is denoted as D(X̂, α̂).

Central to our algorithm for synthesizing a nonblocking

director is the observation that any given graph, includ-

ing a controlled plant graph, can be partitioned into a

set of strongly-connected components (SCCs), over which

the given graph possesses a tree structure. In case of a

directed plant graph, the leaf nodes of such a tree must

be strongly-connected, legal, invariant, nonblocking and

control-consistent components (SLINCs) while the non-

leaf nodes must be strongly-connected, legal, SLINC-

attractable and control-consistent components (SLACs).

These notions are formalized in the following.

Definition 4: A component (X̂, α̂) is called

7628

1) strongly-connected if there exists a path lying entirely

within the component between any pair of states of the

component, i.e.,

∀x1, x2 ∈ X̂ , ∃s ∈ Σ∗ s.t. α̂(x1, s) = x2 and

∀t ≤ s : α̂(x1, t) ∈ X̂.

2) legal if there is no illegal state inside the component,

i.e.,

X̂ ∩ Xi = ∅.
3) control-consistent if there is at most one controllable

event defined at each state and exactly one controllable

event defined at each control-candidate state that is also

a disturbance state, i.e.,

∀x ∈ X̂ : |Σα̂
c (x)| ≤ 1 and

∀x ∈ X̂ ∩ XCD : |Σα̂
c (x)| = 1

where Σα̂
c (x) = {σ ∈ Σc | α̂(x, σ) is defined}.

4) nonblocking if from any state of the component, a

marked state can be reached within the component,

i.e.,

∀x ∈ X̂ , ∃s ∈ Σ∗ s.t. α̂(x, s) ∈ Xm and

∀t ≤ s : α̂(x, t) ∈ X̂.

5) invariant if the state transitions of (X̂, α̂) can be

confined within X̂ under directed control, i.e.,

α̂(X̂, Σu) ⊆ X̂ and

∀x ∈ X̂ ∩ XCD : α̂(x,Σc) ∩ X̂ �= ∅.
Otherwise, the component is called variant. We repre-

sent the set of states in X̂ violating any of the above

conditions, i.e. the set of variant states, as V (X̂, α̂) ⊆
X̂ .

6) Xr-attractable, where Xr is a reference state set, if

there exists a component (X̃, α̃) ⊇ (X̂, α̂) such that

every state of (X̃, α̃) can reach a state of Xr over

transitions within X̃ ∪ Xr, and the state transitions of

(X̃, α̃) can be confined within X̃ ∪Xr under directed

control, i.e.,

a) ∀x∈ X̃, ∃s∈Σ∗ such that α̃(x, s) ∈ Xr & ∀t <
s : α̃(x, t) ∈ X̃ , and

b) α̃(X̃, Σu) ⊆ X̃ ∪ Xr, and

c) ∀x ∈ X̃ ∩ XCD : α̃(x,Σc) ∩ [X̃ ∪ Xr] �= ∅.
In case (X̃, α̃) can be chosen as the component (X̂, α̂)
itself, (X̂, α̂) is said to be singularly Xr-attractable.

Also, the notion U((X̂, α̂), Xr) ⊆ X̂ is used to denote

the set of states in X̂ violating any of the 3 conditions

in the definition of singular Xr-attractability.

Definition 5: Given a component (X̂, α̂) and a reference

state set Xr ⊆ X , we represent the set of maximal sub-

components of (X̂, α̂) that are

1) strongly-connected as, S(X̂, α̂);
2) strongly-connected, legal, invariant and nonblocking

as, SLIN (X̂, α̂);

3) strongly-connected, legal and singularly Xr-
attractable as, SLA((X̂, α̂), Xr).

Algorithmic computation of S(X̂, α̂) is well-known (and

so not presented in the paper); the algorithms to compute

SLIN (X̂, α̂) and SLA((X̂, α̂), Xr) are presented in the

Appendix for reference.

IV. EXISTENCE OF DIRECTED CONTROLLER

Given a plant G := (X, Σ, α, x0, Xm), the control goal

is to find a state-based nonblocking director D : X →
2Σc such that illegal states are never visited. It turns out

that the existence of such a director can be determined by

checking the existence of a nonblocking supervisor. Since

a nonblocking supervisor exists if and only if a maximally

permissive nonblocking supervisor exists [6], we first present

an algorithm to compute such a supervisor, taken from [5].

Again the central idea is that the graph of a maximally

permissive nonblocking supervised plant is partitionable into

SCCs, over which it possesses a tree-structure (see Figure

2(a)). The leaf nodes of the tree are SCCs that are legal,

invariant and nonblocking. Other SCCs are legal and at-

tractable to leaf nodes.

The algorithm first identifies strongly-connected, legal,

invariant and nonblocking components (SLINs) as the leaf

nodes, and then iteratively searches backwards to identify

strongly-connected, legal and SLIN -attractable components

(SLAs) for non-leaf nodes. The iterative backward search

terminates when either the root node (i.e., a SLA containing

the initial state) is found, or no further SLAs can be added

as nodes to the tree. In the former case, a nonblocking

supervisor exists, whereas in the latter case, a nonblocking

supervisor does not exist.

Algorithm 1: Given a plant graph (X, α) containing some

marked and illegal states, the following steps computes a

maximally permissive nonblocking supervisor [5].

1) Compute SLIN (X,α). Let X0 denote the set of states

of all those components; k = 0.

2) a) Compute singularly Xk-attractable region in the

remainder of the plant, i.e., compute SLA((X −
Xk, α|X−Xk

), Xk); Let X̃ denote the set of states

of all those components.

b) Augment Xk with X̃ to get Xk+1, i.e., Xk+1 =
Xk ∪ X̃ .

3) Repeat Step 2 with k = k + 1 until

a) x0 ∈ Xk, in which case a maximally permissive

nonblocking supervisor is found, or

b) Xk+1 = Xk, in which case no nonblocking

supervisor exists.

In the remainder of this section, we show that the director

existence is equivalent to the supervisor existence. We need

the following lemmas to establish our existence result.

Lemma 1: For any strongly-connected, legal, invariant

and nonblocking component (X̂, α̂), there exists one D ∈
D(X̂, α̂) such that (X̂, α̂D) is legal, invariant, nonblocking

and control-consistent.

Lemma 2: For any strongly-connected, legal and singu-

larly Xr-attractable component (X̂, α̂), there exists one

7629

x0

X0X1X2 SLINs

SLIN SLA

SLAs

SLAs

x0

X0X1X2 LINCs

LACs

LACs

(a) Supervised Plant

(b) Directed Plant

Fig. 2. Structure of Plants under Control

D ∈ D(X̂, α̂) such that (X̂, α̂D) is legal, singularly Xr-

attractable and control-consistent.

With the above Lemma 1 and 2 at hand, we can establish

the following theorem.

Theorem 1: There exists a nonblocking director for a

plant G if and only if there exists a maximally permissive

nonblocking supervisor for G.

Proof: Suppose a maximally permissive nonblocking super-

visor exists and is computed by Algorithm 1. Then from

Lemma 1, we can transform each component (X̂, α̂) ∈
SLIN (X, α) to a legal, invariant, nonblocking and control-

consistent component (LINC), and similarly by Lemma 2,

we can transform each component (X̂, α̂) ∈ SLA((X −
Xk, α|X−Xk

), Xk) to a legal, LINC-attractable and control-

consistent component (LAC). Following such transforma-

tions, a graph such as in Figure 2(a) is converted to a

graph such as in Figure 2(b), yielding a tree structure with

leaf nodes consisting of LINCs (which are partitionable

into SLINCs and SLACs) and non-leaf nodes consisting

of LACs (which are partitionable into SLACs), thereby

yielding a desired nonblocking directed plant graph.

Conversely, if a nonblocking director exists, then since

a director is also a supervisor, a nonblocking supervisor

exists. Finally since a nonblocking supervisor exists if and

only if the maximally permissive nonblocking supervisor ex-

ists (controllability and relative-closure are preserved under

union), the assertion of the theorem follows.

V. SYNTHESIS OF DIRECTED CONTROLLER

We use the ideas developed in the previous section to

present a set of algorithms for synthesizing a nonblocking

director. The first algorithm transforms a SLIN to a LINC;

the second transforms a SLA to a LAC, and the final algo-

rithm performs backward search over the tree of SCCs in

the graph of a maximally permissive nonblocking supervised

plant to find a desired director.

Algorithm 2: Given a strongly-connected, legal, invariant

and nonblocking component (X̂, α̂), the following steps

compute a director D ∈ D(X̂, α̂) such that (X̂, α̂D) is legal,

invariant, nonblocking and control-consistent.

1) X̃ = X̂; X0 = ∅; X1 := X̂ ∩ Xm; k := 1;

2) For each x ∈ Xk, set the control action as

D(x) :=⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

{σ}, where σ ∈ Σc is

any controllable event

s.t. α̂(x, σ) ∈ Xk−1

if α̂(x,Σc) ∩ Xk−1 �= ∅

∅ if α̂(x,Σc) = ∅
{σ}, where σ ∈ Σc is

any controllable event

s.t. α̂(x, σ) ∈ X̂
otherwise

3) X̃ = X̃ −Xk; If X̃ = ∅, then terminate the algorithm,

else continue the following steps;

4) Xk+1 := {x ∈ X̃ | α̂(x,Σ) ∩ Xk �= ∅}; k := k + 1
5) Go back to Step 2.

We present an example to aide the understanding of

Algorithm 2.

Example 1: Consider a SLIN (X̂, α̂) shown in Figure

3(a), where we represent illegal states by crossing them. The

edges with solid line and single arrow represent transitions

on controllable events while those with dashed line and

double arrows represent transitions on uncontrollable events.

For simplicity of discussion, we represent a component

of interest by its state set. The associated state transition

function can be readily identified from the figures. The

figures show how one director D ∈ D(X̂, α̂) is computed

by Algorithm 2 iteratively such that (X̂, α̂D) is a LINC.

The resulting (X̂, α̂D) is shown in Figure 3(d). Note that a

controllable event, if disabled by the underlying director, is

omitted from the corresponding figures.

Remark 1: Let |X̂| be the number of state in a SLIN .

Due to determinism, there are at most |X̂||Σ| transitions,

and it can be verified that complexity of Algorithm 2 is of

order O(|X̂||Σ|).
Next we present an algorithm to transform a SLA to a

LAC.

Algorithm 3: Given a reference set Xr ∈ X and a

strongly-connected, legal, singularly Xr-attractable com-

ponent (X̂, α̂), the following steps compute a director

D ∈ D(X̂, α̂) such that (X̂, α̂D) is legal, singularly Xr-

attractable and control-consistent.

7630

87 9

1110

(a) (b)

(c) (d)

87 9

1110

87 9

1110

87 9

1110

X3

X2

X1

Fig. 3. Transformation from SLIN to LINC

1) X̃ = X̂; k := 0; X0 := Xr;

2) Xk+1 := {x ∈ X̃ | α̂(x,Σ) ∩ Xk �= ∅}; k := k + 1;

3) For each x ∈ Xk, set the control action as

D(x) :=⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

{σ}, where σ ∈ Σc is

any controllable event

s.t. α̂(x, σ) ∈ Xk−1

if α̂(x,Σc) ∩ Xk−1 �= ∅

∅ if α̂(x,Σc) = ∅
{σ}, where σ ∈ Σc is

any controllable event

s.t. α̂(x, σ) ∈ X̂
otherwise

4) X̃ = X̃ −Xk; If X̃ = ∅, then terminate the algorithm,

else go back to Step 2.

We present an example to aide the understanding of

Algorithm 3.

Example 2: Consider a SLA (X̂, α̂) circled in Figure

4(a) and a reference state set Xr. The figures shows how

one director D ∈ D(X̂, α̂) is computed by Algorithm

3 iteratively such that (X̂, α̂D) is a LAC. The resulting

(X̂, α̂D) is circled in Figure 4(d).

Remark 2: Similar to the complexity of Algorithm 2, the

complexity of Algorithm 3 is also of order O(|X̂||Σ|), where

|X̂| is the number of states in a SLA.

Now we are ready to present the final algorithm that

performs backward search over the tree of SCCs in the graph

of a maximally permissive nonblocking supervised plant to

obtain a nonblocking director.

Algorithm 4: Given a plant G := (X, Σ, α, x0, Xm), the

following steps compute a nonblocking director.

(I) Initiation:
1. Compute SLIN (X,α). If SLIN (X, α) = ∅,

then go to Step III.1; else do the following.

2. Set k := 0 and let (Xk, αk) :=⋃
(X̂,α̂)∈SLIN (X,α)(X̂, α̂D), where D ∈

D(X̂, α̂) is a director computed by Algorithm 2

for each (X̂, α̂) ∈ SLIN (X, α).
(II) Iteration:

1. If x0 ∈ Xk, then go to Step III.2; else do the

following.

(c) (d)

(b)

2

54

3

X
r

X1

2

54

3

X
r

X2

2

54

X
r

2

54

3

X
r

(a)

3

Fig. 4. Transformation from SLA to LAC

2. Let X ′ := X − Xk; α′ := α|X′ . Compute

SLA((X ′, α′), Xk). If SLA((X ′, α′), Xk) = ∅,

then go to Step III.1; else do the following.

3. (X̃, α̃) :=
⋃

(X̂,α̂)∈SLA((X′,α′),Xk)(X̂, α̂D),
where D ∈ D(X̂, α̂) is a director com-

puted by Algorithm 3 for each (X̂, α̂) ∈
SLA((X ′, α′), Xk);

4. (Xk+1, αk+1) := (Xk, αk) ∪ (X̃, α̃);
5. Go back to Step II.1 with k := k + 1.

(III) Termination:

1. Stop since no nonblocking director exists.

2. Stop since a nonblocking director is found.

We present an example to aide the understanding of

Algorithm 4.

Example 3: Consider a plant G = (X, Σ, α, x0, Xm)
shown in Figure 5(a). The figures show how a nonblocking

director is computed by Algorithm 4 iteratively. The resulting

nonblocking director is circled in Figure 5(h). Note that this

plant includes the components used in Example 1 and 2,

so some constructions performed previously are reused to

facilitate the computation, which are circled and shaded in

Figure 5(d) and (f), respectively. Also note that the transition

from state 6 to state 5 is on an uncontrollable sensor

output, which is illustrated by dashed line with double solid
arrows to distinguish it from the transitions on uncontrollable

disturbance input, which are represented by dashed line with

double hollow arrows.

Remark 3: From [5], we know the overall complexity of

computing a maximally permissive nonblocking supervisor is

quadratic, namely, of order O(|X̂|2|Σ|2). In addition, we also

show in the Remark 1 and 2 that the complexity of additional

steps to transform SLIN/SLA to LINC/LAC is linear.

Thus the complexity of the above set of algorithms that com-

putes a nonblocking director is also of order O(|X̂|2|Σ|2).

7631

(a)

21

87 9

1110

13 14

54 6

3

12

(b)

(c)

21

87 9

1110

13 14

54 6

3

12

(d)

21

87 9

1110

13 14

54 6

3

12

(e)

21

87 9

1110

13 14

54 6

3

12

(f)

21

87 9

1110

13 14

54 6

3

12

(g)

21

87 9

1110

13 14

54 6

3

12

21

87 9

1110

13 14

54 6

3

12

(h)

21

87 9

1110

13 14

54 6

3

12

Fig. 5. Computing a Nonblocking Directed Controller

VI. CONCLUSION

In this paper, we introduce the notion of directed control

and develop a set of algorithms to compute a nonblocking

directed controller. A directed control makes more sense

when plant is an executor of controllable events rather a

generator. We show that a directed controller exists for a

plant if and only if a nonblocking supervisor exists. The

complexity of existence and synthesis of a nonblocking

directed controller is polynomial in the size of the plant,

and is the same as that of a nonblocking supervisor. Future

work will extend to include partial observation and optimal

nonblocking directed controller.

VII. APPENDIX

Algorithm 5: Given a component (X̂, α̂), the following

steps compute SLIN (X̂, α̂).
1. (X0, α0) := (X̂ − Xi, α̂|X̂−Xi

); k := 0.

2. Xk+1 :=Xk − V (Xk, αk); αk+1 :=αk|Xk+1 .

3. Repeat Step 2 with k := k + 1 until Xk+1 = Xk.

4. Compute S(Xk, αk).
5. For each (X̃, α̃) ∈ S(Xk, αk), if it is

(a) invariant and nonblocking, then (X̃, α̃) ∈
SLIN (X̂, α̂);

(b) variant and nonblocking, then go to Step 1 with

(X0, α0) := (X̃, α̃);
(c) blocking, then (X̃, α̃) /∈ SLIN (X̂, α̂).

Algorithm 6: Given a reference state set Xr ⊆ X
and a component (X̂, α̂), the following steps compute

SLA((X̂, α̂), Xr).
1. (X0, α0) := (X̂ − Xi, α̂|X̂−Xi

); k := 0.

2. Xk+1 := Xk − U((Xk, αk), Xr); αk+1 := αk|Xk+1 .

3. Repeat Step 2 with k := k + 1 until Xk+1 = Xk.

4. Compute S(Xk, αk).
5. For each (X̃, α̃) ∈ S(Xk, αk), if it is singularly Xr-

attractable, then (X̃, α̃) ∈ SLA ((X̂, α̂), Xr); other-

wise go to Step 1 with (X0, α0) = (X̃, α̃).

REFERENCES

[1] M. Barbeau, M. Frappier, F. Kabaza, and R. St.-Denis. A supervi-
sory control synthesis case study: The antenna control system. In
Proceedings of 1997 Allerton Conference on Communication, Control,
and Computing, pages 533–542, 1997.

[2] C. G. Cassandras and S. Lafortune. Introduction to Discrete Event
Systems. Kluwer Academic Publishers, Boston, MA, 1999.

[3] V. Chandra, Z. Huang, and R. Kumar. Automated control syntesis for
and assembly line using discrete event system control theory. IEEE
Transactions on Systems, Man, and Cybernetics: Part C, 33(2):284–
289, 2003.

[4] R. Kumar and V. K. Garg. Modeling and Control of Logical Discrete
Event Systems. Kluwer Academic Publishers, Boston, MA, 1995.

[5] R. Kumar, S. Takai, M. Fabian, and T. Ushio. Maximally permis-
sive mutually & globally nonblocking supervision with application to
switching control. Automatica, 41(8):1299–1312, August 2005.

[6] P. J. Ramadge and W. M. Wonham. Supervisory control of a class of
discrete event processes. SIAM Journal of Control and Optimization,
25(1):206–230, 1987.

7632

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

