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Abstract— Motivated by the problem of formation control
for vehicles moving at unit speed in three-dimensional space,
we are led to models of gyroscopically interacting particles,
which require the machinery of curves and frames to describe
and analyze. A Lie group formulation arises naturally, and we
discuss the general problem of determining (relative) equilibria
for arbitrary G-invariant controls (where G = SE(3) is a
symmetry group for the control law). We then present global
convergence (and non-collision) results for specific two-vehicle
interaction laws in three dimensions, which lead to specific
formations (i.e., relative equilibria). Generalizations of the
interaction laws to n vehicles is also discussed, and simulation
results presented.

I. INTRODUCTION

This work is motivated by the problem of multi-vehicle
formation (or swarm) control, e.g., for meter-scale UAVs
(unmanned aerial vehicles), and builds on our earlier work on
planar formation control laws [5], [6], [7] by extending the
key results to the three-dimensional setting. Some objectives
of our formation control laws are to avoid collisions between
vehicles, maintain cohesiveness of the formation, be robust
to loss of individuals, and scale favorably to large swarms.

In considering the problem of multi-vehicle formation
control, there is special significance, both practically and
theoretically, to modeling the vehicles as point particles
moving at a common (constant) speed. In the language of
mechanics, the individual particles are subject to gyroscopic
forces; i.e., forces which alter the direction of motion of
the particles, but which leave their speed (and hence their
kinetic energy) unchanged. A formation control law is then a
feedback law which specifies these gyroscopic forces based
on the positions and directions of motion of the particles.
In the planar setting, gyroscopic forces serve as steering
controls [6]. For particles moving in three dimensional space,
we need to introduce the notion of framing of curves to
describe the effects of gyroscopic forces on particle motion
[1], [2].

Recently, a growing literature has emerged on planar
formation control for unit-speed vehicles, using tools from
dynamical systems theory (including pursuit models [10]
and phase-coupled oscillator models [11]), as well as graph-
theoretic methods [3]. An early (discrete-time) unit-speed
model for biological flocking behavior is the Vicsek model
[12]. Interacting particle models similar to those described in

this paper have also found application in obstacle avoidance
and boundary following [13].

II. CURVES AND MOVING FRAMES

A single particle moving in three dimensional space traces
out a trajectory γ : [0,∞) → R

3, which we assume to be at
least twice continuously differentiable, satisfying |γ′(s)| =
1, ∀s; i.e., s is the arc-length parameter of the curve (and the
prime denotes differentiation with respect to s). The direction
of motion of the particle at s is the unit tangent vector to the
trajectory, T(s) = γ′(s). If we further restrict the speed of
particle motion to be unit speed, then the arclength parameter
s is equivalent to time t, and T(t) = γ̇(t). The gyroscopic
force vector always lies in the plane perpendicular to T, so
to describe the effects of this force, we are compelled to
introduce orthonormal unit vectors which span this normal
plane. Taken together with T, these unit vectors constitute a
framing of the curve γ representing the particle trajectory.

There are different framings one can choose, as is best
illustrated by examples (see figure 1). For a curve γ(s) which
is three times continuously differentiable, and for which
γ′′(s) �= 0 for all s, the Frenet-Serret frame (T,N,B) is
uniquely defined, and satisfies

γ′(s) = T(s),
T′(s) = κ(s)N(s),
N′(s) = −κ(s)T(s) + τ(s)B(s),
B′(s) = −τ(s)N(s). (1)

In (1), N(s) is the unit normal vector to the curve γ at s,
and B(s) is the unit binormal vector (which completes the
right-handed orthonormal frame). The curvature function κ
and the torsion function τ are given by expressions involving
the derivatives of γ, and γ′′(s) �= 0 is required for τ(s) to
be well-defined.

Although the Frenet-Serret frame for a curve (when it
exists) has a special status (because it is uniquely defined
by the derivatives of the curve), it is not the only choice of
frame, nor is it necessarily the best choice. In particular, the
requirement that γ′′(s) �= 0 presents serious difficulties for
the interaction laws we consider in this paper.

We therefore use an alternative framing of the curve γ,
the natural Frenet frame, which is also referred to as the
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Fig. 1. The Frenet-Serret frame (left), and natural Frenet frame (right),
illustrated for a three-dimensional curve.

Fermi-Walker frame or Relatively Parallel Adapted Frame
(RPAF):

γ′(s) = T(s),
T′(s) = k1(s)M1 + k2(s)M2,

M′
1(s) = −k1(s)T(s),

M′
2(s) = −k2(s)T(s). (2)

In (2), M1(s) and M2(s) are unit normal vectors which
(along with T(s)) complete a right-handed orthonormal
frame. However, there is freedom in the choice of initial
conditions M1(0) and M2(0); once these are specified, the
corresponding natural Frenet frame for a twice-continuously-
differentiable curve γ is unique.

Both (1) and (2) can be packaged as control systems on
the Lie group SE(3), the group of rigid motions in three-
dimensional space. (A modern reference for control systems
on Lie groups is Jurdjevic [4].) Here we think of (κ, τ) or
the natural curvatures (k1, k2) as controls, which drive the
evolution of the frame and the particle position γ.

III. FORMATION MODEL

Figure 2 illustrates the trajectories of two vehicles moving
at unit speed, and their respective natural Frenet frames. The
particle (i.e., vehicle) positions are denoted by r1 and r2,
and the frames by (x1,y1, z1) and (x2,y2, z2), so that

ṙ1 = x1, ṙ2 = x2,

ẋ1 = y1u1 + z1v1, ẋ2 = y2u2 + z2v2,

ẏ1 = −x1u1, ẏ2 = −x2u2,

ż1 = −x1v1, ż2 = −x2v2. (3)

where the controls (u1, v1) and (u2, v2) may be feedback
functions of the position and frame variables.

We consider control laws which depend only on relative
vehicle positions and orientations; i.e., which depend only on
the shape of the formation. The controls for the first vehicle
are assumed to only be functions of the relative vehicle
position, r = r2 − r1, the heading direction of the second

Fig. 2. Three-dimensional trajectories for two vehicles, and their respective
frames.

vehicle, x2, and the frame variables for the first vehicle,
(x1,y1, z1). Thus,

u1 = u1(r,x1,y1, z1,x2),
v1 = v1(r,x1,y1, z1,x2), (4)

and similarly,

u2 = u2(r,x2,y2, z2,x1),
v2 = v2(r,x2,y2, z2,x1). (5)

Furthermore, because the overall motion of the first vehicle
should be independent of y1 and z1, we require

v1(r,x1,y1, z1,x2) = u1(r,x1, z1,−y1,x2), (6)

and similarly,

v2(r,x2,y2, z2,x1) = u2(r,x2, z2,−y2,x1). (7)

Finally, we require that our control laws have a discrete
(relabling) symmetry, which corresponds to the intuitive
notion that both vehicles “run the same algorithm.” This
implies

u1(−r,x1,y1, z1,x2) = u2(r,x2,y2, z2,x1),
v1(−r,x1,y1, z1,x2) = v2(r,x2,y2, z2,x1). (8)

In this paper, the specific control laws we consider have the
form

u1 = F (−r,x1,y1,x2) − f(|r|)
(
− r
|r| · y1

)
,

u2 = F (r,x2,y2,x1) − f(|r|)
(

r
|r| · y2

)
,

v1 = F (−r,x1, z1,x2) − f(|r|)
(
− r
|r| · z1

)
,

v2 = F (r,x2, z2,x1) − f(|r|)
(

r
|r| · z2

)
, (9)

which is a further restricted class of laws consistent with (4)
- (8). (We discuss later how F and f are chosen.)

2842



IV. SHAPE VARIABLES AND EQUILIBRIA

The geometry of the problem of interacting particles mov-
ing at unit speed in the plane has been considered in earlier
work [5], [6], [7]. The unit speed constraint leads to the study
of gyroscopic interaction forces, and the identification of the
constant kinetic energy hyper-surface with the group SE(2)
of rigid motions in the plane. Formations or steady patterns
of motion in the plane thus become relative equilibria for
particle dynamics on SE(2) [5], [6], [7].

A key difficulty in extending the above geometric per-
spective to three dimensions arises from the fact that the
corresponding constant kinetic energy hyper-surface cannot
be identified with SE(3), the rigid motion group in three
dimensions. It is a homogeneous space SE(3)/SO(2). How-
ever, there is considerable advantage, particularly in the
multi-particle context, to formulating the dynamics in terms
of interacting particles in SE(3).

The dynamics (3) can be expressed in terms of the group
variables g1, g2 ∈ G = SE(3) as a pair of left-invariant
systems

ġ1 = g1ξ1, ġ2 = g2ξ2, (10)

where ξ1, ξ2 ∈ g = the Lie algebra of G. The dynamics for
g = g−1

1 g2 are given by

ġ = −g−1
1 ġ1g

−1
1 g2 + g−1

1 ġ2

= −g−1
1 g1ξ1g + g−1

1 g2ξ2

= −ξ1g + gξ2

= gξ, (11)

where ξ = ξ2 − Adg−1ξ1 ∈ g.
Equation (11), where ξ incorporates the control inputs

(u1, v1) and (u2, v2), describes the evolution of the relative
position and relative natural Frenet frame orientation of
the pair of vehicles. It is thus natural to consider what
equilibria of (11) exist, and then to design control laws which
stabilize those equilibria. Equilibria of the shape dynamics
(11) correspond to relative equilibria of the system (10) on
G × G.

A. Shape equilibria for a two-particle system on SE(3)

At an equilibrium shape ge of the shape dynamics (11),
we have

geξ2(ge) = ξ1(ge)ge. (12)

To facilitate calculation, we define

ge =
[

Q b
0 1

]
, where Q ∈ SO(3) and b ∈ R

3,

ξ1(ge) =
[

Ω̂1 e1

0 0

]
, ξ2(ge) =

[
Ω̂2 e1

0 0

]
, (13)

where e1 =
[

1 0 0
]T

,

Ω1 =

⎡
⎣ w1

−v1

u1

⎤
⎦ , Ω2 =

⎡
⎣ w2

−v2

u2

⎤
⎦ , (14)

and for any 3-vector Γ = (Γ1, Γ2, Γ3), Γ̂ is the skew-
symmetric matrix defined by

Γ̂ =

⎡
⎣ 0 −Γ3 Γ2

Γ3 0 −Γ1

−Γ2 Γ1 0

⎤
⎦ . (15)

Note that here we allow Ω1 and Ω2 to each have the full
three degrees of freedom - not just the two corresponding
to the natural curvatures. The reason for proceeding in this
manner is that ultimately we recover not only the relative
equilibria of (10) and (3), but also an interesting class of
relative periodic solutions for (3).

From (12) we see that QΩ̂2 = Ω̂1Q, from which it follows
that

Ω1 = QΩ2. (16)

From (12) we also obtain Qe1 = Ω̂1b + e1. It can then be
shown that w1 = w2, and u2

1 + v2
1 = u2

2 + v2
2 .

Introducing new variables w, a, ψ1, and ψ2, we can
express Ω1 and Ω2 as

Ω1 =

⎡
⎣ w

a sin ψ1

a cos ψ1

⎤
⎦ , Ω2 =

⎡
⎣ w

a sin ψ2

a cos ψ2

⎤
⎦ . (17)

If (for a2 + w2 �= 0) we further define

cos ϕ =
a√

a2 + w2
, sin ϕ =

w√
a2 + w2

, (18)

along with

Rψj =

⎡
⎣1 0 0

0 cos ψj − sin ψj

0 sinψj cos ψj

⎤
⎦, Rϕ=

⎡
⎣cos ϕ 0 − sin ϕ

0 1 0
sin ϕ 0 cos ϕ

⎤
⎦,

Rϑ =

⎡
⎣cos ϑ − sin ϑ 0

sin ϑ cos ϑ 0
0 0 1

⎤
⎦ , (19)

where ϑ ∈ [0, 2π) is arbitrary, we see that (17) becomes

Ωj =
√

a2 + w2 RT
ψj

RT
ϕe3, j = 1, 2, (20)

and from (16) we obtain Q = RT
ψ1

RT
ϕRϑRϕRψ2 . Note that

Rϑ, for arbitrary ϑ, is a rotation matrix that fixes the basis
vector e3.

Defining b̃ by b = RT
ψ1

RT
ϕ b̃, after some calculation, one

can show that[
Q b
0 1

]
=

[
RT

ψ1
0

0 1

][
RT

ϕ 0
0 1

][
Rϑ b̃
0 1

][
Rϕ 0
0 1

][
Rψ2 0
0 1

]
,

(21)

b̃ =

⎡
⎣

a
a2+w2 sin ϑ
a

a2+w2 (1 − cos ϑ)
b̃3

⎤
⎦ . (22)

Thus, ge can be decomposed as a product of five rigid mo-
tions (four of which represent pure rotations), and contains
two free parameters - ϑ and b̃3 - once the control vectors Ω1

and Ω2 are specified.
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Remark: For purposes of interpretation of (21) in the context
of particle trajectories, we may take Rψ1 = Rψ2 = I , so that
(21) reduces to[

Q b
0 1

]
=

[
RT

ϕ 0
0 1

] [
Rϑ b̃
0 1

] [
Rϕ 0
0 1

]
. (23)

To see this, let g̃e be defined by

ge =
[

RT
ψ1

0
0 1

]
g̃e

[
Rψ2 0
0 1

]
, (24)

so that

g̃e =
(

g1

[
RT

ψ1
0

0 1

])−1 (
g2

[
RT

ψ2
0

0 1

])
. (25)

Thus, if we exhibit a shape equilibrium g̃e of the form
(23), we can always write down a family of shape equilibria
(24) parameterized by ψ1 and ψ2, which differ only in the
orientation of the unit normal vectors of the two frames (and
are therefore indistinguishable if only the particle trajectories
in R

3 are observed). �
Proposition 1: Consider the two-particle system on G × G
given by

ġ1 = g1

[
Ω̂1 e1

0 0

]
, ġ2 = g2

[
Ω̂2 e1

0 0

]
, (26)

where Ω1 = Ω1(g), Ω2 = Ω2(g), and g = g−1
1 g2 (i.e., the

controls Ω1 and Ω2 are arbitrary, but are G-invariant). Then
there is a corresponding reduced system on G (the “shape
space”) given by

ġ = −
[

Ω̂1 e1

0 0

]
g + g

[
Ω̂2 e1

0 0

]
, (27)

(c.f. (11)) whose equilibria are given by (12). Solutions of
(12), with (14), require that (17) hold.

(1) If w = a = 0, then Q satisfies Qe1 = e1, and b
is arbitrary. Then Q yields one free parameter, and b
yields three free parameters.

(2) If w2 + a2 �= 0, then (Q,b) satisfies (21), with Rψ1 ,
Rψ2 , Rϕ, and Rϑ given by (19) and with b̃ given by
(22). The angle ϕ is related to w and a through (18),
and ϑ and b̃3 are free parameters.

The resulting (Q,b) then describe the shape equilibria (i.e.,
the relative equilibria) for (26).

Proof: Follows from the calculations outlined above. �
Proposition 2: Consider (26) as the underlying dynamics
for the evolution of two particle trajectories in R

3 and their
corresponding natural Frenet frames. Then relative equilibria
(Q,b) for (26) correspond to the following steady-state
formations of the two particles in R

3:

(1) If w = a = 0, then the two particles move in the same
direction with arbitrary relative positions.

(2) If w = 0 but a �= 0, then the particles move on circular
orbits with a common radius, in planes perpendicular
to a common axis.

Fig. 3. Rectilinear, circling, and helical formations, illustrated for five
particles. The arrows represent the unit tangent vectors to the particle
trajectories.

(3) If w �= 0 but a = 0, then the particles move in the same
direction on collinear trajectories.

(4) If w �= 0 and a �= 0, then the particles follow circular
helices with the same radius, pitch, axis, and axial
direction of motion.

Proof: Omitted due to space constraints, but follows from
Proposition 1, along with the Remark and calculations
outlined above. �

B. Shape equilibria for an n-particle system on SE(3)

Our definition of the shape variable g for the two-particle
problem extends naturally to the n-particle problem (under
the assumption that the n-particle interaction law has G as a
symmetry group). We define g̃j = g−1

1 gj , j = 2, ..., n, where
g1, g2, ..., gn are the group variables (each representing one
of the particles), and g̃2, g̃3, ..., g̃n are shape variables. (This
is analogous to the approach taken in the planar problem,
where the corresponding group is SE(2) [5], [6], [7].)

Proposition 3: Consider

ġ1 = g1

[
Ω̂1 e1

0 0

]
, ..., ġn = gn

[
Ω̂n e1

0 0

]
, (28)

where Ω1, ...,Ωn are G-invariant controls, as the underlying
dynamics for the evolution of n particle trajectories in
R

3. Then relative equilibria (Q2,b2), ..., (Qn,bn) for (28)
correspond to the following steady-state formations of the n
particles in R

3 (see figure 3):
(1) If w = a = 0, then the n particles all move in the same

direction with arbitrary relative positions.
(2) If w = 0 but a �= 0, then the particles move on circular

orbits with a common radius, in planes perpendicular
to a common axis.

(3) If w �= 0 but a = 0, then the particles move in the same
direction on collinear trajectories.

(4) If w �= 0 and a �= 0, then the particles follow circular
helices with the same radius, pitch, axis, and axial
direction of motion.

Proof: Omitted due to space constraints, but analogous to
the proof of Proposition 2. �
Remark: When w �= 0 at a relative equilibrium for our
model (26) of particles evolving in G×G, the corresponding
natural curvatures in (3) are then in fact periodic functions
of time (or arc-length parameter). �
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Fig. 4. Convergence to a rectilinear formation (left), and to a circling
formation (right). The trajectories, which are three-dimensional, are viewed
perpendicular to the plane of the equilibrium formation.

Fig. 5. An example of suitable functions f(·) and h(·) satisfying conditions
(A1) and (A2) [6].

V. RECTILINEAR FORMATION LAW

The two types of formations for which we consider
specific stabilizing control laws (for a pair of vehicles)
are rectilinear formations (in which both vehicles head in
the same direction) and circling formations (in which both
vehicles follow the same circular orbit). Figure 4 shows
simulations which converge to these two types of formations.
For concreteness, we use the variables (r1,x1,y1) and
(r2,x2,y2), rather than the group variables g1 and g2.

Consider the Lyapunov function candidate

Vrect = − ln(1 + x2 · x1) + h(|r|), (29)

where we assume that
(A1) dh/dρ = f(ρ), where f(ρ) is a Lipschitz continuous

function on (0,∞), so that h(ρ) is continuously differ-
entiable on (0,∞);

(A2) limρ→0 h(ρ) = ∞, limρ→∞ h(ρ) = ∞, and
∃ρ̃ such that h(ρ̃) = 0.

Figure 5 shows an example of functions f(·) and h(·) sat-
isfying conditions (A1) and (A2). An example of a suitable
function f(·) is

f(|r|) = α
[
1 − (ro/|r|)2

]
, (30)

where α and ro are positive constants. Observe that the
term − ln(1 + x2 · x1) in (29) penalizes heading-direction
misalignment between the two vehicles, and the term h(|r|)
penalizes vehicle separations which are too large or too
small.

We consider F to be of the form

F (r,x2,y2,x1) = ∓η

(
r
|r| · x2

) (
r
|r| · y2

)
+ µx1 · y2,

(31)

where µ and η satisfy

(A3) µ(ρ) and η(ρ) are Lipschitz continuous on (0,∞);
(A4) µ(|r|) > 1

2η(|r|) > 0, ∀|r| ≥ 0.

(For simplicity, µ and η can be taken to be constants, rather
than functions of |r|.)

The control law given by (9) with (31) is the natural
generalization to three dimensions of the planar two-vehicle
rectilinear law analyzed in [5], [6], [7]. As in the planar
setting, we can interpret the terms in (9) that involve f as
steering the vehicles apart to avoid collisions (or steering
them together into formation if they are too far apart). The
terms in (9) that involve F serve to align the vehicle headings
(with respect to each other and with respect to the baseline
between them).

Proposition 4: Consider the system (r,x1,x2) evolving on
R

3 × S2 × S2, where S2 is the two-sphere, according to
(3), (9), and (31). In addition, assume (A1), (A2), (A3), and
(A4). Define the set

Λ =
{

(r,x1,x2)
∣∣∣∣x2 · x1 �= −1 and |r| > 0

}
. (32)

Then any trajectory starting in Λ converges to the set

M =
({

(r,x1,x2)
∣∣∣∣x1 = x2, r · x1 = 0, f(|r|) = 0

}

∪
{

(r,x1,x2)
∣∣∣∣x1 = x2 = ± r

|r|
})

∩ Λ, (33)

which is the the set of equilibria for the (r,x1,x2)-dynamics
contained in Λ.

Proof: Uses LaSalle’s Invariance Principle [9]. See [8] for a
detailed proof. �

Remark: If f is given by (30), then f(|r|) = 0 is equivalent
to |r| = ro. Thus, the set of equilibria consists of formations
with both vehicles heading in the same direction: either the
motion is perpendicular to the baseline between the vehicles
with an intervehicle separation equal to ro, or else both
vehicles follow the same straight-line trajectory with one
leading the other by an arbitrary distance. The stability of
these equilibria depend on the choice of parameters, and can
be further analyzed using linearization.

VI. CIRCLING FORMATION LAW

Consider the Lyapunov function candidate

Vcirc = − ln
[
1−x2 · x1+2

(
r
|r| · x2

)(
r
|r| · x1

)]
+ h(|r|),

(34)
where we assume

(A1’) dh/dρ = f(ρ)−2/ρ, where f(ρ) is a Lipschitz contin-
uous function on (0,∞), so that h(ρ) is continuously
differentiable on (0,∞);

and (A2). It can be shown that the argument of the natural
log function in (34) is nonnegative, and the function f given
by (30) can be used here, as well. The term h(|r|) in (34)
penalizes vehicle separations which are two large or too
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small. The natural-log term in (34) involves the relative
headings of the vehicles, as well as the relative orientations
of the headings with respect to the baseline between the
vehicles.

In place of (31), we use

F (r,x2,y2,x1) = ±η

(
r
|r| · x2

) (
r
|r| · y2

)

+µ

[
−x1 · y2 + 2

(
r
|r| · x1

) (
r
|r| · y2

)]
, (35)

where we assume (A3) and (A4).

Proposition 5: Consider the system (r,x1,x2) evolving on
R

3 × S2 × S2, according to (3), (9), and (35). In addition,
assume (A1’), (A2), (A3), and (A4). Define the set

Λ′ =
{

(r,x1,x2)
∣∣∣∣1−x2 · x1+2

(
r
|r| · x2

)(
r
|r| · x1

)
�=0

and |r| > 0
}

. (36)

Then any trajectory starting in Λ′ converges to the set

M̃ ′ =
({

(r,x1,x2)
∣∣∣∣x1 =−x2, r · x1 = 0, f(|r|) =

2
|r|

}

∪
{

(r,x1,x2)
∣∣∣∣x1 = x2 = ± r

|r|
})

∩ Λ′. (37)

Note that elements of M̃ ′ with x1 = −x2 correspond to
the two vehicles following the same circular orbit, separated
by the diameter of the orbit, which is prescribed by the
function f . Elements of M̃ ′ with x1 = x2 correspond to
rectilinear formations in which one vehicle leads the other
by an arbitrary distance.

Proof: Similar in approach to the proof of Proposition 4
(see [8]). �

VII. MULTI-VEHICLE FORMATIONS

One way to generalize the two-vehicle laws discussed
above to n vehicles is to use an average of the pairwise
interaction terms used for the two-vehicle problem [5], [6],
[7], [8]. Figures 6 and 7 show simulation results for multi-
vehicle interactions of this type. Their analysis is a topic of
ongoing research.
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Fig. 6. Simulation results for ten vehicles using a generalization of the
two-vehicle rectilinear formation control law (9) with (31) and (30).

Fig. 7. Simulation results for ten vehicles using a generalization of the
two-vehicle circling formation control law (9) with (35) and (30). (The same
simulation results are viewed from two different angles.)

REFERENCES

[1] R.L. Bishop, “There is more than one way to frame a curve,” The
American Mathematical Monthly, 82(3), 246-251, 1975.

[2] A. Calini, “Recent developments in integrable curve dynamics,” In
Geometric Approaches to Differential Equations, Lecture Notes of the
Australian Math. Soc., 15, 56-99, Cambridge Univ. Press, 2000.

[3] A. Jadbabaie, J. Lin, and A.S. Morse, “Coordination of groups of
mobile autonomous agents using nearest neighbor rules,” IEEE Trans.
Automatic Control, 48(6), 988-1001, 2003 (also in Proc. IEEE Conf.
Decision and Control, 3, 2953-2958, 2002).

[4] V. Jurdjevic, Geometric Control Theory, Cambridge: Cambridge Univ.
Press, 1997.

[5] E.W. Justh and P.S. Krishnaprasad, “A Simple Control Law for UAV
Formation Flying,” Institute for Systems Research Technical Report
TR 2002-38 (see http://www.isr.umd.edu), 2002.

[6] E.W. Justh and P.S. Krishnaprasad, “Equilibria and steering laws for
planar formations,” Systems and Control Lett., 52, 25-38, 2004.

[7] E.W. Justh and P.S. Krishnaprasad, “Steering laws and continuum
models for planar formations,” Proc. IEEE Conf. Decision and Con-
trol, 3609-3614, 2003.

[8] E.W. Justh and P.S. Krishnaprasad, “Natural frames and in-
teracting particles in three dimensions,” arXiv:math.OC/0503390,
http://www.arxiv.org/abs/math.OC/0503390, 2005.

[9] H. Khalil. Nonlinear Systems. New York: Macmillan Publishing Co.,
1992.

[10] J.A. Marshall, M.E. Broucke, and B.A. Francis, “Formations of
Vehicles in Cyclic Pursuit,” IEEE Trans. Automatic Control, 49(11),
1963-1974, 2004.

[11] R. Sepulchre, D. Paley, and N. Leonard, “Collective motion and
oscillator synchronization,” Lecture Notes in Control and Information
Sciences, 309, “Cooperative Control,” eds. V.J. Kumar, N.E. Leonard,
and A.S. Morse, pp. 189-205, Springer-Verlag, 2004.
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