
Synchronization of State Based Control Processes with Delayed and
Asynchronous Measurements

Haitham Hindi, Lara S. Crawford, and Markus P.J. Fromherz
Palo Alto Research Center (PARC)

Palo Alto, California
{hhindi,lcrawford,fromherz}@parc.com

Abstract— This paper addresses the problem of controller
state synchronization in a networked control system with
distributed sensing and actuation, where actuators must hand
off and switch controllers “on the fly” as they go from
performing one task to another, in the presence of fixed
communication delays and asynchronous measurements. We
present a technique that enables new controllers to seamlessly
join and leave a task, by encapsulating the controller in a finite
state machine that handles the synchronization. We also discuss
issues related to the real-time implementation of this technique
and we finish with a demonstration on an example from the
document printing domain.

I. INTRODUCTION

This paper addresses the problem of controller state syn-
chronization in a networked control system. This problem
arises quite naturally in a distributed sensing and distributed
actuation setting. Consider the scenario where objects are
being handled with several actuators, each with its own
controller, and where sensor measurements arrive asynchro-
nously and are broadcasted to the actuators over a network
with delays. Somehow, the actuators need to switch con-
trollers “on the fly” as they go from handling one object to
another. Also, as a new actuator joins a new group that is
already handling an object, its controller must be synchro-
nized with the actions of the others in the group, toward
achieving the same overall objective as the whole group.
Related work on synchronization has recently appeared in
other areas, notably networked computer games (see Mauve
[10] or Owada and Asahara [12]). Other work on networked
control systems with delays can be found in Nilsson [11],
Luck and Ray [9], and Lincoln and Bernhardsson [8]).

In the sections to follow, we first motivate this problem
by a concrete application from document printing system
control. Next the problem is defined formally and then
solved for both the synchronous and asynchronous detection
scenario. We then present a state machine implementation
which describes a practical real-time software implementa-
tion. Finally, the method is demonstrated on a numerical
example. Since this technique is quite likely to be useful
to practitioners from other fields, this paper is written in
a rather expository style – without compromising rigor or
precision.

Scheduler

Sheet
Controller

MC-1 MC-2 MC-3 MC-4

⎡
⎢⎢⎢⎣

(t0, x0)
(t1, x1)

...
(tN , xN)

⎤
⎥⎥⎥⎦

u u u u

x0 x1 x2 x3

sheet
Mod.1 Mod.2 Mod.3 Mod.4

Fig. 1. Hierarchical networked control system. The scheduler specifies
way points, the sheet controller issues corresponding commands to the
appropriate module controllers over a network (not shown). The module
controllers apply the control signals to the rollers (“nips”), which move the
paper. The paper is in contact with more than one nip at any given time. The
thin lines show these communication pathways. The sheet controller also
relays sensor (edge detection) information to appropriate module controllers
via a publish-subscribe protocol. A specific example of this is shown in
thicker lines: a sensor (small square) generates information that is passed
up to the sheet controller, which then relays it to all modules that need the
feedback.

II. MOTIVATION

Consider the hierarchical networked document printing
paper path control system shown in Figure 1. The scheduler
specifies a series of way points which are desired arrival
times and locations for the leading edge of the sheet of paper
(see Figure 2). This information is then passed to a sheet
controller which passes it to the relevant module controllers
over a network (not shown). The sheet controller also relays
the sensor information to appropriate module controllers via
a publish-subscribe protocol. The sensors are edge detection
sensors and since the exact arrival time of the sheet is not
known in advance (due to noise disturbances), the sensing

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

ThA03.1

0-7803-9568-9/05/$20.00 ©2005 IEEE 6370

Pos.

x0

x1

x2

x3

Timet0 t1 t2 t3

(t0, x0)

(t1, x1)

(t2, x2)

(t3, x3)

vref,1

vref,2

vref,3

vref,4

xref

Mod1

Mod2

Mod3

Mod4

Fig. 2. Way points along with interpolated reference trajectory.

is asynchronous. The module controllers apply the control
signals to the rollers (“nips”), which move the paper. This
example system is discussed in more detail in Fromherz,
et al. [3]. Further control issues in printing systems can be
found in Hamby and Gross [4], Li, et al. [7], Chen and Chiu
[2], and Krucinski, et al. [6].

The control signal u is computed by generating a ref-
erence signal from the interpolated way points which is
then applied to a two degree of freedom LQG controller
(see Åström and Wittenmark [1]) to produce the appropriate
control feedforward and feedback signals. The controller uses
a time varying Kalman filter to handle the asynchronous
arrival of the measurements. The network is modeled as
a guaranteed service time network, where the maximum
delay is known. Thus using the technique of sensor message
time stamping and buffering [11], [9], [8], it is possible to
make all the measurements appear as if they had the same
constant (maximum) network delay. While conservative, this
technique allows us to use the LQG framework by modeling
the delay as an LTI system that is incorporated into the
overall plant model. All the modules have access to a precise
common global time, and we do not discuss issues of clock
synchronization here; it has been studied extensively in the
literature (see, for example, Tanenbaum and van Steen [14]).

A critical feature of the system in Figure 1 is that the paper
can be in contact with more than one nip at any given time.
Thus all the nips in contact with the same sheet must apply
the same control, otherwise the sheet would be damaged by
compression or stretching. This raises the practical question
of how to implement the LQG controller described above in
this distributed actuation and sensing environment. There are
at least two alternatives.

One reasonable method might be to implement the LQG
controller centrally in the sheet controller, and simply com-
municate the control signals to the appropriate nips via the
module controllers. However, in our application, the control
updates happen much more frequently than sensor messages,
so a lot of network bandwidth could be saved by transmitting

only the sensor messages.
Therefore we have instead chosen a more distributed

implementation, at the cost of redundancy. In this distributed
implementation, each module controller runs its own local
replica of the LQG controller, i.e., the same controller is
used in all the nips in contact with the sheet. When properly
initialized, since all these controllers receive the same sensor
information, they will apply the same control signal to the
sheet. As the sheet moves through the system, new nips will
constantly be joining and leaving the actuation of the paper.
Hence the need for the synchronization method presented
here, which can be viewed as a mechanism for controller
hand-off. As we shall show, this synchronization can be
effected by embedding the LQG controller in a finite state
machine (FSM), which takes care of the synchronization (see
Figure 5). Now the sheet controller only needs to send very
infrequent messages to the module controllers consisting of
high level commands telling the nips when to switch on and
off and from handling one sheet to another and relays of
the relatively infrequent sensor information. Thus network
bandwidth is used more efficiently.

III. SYNCHRONIZED CONTROL PROCESSES

Consider a set of control processes {p0, . . . , pn−1}, where
each process pi runs the following state-based iterations over
time t = 0, 1, 2, . . .

xi(t + 1) = f (xi(t), yi(t − d), t) ; xi(0) = xi0

ui(t) = g (xi(t), yi(t − d), t)

where xi is the state, ui is the control output, yi is mea-
surement input, d is some nonnegative fixed integer delay
(e.g.: maximum network delay), and f and g are some
functions of state, measurement and time. Note that we
make no assumptions about the spaces over which x, u or
y are defined: they could be numbers, symbols, discrete or
continuous. At every time step t, each process receives a
new measurement input yi(t − d), and uses the recursions
above to compute the next state xi(t + 1) and the current
control output ui(t). [For t < d, we assume that f and g

are functions of only x and t, and that they do not depend
explicitly on y. Hence, we can take yi(t) = ∅ (undefined)
for t < d.]

The evolution of the states and the controls is completely
determined by the initial states xi0 and the measurement
inputs {yi(t − d) | t ≥ 0}. Thus, it is clear that if the initial
conditions are all equal and the processes are driven with the
same measurements, then the states and control outputs are
identical for all time. In other words, if

xi0 = x0; ∀i

yi(t) = y(t); ∀i, t,

then the processes then all run the same recursion:

x(t + 1) = f (x(t), y(t − d), t) ; x(0) = x0

u(t) = g (x(t), y(t − d), t) .
(1)

6371

Note that this is true for any functions f and g of x, y and
t. We refer to such a set of processes, where the x(t) and
u(t) are identical for all time, as synchronized.

Problem Statement: We seek a method for syn-
chronizing a new process pn, which starts at
some time t′ ≥ d, to the existing processes
{p0, . . . , pn−1}, for all time t ≥ t′. We assume
pn knows f and g, but not x0. We would like
this method to work for any choice of functions
f(x(t), y(t − d), t) and g(x(t), y(t − d), t).

IV. SYNCHRONOUS MEASUREMENTS

At the heart of our development is the following property
of the state recursions in (1): The current state captures all
the past. Specifically, for any time t′, future values of the
state {x(t) | t ≥ t′} only depend on the current state x(t′)
and future inputs {y(t − d) | t ≥ t′}. All the effects of past
inputs are “summarized” in the current state.

The property above suggests the following obvious method
for synchronization. For any t′ ≥ 0, it follows immediately
from (1) that a sufficient condition for pn to be synchronized
with {p0, . . . , pn−1} for all time t ≥ t′, and for any functions
f and g of x, y and t, is to set

xn(t′) = x(t′) ; at time t′

yn(t − d) ≡ y(t − d) ; ∀t ≥ t′
(2)

In fact, this condition is also necessary, since it is easy to
construct simple examples of functions f and g for which
synchronization for all t ≥ t′ fails, if any part of condition
(2) does not hold. We call this method instantaneous initial-
ization, since pn receives x(t′) instantly, without any delay.

Now suppose that we can set yn(t − d) ≡ y(t − d) for
all t ≥ t′ but, because of the delay, we cannot receive the
current state x(t′) immediately. Instead, pn only has access
to the delayed history of the states and measurements:

Id(t
′) = {(x(0), y(0)) , (x(1), y(1)) , . . . ,

(x(t′ − d), y(t′ − d))},

which does not explicitly contain x(t′).
It turns out that synchronization based on Id(t

′) is still
possible, albeit with a little more effort. Observe that x(t′)
can be computed from the information in Id(t

′) by first
performing d iterations of the state recursion in (1):

x(t′ − d + 1) = f (x(t′ − d), y(t′ − 2d), t′ − d)
x(t′ − d + 2) = f(x(t′ − d + 1), y(t′ − 2d + 1),

t′ − d + 1)
...

x(t′) = f (x(t′ − 1), y(t′ − d − 1), t′ − 1) .
(3)

We refer to this operation as forward propagating the state
from x(t′ − d) to x(t′), and we represent it using the
following shorthand notation

x(t′) = Φ (x(t′ − d) | y(t′ − 2d), . . . , y(t′ − d − 1))

[As before, we take y(t) = ∅ for t < d.]

Note that, provided that t′ ≥ d, all of the informa-
tion required for the forward propagation operation, namely
x(t′ − d) and {y(t′ − 2d), . . . , y(t′ − d − 1)}, is available
in Id(t

′). Furthermore, this is the only information that we
need from Id(t

′). In other words, we only need a delayed
history that is d time steps deep. And from that, the only
value of the states that we need is the most recent, namely
x(t′ − d).

Thus for t′ ≥ d, a sufficient condition for pn to be
synchronized with {p0, . . . , pn−1} for all time t ≥ t′, and
for any functions f and g of x, y and t, is to set

xn(t′) = Φ (x(t′ − d) | y(t′ − 2d), . . . , y(t′ − d − 1)) ;

yn(t − d) ≡ y(t − d); ∀t ≥ t′

(4)
Once again, it can be shown that this condition is also

necessary, as it is easy to construct simple examples of f

and g where synchronization would fail if any part of the
conditions (4) were not true1.

We summarize our findings in the following:

Proposition: Let {p0, . . . , pn−1} be a set of
processes running (1). A new process pn, which
knows f and g, can be synchronized with the given
set at from time t′ onwards, and for any functions
f(x(t), y(t − d), t) and g(x(t), y(t − d), t), if and
only if, the following conditions hold: pn receives
the same input measurements {y(t − d) | t ≥ t′}
and either:

1) t′ ≥ 0 and, at time t′, pn has access to
x(t′), for synchronization via instantaneous
initialization (2);

2) t′ ≥ d and, at time t′, pn has access to
x(t′ − d) and {y(t′ − 2d), . . . , y(t′ − d− 1)},
for synchronization via forward propagation
(4).

V. ASYNCHRONOUS MEASUREMENTS

We now consider the problem of synchronization with
asynchronous measurements. By asynchronous measure-
ments, we mean that at certain times, some of the elements
of the measurement sequence {y(t − d) | t ≥ 0} could be
missing, but the ones that arrive do so in the right order. Also,
some of the states could be missing from the history Id. We
will use the symbol ∅ to denote missing measurements or
states; it should be interpreted as meaning “no information”.

This asynchronous measurements scenario can still be
modeled by (1) as follows: at each time t, define y(t − d)
as:

y(t − d) =

{
ym(t − d); if measurement arrives

∅; otherwise

1Specific examples of f ’s which could not be synchronized if the
conditions do not hold: (a) if x(t− d) were missing, consider the “identity
system” x(t + 1) = f(x(t), y(t − d), t)

.
= x(t); (b) if y(t − d − i), i =

1, . . . , d were missing, consider the “shift register” system with state defined
as x(t) = (y(t − d− 1), . . . , y(t − 2d)), and take f(x(t), y(t − d), t) as
x(t + 1)

.
= Ax(t) + By(t − d), where A is the shift matrix with ones on

the lower subdiagonal and zeros elsewhere, and B is the unit vector with
one in the top entry and zeros elsewhere.

6372

where {ym(t − d) | t ≥ 0} is some uncorrupted sequence
of measurements. Thus the asynchronous measurements sce-
nario is essentially nothing but a particular instance of (1),
for some specific measurement sequence {y(t − d) | t ≥ 0}
defined above. The fact that for some values of t, y(t −
d) might take on the value of ∅ is immaterial since, as
mentioned in the first section, we have made no particular
assumptions about the spaces over which the measurements
are defined. Also, f and g should be well defined for all
possible values of y, including ∅. Practically, this means that
f and g will have the form:

f(x(t), y(t − d), t) ={
fm(x(t), ym(t − d), t); if meas. arrives

f∅(x(t), t); otherwise

g(x(t), y(t − d), t) ={
gm(x(t), ym(t − d), t); if meas. arrives

g∅(x(t), t); otherwise
(5)

In other words, when y supplies no information, then f and
g do not depend explicitly on y.

Since we have shown that the asynchronous delayed
measurements scenario can be modeled by (1), the conditions
for synchronization are given in our Proposition. We will
now apply the conditions of the Proposition to this specific
asynchronous measurements context.

It follows immediately from the Proposition that synchro-
nization using instantaneous initialization always works in
this asynchronous case.

Now consider forward propagation. In this case, the Propo-
sition states that synchronization at a time t′ ≥ d using
forward propagation (4) is only possible if and only if: pn

receives the same measurements for all t′ ≥ d and, at time t′,
pn has access to x(t′−d) and {y(t′−2d), . . . , y(t′−d−1)}.
Note that, due to missing measurements or states, in general,
at a given time t′, the delayed state and measurement history
Id(t

′) will have the form:

Id(t
′) =

{
{. . . , (x(t′ − d), y(t′ − d))}; if state arrives

{. . . , (∅, y(t′ − d))}; otherwise
(6)

where “state” in (6) refers to the delayed state x(t′−d). From
(6), we see that for all t′ ≥ d, Id(t

′) will always contain the
information {y(t′−2d), . . . , y(t′−d−1)}. Entries of ∅ for y

pose no problem, since they represent what was actually used
in f and g in (5) for {p0, . . . , pn−1}. However, (6) also shows
that it could happen that, at certain times t′ ≥ d, Id(t

′) does
not contain x(t′ − d). At such times, synchronization using
the forward propagation technique in (4) is not possible, and
one would have to wait until a time t′′ > t′, when x(t′′ − d)
is available, to use forward propagation.

Thus we conclude that in the asynchronous case, synchro-
nization using forward propagation is only possible at times
t′ when delayed state x(t′ − d) is available. Otherwise it is
necessary to wait until a time at which the delayed state is

exit/ −−

drive

entry/ compute contol+apply

 do/ compute control+apply

entry/ store measurement
exit/ forward prop. state

 do/ store measurement

synch

entry/ compute control
exit/ −−

comp

 do/ compute control

entry/ −−
exit/ −−

do/ −−

off

[t >= tOn][t >= tOff]

[t >= tDrive] [tLastMeas − tOn >= d]

Fig. 3. Simplified statechart of synchronization state machine (FSM).

available.

VI. REAL-TIME FINITE STATE MACHINE

IMPLEMENTATION

This section gives an example of how the synchronization
mechanism can be used in practice. The goal in this example
is to synchronize pn to {p0, . . . , pn−1} from time tDrive until
a time tOff. This will be accomplished by embedding the
process in a finite state machine. Figure 3 shows the finite
state machine (FSM)2, and Figure 4 is an associated timing
diagram detailing an example trace of the execution of the
state machine.

The FSM is described by a statechart (see Harel [5] and
Samek [13]). The statechart is event driven by the clock tick
events, which occur at integer multiples of Ts, the control
sample period. At each clock tick, the FSM performs actions
based on which state it is in. Usually, this is the action
specified in the “do” statement. However, upon the assertion
of certain guard conditions, shown in square brackets, the
state machine may transition to another state. If this is the
case, then the overall transition operation will consist of
three steps: performing the exit actions of the current state,
changing the name of the state, and performing the entry
actions of the new state.

It is assumed that all the processing takes place very
quickly and this is shown in the timing diagram (Figure 4)
by the black slabs on the time axis. Processing includes
all the discrete state machine operations such as accepting
inputs, exporting outputs, checking guard conditions, entry
and exit actions, changing state, etc., as well as the con-
tinuous operations such as control computation and forward
propagation, using (1) and (3), etc. To keep things simple in
this example timing diagram, we assume the delayed y and x

measurements always arrive (or fail to arrive) simultaneously,

2Note that, to avoid clutter, a few unusual transitions are omitted from
the statechart: for certain values of tOn/tDrive/tOff and d, there could be
transitions from the Off state directly to Comp or Drive, and from Synch
to Drive, etc.

6373

0 14

time [x Ts]

1 2 3 4 5 6 7 8 9 10 11 12 13

Off

Synch

Comp

Drive

State

y(4−d) y(6−d) y(9−d) y(12−d)

u(7) u(8) u(9) u(10) u(11) u(12)u(6)

[tLastMeas − tOn >=d]

d

d=3 [x Ts]

y(2−d)

[t >= tDrive]

[t >= tOff]

[t >= tOn]

synch exit action: comp immediately
starts computing
control

set up cts state
for computing

Fig. 4. Timing diagram showing the FSM execution.

thus the y symbol shown denotes (x, ym) pairs, and (∅, ∅)
pairs are omitted for clarity.

The FSM has four states: Off, Synch, Compute, and Drive.
In the Off state, the FSM waits until a time tOn, at which
point it transitions to the Synch state. The time tOn is chosen
to be sufficiently in advance of tDrive, such that there is
enough time and enough measurements arrive before tDrive
that synchronization can be completed. The Synch state
collects measurements, until a time when it has a delayed
measurement and state history that is d time steps deep and
a state measurement arrives. At that point it exits the Synch
state, initializing the control process by forward propagation.
Then it transitions to the Compute state, and executes the
entry action, namely performing the first iteration of (5). It
then continues to perform the control computation (5), as
shown in the do-statement, until a time tDrive, at which
point it transitions to the Drive state. The Drive state is
very similar to the Compute state, except that the control
is actually applied to the target system. Then, at a time tOff,
the FSM turns itself off. This whole process is illustrated in
the timing diagram.

Hence by embedding the process pn in an FSM, the
desired synchronization can be accomplished in practice (see
Figure 5).

VII. SIMULATION RESULTS

We will now describe the role of the synchronization tech-
nique described here in the distributed control architecture
currently being used in the modular paper path prototype
(see Figure 5). The network delay d is three control time
samples.

In this application, we use an LQG controller (see
Åström and Wittenmark [1]) with a model of the time
delay, implemented with a time varying Kalman filter in
the measurement-update time-update form, to handle the
asynchronous measurements, which gives rise to f and g

functions of the form (5). Following the logic from Sec-
tion V, then, the controller update will have a different form
depending on whether or not measurement data arrives at a
given time step. If a measurement does arrive, the Kalman
filter update will consist of both the measurement update and
the time update, but if a measurement does not arrive, only
the time update will be performed.

The LQG controller uses these measurements to compute
controls for the nips to ensure that the paper accurately

NETWORK

nip−1 nip−2 nip−n

LQG

FSM

NC−n

LQG

NC−2

FSM

LQG

NC−1

FSM

PC Computer

SC

Fig. 5. Networked FSM-embedded LQG controllers (sensing paths
not shown). (SC=“Sheet Controller”; NC=“Nip Controller”, the software
component of the Module Controllers that handles the nips.)

follows a desired trajectory. Thus each process pi runs an
LQG controller and is responsible for controlling (the motor
of) one nip. Each process is in turn embedded in an FSM
which enables it to synchronize with the other processes. As
in Section V, synchronization must await the arrival of a
delayed state x(t′ − d). In this simulation, y and x always
arrive (or not) together, as in Figure 4.

Simulation results are shown in Figures 6, 7, and 8.
Figure 6 shows the trajectory being simulated. The dark top
line shows the nominal trajectory for the leading edge of
the sheet, and the bottom for the trailing edge. The module
boundaries are shown with dotted lines. The amount of time
the nip for each module is turned on (is in the Drive state)
can be seen in the thick dark horizontal lines. The other FSM
states are shown as well. Figure 7 shows the tracking error (a
few millimeters at its maximum), the state estimation error,
and the control signal (nip speed). Only one control signal
plot is shown because, since the nips are all synchronized,
they all use identical control signals. The estimation error
plot also shows the calculated estimation error variance,
which demonstrates how, in the asynchronous measurement
case, the uncertainty grows during times when there are no
measurements (sensor crossings are shown as asterisks in the
top plot). Figure 8 depicts the hand-off among the different
controllers. With the parameters in this simulation, three nips
could be active (in Drive) simultaneously, as can be seen
through the solid thick bars. The nips all produce the same
control signal, since they are synchronized.

The synchronization technique presented here has been
implemented and is currently running in a real physical
system. It enables synchronized control among distributed,
networked controllers in a system in which such tight coor-
dination is essential. Testing and evaluation in the physical
prototype is in progress.

6374

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Nip−0

Nip−1

Nip−2

Nip−3

time (s)

po
si

tio
n

(m
)

Fig. 6. An example of a nominal sheet trajectory obtained by direct
interpolation of way points (asterisks). The leading edge (upper) and trailing
edge (lower) are both shown. The sheet controller uses this trajectory to
compute tOn, tDrive, and tOff for the different nips. The dark dotted lines
are the module boundaries. The sheet is in a given module from the time its
leading edge crosses into the module boundary, until its trailing edge leaves.
The squares on the y-axis are the positions of the edge sensors. The x-es
and circles on the x-axis show the nominal leading edge and trailing edge,
respectively, sensor crossing times. Also shown are the nominal states of
the FSM: dotted=Synch, dashed=Comp, solid=Drive. For practical reasons,
the Drive state starts a bit before and ends a bit after the nominal times the
sheet will be inside the module.

VIII. CONCLUSION

This paper has addressed the problem of controller state
synchronization in a networked control system with distrib-
uted sensing and actuation, where actuators need to hand
off and switch controllers “on the fly,” as they go from
performing one task to another, in the presence of fixed
communication delays and asynchronous measurements. We
presented a technique which enables new controllers to seam-
lessly join and leave a task, by encapsulating the controller in
a finite state machine that handles the synchronization and
hand-off. We also discussed issues related to the real-time
implementation of this technique and demonstrated it on an
example from the document printing domain.

REFERENCES

[1] K.J. Åström and B. Wittenmark. Computer Controlled Systems.
Prentice Hall, 1997.

[2] C.-L. Chen and G. Chiu. Incorporating human visual model and spatial
sampling in banding artifact reduction. In Proceedings of the American
Control Conference, Boston, MA, June 2004.

[3] M. P.J. Fromherz, L. S. Crawford, and H. A. Hindi. Coordinated
control for highly reconfigurable systems. In Hybrid Systems: Com-
putation and Control (HSCC), Zurich, Switzerland, 2005. Springer-
Verlag.

[4] E. Hamby and E. Gross. A control-oriented survey of xerographic
systems: basic concepts to new frontiers. In Proceedings of the
American Control Conference, Boston, MA, June 2004.

[5] D. Harel. Statecharts: a visual formalism for complex systems. Science
of Computer Programming, 8, 1987.

[6] M. Krucinski, C. Cloet, R. Horowitz, and M. Tomizuka. A mecha-
tronics approach to copier paperpath control. In Proceedings of the
first IFAC conference on mechatronics systems, Darmstadt, Germany,
September 2000.

0.5 1 1.5 2 2.5 3
0

0.2

0.4

po
si

tio
n

(m
)

0 0.5 1 1.5 2 2.5 3 3.5
−5

0

5
x 10

−3

er
ro

r
(m

)

0 0.5 1 1.5 2 2.5 3 3.5
−5

0

5
x 10

−3

es
t.

er
ro

r
(m

)

0.5 1 1.5 2 2.5 3 3.5
0

0.1
0.2
0.3

time (s)

co
nt

ro
l (

m
/s

)

Fig. 7. Plots of: overall trajectory for a single sheet (asterisks are sensor
crossings), tracking error, position state estimation error and variance, and
overall nip speed control signal. Various portions of this nip speed control
signal must be applied by the different nips using the synchronization
mechanism.

0 0.5 1 1.5 2 2.5 3

0
0.1
0.2
0.3

N
ip

−
0

time (sec)

0 0.5 1 1.5 2 2.5 3

0
0.1
0.2
0.3

N
ip

−
1

0 0.5 1 1.5 2 2.5 3

0
0.1
0.2
0.3

N
ip

−
2

0 0.5 1 1.5 2 2.5 3

0
0.1
0.2
0.3

Distributed Nip Control

N
ip

−
3

Fig. 8. Overall nip speed control signal (dashed) along with the drive
signals (solid) superimposed for the first four nips. The drive times are
from Figure 6. Along the x-axis, the line styles show the states of the
FSMs (dotted=Synch, dashed=Comp, solid=Drive). The nips are actuated by
stepper motors with extremely fast dynamics compared to the sheet system.

[7] P. Li, T. Sim, and D. Lee. Time sequential sampling and reconstruction
of tone and color reproduction functions for xerographic printing. In
Proceedings of the American Control Conference, Boston, MA, June
2004.

[8] B. Lincoln and B. Bernhardsson. Optimal control over networks with
long random delays. In Proceedings of the International Symposium
on Mathematical Theory of Networks and Systems, 2000.

[9] R. Luck and A. Ray. An observer-based compensator for distributed
delays. Automatica, 26(5):903 – 908, May 1990.

[10] M. Mauve. Consistency in continuous distributed interactive media.
ACM CSCW, pages 181–190, 2000.

[11] J. Nilsson. Real-time control systems with delays, 1998.
[12] Y. Owada and S. Asahara. Distributed processing system, distributed

processing method and client terminal capable of using the method.
Technical Report US 2002/0194269 A1, US Patent Application Pub-
lication, December 2002.

[13] M. Samek. Practical statecharts in C/C++. CMP Books, 2002.
[14] A. S. Tanenbaum and M. van Steen. Distributed Systems: Principles

and Paradigms. Prentice Hall, New Jersey, 2002.

6375

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

