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Abstract— An extremum seeking control scheme of LTI sys-
tems is introduced in this paper. The extremum seeking problem
is treated as a numerical optimization with dynamic system
constraints. The convergence and robustness of the extremum
seeking scheme is guaranteed by the numerical optimization
algorithm, where a detailed analysis based on the line search
method is addressed. A simulation example is given to show the
effectiveness of the proposed scheme with and without input
disturbance.

I. INTRODUCTION

Traditional automatic control deals with the problem of
stabilization of a known reference trajectory or set point,
that is, so called “tracking” and “regulation” problem. The
reference is often easily determined. However, in some
occasions it can be very difficult to find a suitable reference
value. For instance, the fuel consumption of a car depends
on the ignition angle. It is necessary to change the ignition
angle as the condition of the road and the load of the car
change to maintain the optimal efficiency. Tracking a varying
maximum or minimum of an output (performance) function
is called extremum seeking control [1], which has two layers
of meaning: first we need to seek an extremum of the output
function; secondly, we need to be able to control (stabilize)
the system and drive the output to that extremum.

Earlier investigations of extremum seeking control systems
assume that the system is static, which can be justified if
the time between the changes in the optimal reference is
sufficiently long. It can be also approached as the plant is
a cascade of a nonlinear static map and a linear dynamic
system. The first rigorous proof [2] of local stability of
perturbation based extremum seeking control scheme uses
averaging analysis and singular perturbation, where a high-
pass filter and slow perturbation signal are employed to
derive the gradient information. The book [3] by Krstić et al.
presents a systematic description of the perturbation based
extremum seeking control and its applications. The recent
progress in semi-global stability appears in [4].

Convergence analysis in gradient estimation based ex-
tremum seeking control is performed in [5]. The author of [6]
classifies extremum seeking control as an extension of non-
linear programming problem. where readout map is defined
as a steady state output function g(θ ) := lim

t→∞
y(t)|input fixed at θ .

Thus, given experimentally determined waiting time between
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the measurers, nonlinear programming is successfully ap-
plied as an extremum seeking controller. An extremum seek-
ing method with continuous time non-derivative optimizers
is proposed in [7]. In order to mimic the static function op-
timization, a time-scale separation is applied to the dynamic
system and the non-derivative optimizer, which is achieved
by either accelerating the dynamics of the dynamic system
or decelerating the non-derivative optimizer. An improved
extremum seeking control based on sliding mode [8] is
applied to systems with time delay or slow dynamics and
to avoid the problem of excessive oscillation. An extremum
seeking control problem is proposed and solved in [9] for a
class of nonlinear systems with unknown parameters, where
an explicit structure of the performance function is required.

In this paper, we combine numerical optimization algo-
rithms and controllability directly to form a robust extremum
seeking control scheme, where an line search method pro-
vides candidates of the unknown extremum step by step
and a state feedback controller is designed to track the
candidates. A problem statement is given in Section II, line
search methods and controllability are reviewed in Section
III. The analysis of convergence and robustness is performed
in Section IV, and a simulation example is shown in Section
V. Finally, Section VI concludes the paper.

II. PROBLEM STATEMENT

Consider a SISO linear time invariant system

ẋ = Ax+ Bu, (1)

y = J(x), (2)

where x ∈ R
n is the state, u ∈ R is the input, y ∈ R is

the performance output, and J : R
n → R is a continuously

differentiable function. The matrix A,B is given, however, the
explicit form of the performance function and the minimum
are not known. The following assumptions are made about
the LTI system .

Assumption 2.1: The performance function J(x) is contin-
uously differentiable, bounded below, convex 1 and generally
is unavailable to the designer.

Assumption 2.2: The LTI system is controllable and sta-
ble2.

The first assumption guarantees the existence of the min-
imum, and that numerical optimization algorithms with first
order global convergence property will produce a sequence

1Convexity is assumed here for simplicity. Without convexity, the con-
vergence to global minimum will reduce to first order stationary point.

2Given an unstable but controllable system, we can perform pole place-
ment to form a stable closed loop system.

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

WeA08.6

0-7803-9568-9/05/$20.00 ©2005 IEEE 4428



converging to the global minimizer of the performance
function. Therefore, the goal of extremum seeking control
is to design an input (control law) u based on the output
measurements and state measurements to seek the unknown
global minimum of the performance function J(x) and drive
the state to the vicinity of the minimizer. Moreover, from
the point of view of numerical optimization, the extremum
seeking control problem can be stated as:

min
x∈Rn

J(x) subject to ẋ = Ax+ Bu. (3)

This is a constrained optimization problem, which is different
from the traditional algebraic constraints. Now the state x is
feasible if it is a solution of the dynamic system. In the case
when (A,B) is controllable, there always exists an input u
that transfers x to any where in R

n in a finite time [10], which
justifies the necessity for the second assumption. Although
controllable dynamic system constraints do allow x to be
anywhere in the state space where the numerical optimizer
wants, the way in which x reaches the particular place is
determined by the dynamic system.

III. MATHEMATICAL PRELIMINARIES

A. Line Search Methods

For unconstrained optimization problem min x∈Rn J(x),
each iteration of a line search method computes a search
direction pk ∈ R

n and then decides how far to move along
that direction. The iteration is given by

xk+1 = xk + αk pk, (4)

where the positive scalar αk is called the step length
and requires pk to be a descent direction (one for which
p�k ∇J(xk) < 0), because this property guarantees that the
function J can be reduced along this direction. The steepest
descent direction pk = −∇J(xk) is the most obvious choice
for search direction.

Given a descent direction pk, we face a tradeoff in
choosing step length αk that gives a substantial reduction
of J and not spending too much time making the choice. It
can be found by approximately solving the following one-
dimensional minimization problem:

min
α>0

φ(α) = min
α>0

J(xk + α pk). (5)

An exact minimization of φ(α) to find α is expensive and
sometimes unnecessary. More practical strategies perform an
inexact line search to identify a step length that achieves
adequate reduction in J at minimal cost. In particular, the
Armijo condition

J(xk + αk pk) ≤ J(xk)+ c1αk pT
k ∇J(xk) (6)

prevents steps that are too long via a sufficient decrease
criterion, while the Wolfe condition

pT
k ∇J(xk + αk pk) ≥ c2 pT

k ∇J(xk), (7)

prevents steps that are too short via a curvature criterion,
with 0 < c1 < c2 < 1. The restriction c2 > c1 ensures that
acceptable points exist. Moreover, in order to avoid a poor

choice of descent directions, an angle condition is set up to
enforce a uniform lower bound on the angle between vector
pk and −∇J(xk), that is

cosθk =
−p�k ∇J(xk)
‖pk‖‖∇J(xk)‖ ≥ c3 > 0 (8)

where c3 is independent of k. The following is the first-order
global convergence result for line search methods [11], [12].

Theorem 3.1: Let J : R
n → R be continuously differen-

tiable on R
n and be bounded below. And suppose that ∇J

is Lipschitz continuous with constant L; that is, ‖∇J(y)−
∇J(x)‖ ≤ L‖y− x‖ for all x,y ∈ R

n. If the sequence {xk}
satisfies conditions (6), (7) and (8), then

lim
k→∞

‖∇J(xk)‖ = 0.

The following lemmas will be used in the robustness
analysis of the extremum seeking control scheme.

Lemma 3.2 (Descent Lemma [13]): Let J : R
n → R be

continuously differentiable on R
n. And suppose that ∇J is

Lipschitz continuous with constant L. Then for x,y ∈ R
n,

J(x+ y)≤ J(x)+ y�∇J(x)+
L
2
‖y‖2.

Lemma 3.3: Let J : R
n →R be continuously differentiable

on R
n. And suppose that ∇J is Lipschitz continuous with

constant L. Let αk, pk be the step length and descent direc-
tion, then

J(xk + αk pk)− J(xk) ≤− c
2L

‖∇J(xk)‖2 cos2 θk,

where c = 1 for exact line search, and c = 2c1(1 − c2)
for inexact line search satisfying conditions (6) and (7), θ k

represents the angle between vector pk and −∇J(xk).
Proof: First, for exact line search, αk is the solution of

Equation (5). From the Descent Lemma 3.2, we have J(x k +
α pk) ≤ J(xk)+ α p�k ∇J(xk)+ α2

2 L‖pk‖2 valid for all α > 0.

Letting ᾱ = − p�k ∇J(xk)
L‖pk‖2 > 0, then

J(xk + αk pk)− J(xk) ≤ J(xk + ᾱ pk)− J(xk)

≤ ᾱ p�k ∇J(xk)+
ᾱ2

2
L‖pk‖2

= − (p�k ∇J(xk))2

L‖pk‖2 +
L‖pk‖2

2

(p�k ∇J(xk))2

(L‖pk‖2)2

= − 1
2L

‖∇J(xk)‖2 cos2 θk.

Second, for inexact line search, αk satisfies con-
ditions (6) and (7). From Lipschitz condition we
have p�k [∇J(xk + αk pk)−∇J(xk)] ≤ ‖pk‖‖∇J(xk + αk pk)−
∇J(xk)‖ ≤ αkL‖pk‖2. Then from (7), we have

−αkL‖pk‖2 ≤ p�k [∇J(xk)−∇J(xk +αk pk)]≤ (1−c2)p�k ∇J(xk).

That is, −αk‖pk‖ ≤− 1−c2
L ‖∇J(xk)‖cosθk. Finally from (6),

J(xk + αk pk)− J(xk) ≤ c1αk p�k ∇J(xk)
= −c1αk‖pk‖‖∇J(xk)‖cosθk

≤− c
2L

‖∇J(xk)‖2 cos2 θk
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Since 0 < c1 < c2 < 1 is required to ensure the feasibility
of inexact line search, we will have c = 2c1(1 − c2) < 1.
This observation is consistent for the upper bound results in
the above two lemmas. That is, we always expect exact line
search to have more decrease along the search direction than
inexact line search.

B. Controllability

Following theorem can be found as Theorem 6.1 in [10].
Theorem 3.4: For LTI system ẋ = Ax + Bu, if (A,B) is

controllable, then for any initial state x(t0) = x0 and any final
state x1 there exists an input u that transfers x0 to x1 in a
finite time. For single input LTI system, the input

u(t) = −B�eA�(t1−t)W−1
c (t1)[eA(t1−t0)x0 − x1] (9)

will transfer x0 to x1 at time t1, where Wc is the controllability
Gramian and can be expressed as

Wc(t1)=
∫ t1

t0
eA(t1−τ)BB�eA�(t1−τ)dτ =

∫ t1−t0

0
eAτ BB�eA�τ dτ.

IV. EXTREMUM SEEKING CONTROL

A. An Extremum Seeking Scheme

Now, given a controllable LTI system, we can combine
a numerical optimization algorithm and the state tracking
controller (9) to form an extremum seeking control scheme
that automatically minimizes the convex performance func-
tion y = J(x). The basic scheme is outlined as follows.

Extremum Seeking Scheme

1) Step 0. Given x0,t0 = 0, set ε0 and k := 0
2) Step 1. Use an exact/inexact line search method to

produce xk+1 = xk + αk pk, where the sequence {xk}
will converge to the global minimum of the convex
performance function. If ‖∇J(xk)‖ < ε0, then stop.

3) Step 2. Choose δk, let tk+1 = tk + δk, and the input
during tk ≤ t ≤ tk+1 is

u(t) = −B�eA�(tk+1−t)W−1
c (tk+1)[eAδk xk − xk+1], (10)

where

Wc(tk+1) =
∫ δk

0
eAτ BB�eA�τ dτ (11)

4) Step 3. Set k ← k + 1. Go to step 1.

B. Convergence Analysis

Theorem 4.1: Assume that LTI system (1) is controllable,
and the performance function (2) J : R

n →R is continuously
differentiable on R

n, bounded below and convex. Further-
more, suppose that ∇J is Lipschitz continuous with constant
L. If the extremum seeking scheme in Section IV-A is
applied, the performance function will be globally minimized
as t → ∞.

Proof: From the extremum seeking scheme, any line
search method with first order global convergence will pro-
duce a descent sequence {xk} that converges to the global
minimum of the performance function as k → ∞. And the
controller (10) interpolates between the {xk} precisely within

finite time δk from xk to xk+1, thus the performance function
achieves the global minimum as t → ∞.

Corollary 4.2: In addition to the assumptions in Theorem
4.1, let x∗ denote the unknown global minimum of the
performance function. If J is strongly convex on R

n, and
steepest descent algorithm with exact line search is used in
the extremum seeking scheme. Then the state will converge
to the ε neighborhood of x∗ at most time t = ∑N

k=1 δk, where
N = log(( f (x0)− f (x∗))/ε)

log(1/h) for some 0 < h < 1.
Proof: If J is strongly convex on R

n, which means
there exist constants Q,q > 0 such that [14]

qI 	 ∇2 f (x) 	 QI

for all x ∈ R
n. And if a steepest descent algorithm is used in

the extremum seeking scheme, letting h = 1−q/Q < 1, we
must have f (xk)− f (x∗) ≤ ε after at most

N =
log(( f (x0)− f (x∗))/ε)

log(1/h)

iterations of the steepest descent method with exact line
search [14]. Thus, the state x will converge to the ε neigh-
borhood of x∗ at most t = ∑N

k=1 δk.

C. Robustness Analysis

The main restriction of Theorem 4.1 is that the controller
needs to interpolate precisely between the two candidates
xk and xk+1. In practical applications, noisy output or state
measurements, input disturbance or saturation, nonlinear
system dynamics and computational error will be detrimental
to this theoretical result. That is, the controller u may be only
able to transfer states to the neighborhood of xk+1. In fact, the
line search method will produce a sequence of {x̂ k}, where
x0 = x̂0 and

xk+1 = x̂k + αk pk, x̂k+1 = xk+1 + ek+1.

We will assume that ‖ek‖ to be bounded, which generally is
the case for input disturbance or computational error given
a stable system. For example, let û(t) = u(t)+∆u(t), where
u(t) is given as in (10) to transfer from x̂ k to xk+1 = x̂k +αk pk,
then

x̂k+1 = eAδk x̂k +
∫ tk+1

tk
eA(tk+1−τ)Bû(τ)dτ

= eAδk x̂k +
∫ tk+1

tk
eA(tk+1−τ)Bu(τ)dτ

+
∫ tk+1

tk
eA(tk+1−τ)B∆u(τ)dτ

= xk+1 + ek+1,

where ek+1 =
∫ tk+1

tk eA(tk+1−τ)B∆u(τ)dτ will be bounded if the
system is stable and the input disturbance is bounded. Thus,
we will hope that a well designed line search method will
convey its robustness to the extremum seeking scheme. That
is, the new sequence {x̂k} may be able to converge to the
neighborhood of the minimum given the error e k is bounded.
Indeed, that is shown in the following theorem.

Theorem 4.3: Suppose that LTI system (1) is controllable
and stable, and the performance function (2) J : R

n → R

4430



is continuously differentiable on R
n, bounded below and

convex. Furthermore, suppose that ∇J is Lipschitz contin-
uous with constant L. If the extremum seeking scheme in
Section IV-A is applied, where the controller (10) is only
able to transfer the current state x̂k to x̂k+1 = xk+1 + ek+1

and xk+1 = x̂k + αk pk. The new sequence {x̂k} is a descent
sequence, that is

J(x̂k+1) < J(x̂k),

given

‖ek+1‖≤ c‖∇J(x̂k)‖2 cos2 θk

L(
√‖∇J(xk+1)‖2 + c‖∇J(x̂k)‖2 cos2 θk +‖∇J(xk+1)‖)

,

(12)
where c = 1 for exact line search and c = 2c1(1− c2) for
inexact line search satisfying conditions (6) and (7).

Proof: Now, for line search method at step k + 1 and
from Lemmas 3.2 and 3.3 we have

J(x̂k+1)− J(x̂k) = J(xk+1 + ek+1)− J(x̂k)

≤ J(xk+1)+ ∇J(xk+1)�ek+1 +
L
2
‖ek+1‖2 − J(x̂k),

≤ ∇J(xk+1)�ek+1 +
L
2
‖ek+1‖2 − c

2L
‖∇J(x̂k)‖2 cos2 θk

≤ L
2

[
‖ek+1‖2 + 2

‖∇J(xk+1)‖
L

‖ek+1‖− c
L2 ‖∇J(x̂k)‖2 cos2 θk

]

=
L
2

[(
‖ek+1‖+

‖∇J(xk+1)‖
L

)2

− 1
L2

(
‖∇J(xk+1)‖2 + c‖∇J(x̂k)‖2 cos2 θk

)]
.

That is, if we have

‖ek+1‖ <
1
L

(
√
‖∇J(xk+1)‖2 + c‖∇J(x̂k)‖2 cos2 θk −‖∇J(xk+1)‖)

=
c‖∇J(x̂k)‖2 cos2 θk

L(
√‖∇J(xk+1)‖2 + c‖∇J(x̂k)‖2 cos2 θk +‖∇J(xk+1)‖)

,

we can obtain J(x̂k+1)− J(x̂k) < 0.
Although the bound (12) is very conservative, it can give

us some insights of the robustness of the extremum seeking
scheme. First the exact line search allows a larger error
bound than the inexact line search. Second, we can see that
the bound is an increasing function of ‖∇J(x̂ k)‖. That is,
when x̂k is far away from the minimizer of the performance
function, we will expect the gradient to be large and thus the
error the scheme can tolerate is also large. This observation
implies that the extremum seeking scheme will be very
robust until the gradient converges to some invariant set,
which is illustrated in the following corollary.

Corollary 4.4: In addition to the assumptions in Theorem
4.3, if a steepest descent algorithm is used in the extremum
seeking scheme IV-A. And assuming ‖ek‖ ≤ eL, then we
will have the gradient of the sequence {x̂ k} converges to the
invariant set

‖∇J(x̂k)‖ ≤ LeL

c
[
√

(1+ αkL)2 + c+(1+ αkL)], (13)

where c = 1 for exact line search and c = 2c1(1− c2) for
inexact line search satisfying conditions (6) and (7).

Proof: Now we have cosθk = 1 for steepest descent
algorithm, and from Equation (12), as long as

1
L

(
√
‖∇J(xk+1)‖2 + c‖∇J(x̂k)‖2 −‖∇J(xk+1)‖) > eL,

we will always have J(x̂k+1) < J(x̂k). So we can find a
conservative bound on ∇J(x̂k) given the error bound eL.

For steepest descent method, xk+1 = x̂k −αk∇J(x̂k). And
from Lipschitz condition,

‖∇J(xk+1)‖ ≤ ‖∇J(xk+1)−∇J(x̂k)‖+‖∇J(x̂k)‖
≤ (1+ αkL)‖∇J(x̂k)‖.

Now the bound can be found via
1
L

(
√

‖∇J(xk+1)‖2 + c‖∇J(x̂k)‖2 −‖∇J(xk+1)‖) ≤ eL

⇔
√
‖∇J(xk+1)‖2 + c‖∇J(x̂k)‖2 ≤ LeL +‖∇J(xk+1)‖

⇔ c‖∇J(x̂k)‖2 ≤ 2LeL(1+ αkL)‖∇J(x̂k)‖+ L2e2
L

⇔ [
√

c‖∇J(x̂k)‖− LeL√
c
(1+ αkL)]2 ≤ L2e2

L[(1+ αkL)2/c+ 1]

⇔ ‖∇J(x̂k)‖− LeL

c
(1+ αkL) ≤ LeL

c

√
(1+ αkL)2 + c

Thus, we will have the gradient of the sequence {x̂ k}
converges to the invariant set

‖∇J(x̂k)‖ ≤ LeL

c
[
√

(1+ αkL)2 + c+(1+ αkL)].

Observed from Equation (13), a diminishing step length α k

is preferred later on to decrease the bound of the invariant set.

As αk → 0, the bound converges to
(

1
c +

√
1
c2 + 1

c

)
LeL. This

is again coincident with theory of numerical optimization,
where generally a diminishing step length is required for
the algorithms to converge to the minimum. And if there is
no error between x̂k and xk, we will see that the gradient
converge to zero. Moreover, exact line search can achieve a
smaller bound than the inexact line search.

V. EXAMPLES

Consider a second order stable LTI system in its control-
lable canonical form. Let x = [x1,x2]�, xk = [xk

1,x
k
2]
�

ẋ =
[

0 1
−2 −3

]
x+

[
0
1

]
u,

y = J(x) = 5x2
1 + x2

2 + 4x1x2 −14x1−6x2 + 20.

Here we postulate the explicit form of the performance func-
tion is only for simulation purpose. The performance func-
tion J(x) has its minimizer at x∗ = (1,1) and J(1,1) = 10.
The explicit form of the function and its minimum are both
unknown to the designer. In the extremum seeking control,
we only need to access the function value y and its gradient 3

for arbitrary x ∈ R
n. For steepest descent algorithm with

3The gradient information is required since we use steepest descent
algorithm in the extremum seeking scheme. We can use derivative free
optimization methods to avoid the requirement of gradient information, and
the same analysis of the extremum seeking scheme based on steepest descent
can be expanded to the derivative free methods.
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exact line search [15], we can compute the search direction
pk = −∇J(xk

1,x
k
2) = [−10xk

1 − 4xk
2 + 14,−2xk

2 − 4xk
1 + 6]� =

[pk
1, pk

2]
�. Then in this example, we can derive an explicit

expression of the step length αk = argminα f (xk + α pk) =
(pk

1)
2+(pk

2)
2

2(5(pk
1)

2+(pk
2)

2+4pk
1 pk

2)
. Note that generally speaking, exact line

search is not possible, however, this example here is only for
simplicity, and similar results are expected for inexact line
search as well as other optimization algorithms.

Now we apply the extremum seeking scheme in Section
IV-A, where steepest descent algorithm of exact line search
is used. Given δk = 2, x0 = [−10,10], the simulation results
are shown in Figure 1 with controller (10) interpolating
between xk and xk+1 precisely within finite time, the per-
formance function (Figure 1 (a)) approaches to its minimum
at J(1,1) = 10. The steepest descent algorithm produces a
sequence {xk} as a guideline of the controller. The trajectory
between xk and xk+1 is shaped by the dynamical system
constraints. This can be viewed clearly in Figure 1 (d), where
the blue circle represents the {xk} and the red dashed line
represents the state trajectory. The choice of δk is rather
heuristic in this example, which is actually a very important
design factor. We can see that the smaller δk is the larger
control force we need to fulfill the transfer. Thus, δ k should
be chosen appropriately to not exceed the practical limit
on the control force. There is always a tradeoff between
the extremum seeking time and the control gain. However,
the robustness analysis of the extremum seeking scheme
provides additional flexibility to the choice of δk since the
algorithm can accommodate certain error especially in the
beginning. That is, we can allow a fast but loose tuning in
the beginning and later on we may need a slow but fine
tuning to get even closer to the extremum.

Moreover, a random disturbance uniformly distributed
with amplitude 1 is introduced to the input. The simulation
results are shown in Figure 2. Now, the controller is not
able to reach the desired destination precisely. For example,
at the first step, the controller cannot interpolate exactly
between the initial position x0 = (−10,10) and the desired
destination x1, instead it arrives at x̂1 due to the input
disturbance. Then the next search destination is generated as
x2 = x̂1 −αk∇J(x̂1), while again the state only arrives at x̂2,
therefore, eventually we will still have a descent sequence
{x̂k} as long as the error ek satisfies certain bound (12).
The comparison of {xk} and {x̂k} can be seen in Figure
2 (d), where the blue circle represents the {xk}, magenta
square denotes the {x̂k} and the red dashed line is the state
trajectory. The performance function again approaches its
minimum but with a longer oscillation due to the disturbance,
as shown in to Figure 2 (a). This result shows that the
robustness analysis in Section IV-C is conservative.

VI. CONCLUSIONS

In this paper, we successfully incorporate numerical op-
timization algorithms into an extremum seeking control
scheme for controllable LTI systems. The convergence of
the proposed extremum seeking scheme is guaranteed given
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Fig. 1. Extremum Seeking Control for LTI system: (a) Performance
Function; (b) States; (c) Control Input; (d) Phase Portrait, steepest descent
sequence {xk} over the contour of the performance function.
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Fig. 2. Extremum Seeking Control for LTI system with input disturbance
(a) Performance Function; (b) States; (c) Control Input; (d) Phase Portrait,
steepest descent sequence {xk},{x̂k} over the contour of the performance
function.

the optimization algorithm is globally convergent and the
controller is able to transfer state between the guideline {xk}
produced by the optimization algorithm. We also analyze
the robustness of the extremum seeking scheme, which is
inherited from the robustness of the line search method.
In particular, the steepest descent algorithm with exact line
search is used in the simulation to show the effectiveness of
the method. Therefore, in order to fulfill a better extremum
seeking controller, a more robust optimization algorithm is
needed. Also we would like to design a robust controller to
deal with various disturbances, noises, rather than put all the
burden on the optimization algorithms.
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