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Abstract— The problem of transmission adaptation over a
correlated time-varying wireless channel is formulated as a
Constrained Markov Decision Process. The model includes
a transmission buffer and finite state Markov model for
time-varying radio channel and incoming traffic. This cross-
layer optimization problem is formulated as to minimize the
transmission cost (e.g. power or bit-error-rate) under the
constraint on a buffer cost such as the transmission delay.
Under the assumptions on submodularity and convexity of the
cost function it is shown that the optimal randomized policy is
monotonically increasing with the increase of the buffer state.

Index Terms— Value function, scheduling, optimal policy,
Markov Decision process, correlated sources, correlated chan-
nels, transmission adaptation, supermodularity, stochastic dom-
inance

I. INTRODUCTION

The use of adaptation of transmission parameters over
time-varying channels has become an ubiquitous paradigm
in the field of wireless communications. The necessity for
this approach stems from the variable nature of the wireless
medium as well as the variable nature of the incoming traffic
to be transmitted over it. The adaptive resource allocation
can alleviate the adverse influence of the variable channel
and incoming traffic, and optimize the use of limited trans-
mitter resources. Several wireless standards such as EDGE,
IS-856, 802.11a,b and g, WCDMA and 1xEVDo already
employ some sort of transmission adaptation based on the
channel condition. The parameters that can be adapted at
the transmitter are numerous and we will here name some
of them. For example, it is possible to vary the transmission
power which leads to power control algorithms. Some other
options are adaptation of employed transmission rates, code
rates or a combination of the above parameters.

In this paper we address the problem of finding optimal
transmission adaptation policies for a single user data stream,
their structure and related optimal costs. A very general
approach to this problem is posed without restricting to the
specific problem with a specified fixed costs. This approach
is adopted in order to demonstrate that certain properties
of adaptive transmission policies are applicable for different
applications. We illustrate our general results with the ex-
amples well suited for transmission over wireless channels.
Nevertheless, the results of this paper are quite general and
can be applied to any adaptive transmission problems where
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resource-based costs have to be minimized while satisfying
the constraint on certain QoS parameters.

The following model-related assumptions are employed in
this paper. Firstly, it is assumed that processing is slotted
and that scheduling decisions are made on regular inter-
vals of length T . This assumption is commonly employed
in practical wireless systems. By restricting ourselves to
slotted processing, it is also possible to use the framework
of constrained Markov decision processes and avoid the
use of computationally demanding Semi-Markov decision
processes. Secondly, the channel is assumed to be block-
wise constant channel. In the context of a fading channel this
implies the block fading channel model used by many authors
(cf. [1]). The third model assumption is that the channel and
source states are perfectly observable (precluding the use of
Partially Observable Markov decision processes).

In the next subsection we will review some relevant related
work on scheduling algorithms as well as general results on
the properties of dynamic programming algorithms. Next,
we will discuss the importance of the results presented in
this paper as the foundation for devising efficient adaptive
learning control algorithms for adaptive transmission prob-
lems. In Section II we pose the problem of choice of opti-
mal adaptive transmission policies as a constrained Markov
Decision Process (MDP) and define all the ingredients that
constitute it. Some general mathematical results to be used
in later sections are given in Section III. Our results on the
monotonic increasing structure of the optimal deterministic
and randomized policies are given in Section IV.

Notation: Upper case bold letters denote random variables,
while lower case letters are reserved for the instances of
random variables. Let X(y) denote the random variable X
conditioned on the outcome y of the random variable Y.

A. Related Work

Several recent publications deal with the problems of
resource allocation adaptation for transmission over time-
varying fading channels under constraints on the transmission
delay [2], [3]. All of these results state the problem of finding
the optimal policies as MDP and use standard dynamic
programming tools to design optimal policies. Namely [2]
addresses the problem of buffer-aware power and rate adap-
tation under delay constraints and demonstrate that adjoined
multiobjective optimization problem can be posed as an
unconstrained MDP. The structure of optimal deterministic
rate adaptation policies for non-correlated channels have
been analyzed in [4].
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In order to establish our structural results on the optimal
policies and costs we use general results on Constrained
MDP’s from the monograph [5]. We also use a result by
Smith and McCardle [6] that gives a comprehensive survey
of properties of the value function that are preserved with
the iterations of the dynamic programming.

B. Paper Insights and Contributions

The main result of this paper is the formulation of a rate
adaptive transmission scheduling problem using constrained
Markov decision process framework. We give two examples
on how this generic model can incorporate some known
transmission adaptation problems. Based on this generic
model and using supermodularity and convexity properties
we establish several structural results on the optimal costs
and policies.

For an active constraint on the buffer cost, it is shown
in Theorem 2 that if the Lagrangian cost function of this
model satisfies certain supermodularity and convexity prop-
erties, then the optimal deterministic scheduling policies are
monotonically non-decreasing in the buffer occupancy. This
simply means that irrespective of the channel and source
states and their statistical description, the optimal scheduler
takes more packets from the buffer with the increase of
the buffer occupancy. This has practical implications for
deriving efficient policy search algorithms (such as policy
iteration [7]) as the search for the good policy can be
constrained only to the subset of non-decreasing policies in
the buffer size.

Furthermore, we derive the expression for the number of
such deterministic optimal structured policies. For a general
constraint we demonstrate that optimal randomized policies
are probabilistic mixture of two deterministic monotone non-
decreasing policies and present a simple algorithm that can
produce these policies starting from deterministic policies.
For large state spaces, the standard dynamic programming
algorithms are hard to implement and finding of optimal
scheduling policies is a very computationally demanding
task. Therefore the significance of these structural results
lies in the fact that we can restrict the search for a good
suboptimal policy within only a certain constrained subset
of policies.

II. STATEMENT OF THE PROBLEM

We state here the most general communication model
that will be analyzed in this paper. The simpler analyzed
examples can be obtained by choosing particular values for
the parameters of this general model. We will use the frame-
work of Constrained Markov Decision Processes (CMDP) to
dynamically control our scheduling system that evolves in a
stochastic manner. It is assumed that the scheduling decisions
are made at the beginning of each block of duration T .

As in [5], a CMDP is defined with the tuple
{S,A, P, c, d}. We now proceed to explain in detail the
meaning of each component that constitutes the CMDP
formulation of our communication model.

Let the set of states be denoted with S. Each state s ∈ S
is composed of three components s = [h, b, f ] and S =
H×B×F . The first component of the state space h ∈ H is
the current perfectly observable channel state. It is assumed
that the channel is independent of the action, buffer state and
incoming traffic. Therefore h is an uncontrollable component
of the system state. It is assumed that channel states form an
ergodic first order Markov chain with transition probabilities
ph(h|h′). Let H(h′) be the random variable of the channel
state in the next block as conditioned on the previous state
h′.

Example 1: The channel can be modelled as finite state
Markov Chain (cf. [8]). In this model it is assumed that
transmission is performed in blocks of length T during
which the channel state is represented by the current channel
state supplied by the estimator at the receiver. The number
of channel states is considered finite and the memory of
the channel is limited to one. This model can be further
simplified (as in [8]), only to allow the transitions between
adjacent channel states.

Example 2: The complex channel gain h̃n at a certain
transmission block n is modelled as p-th order autoregressive
model

h̃n =
p∑

j=1

αj h̃n−j + vn (1)

where vn is white (complex) Gaussian noise with variance
σ2 and mean µ. In this model, the state of the channel at n-th
block is the vector hn = {h̃n−1, . . . , h̃n−p}. The coefficients
αj can be designed to approximate a specific fading auto-
correlation function using Yule-Walker equations. If p = 1
this model represents an extension of the Markov Chain to
continuous state variables. Assuming coherent detection at
the receiver, the amplitude channel gain of the complex gain
h̃ is |h̃|.

The second component of the state space is the current
buffer state b ∈ B where set B = {0, 1, , . . . , L − 1}
corresponds to all possible states of the buffer occupancy
in packets.

The third component of the state space is f ∈ F which
is the current perfectly observable incoming traffic state. Let
the set F = {0, 1, . . .} and let F be the maximum number
of packets that can be received during a certain block with
probability greater than some small ε. The incoming traffic
state is assumed to be independent of the actions and the
channel state and is therefore also uncontrollable. Incoming
traffic state forms an ergodic Markov Chain with transition
probabilities pf (f |f ′).

The set of actions A = {1, . . . , U} comprises of all
actions available in all the states. Let As ⊂ A be the
set of the actions that are available in the state s. Each
action is interpreted as a choice of specific transmission
rate/modulation order and/or power level at the transmitter.
Let Ψ(a) return the number of packets to be taken from the
buffer provided that action a is applied. It is assumed that
this function is increasing in a. An action a is available in
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state s = [h, b, f ] i.e.

a ∈ As ⇔ Ψ(a) ≤ b and Ψ(a) ≥ v(b − (L − 1 − F ))

where v(x) is a ramp function defined as v(x) = x is
x ≥ 0 and v(x) = 0 otherwise. Note that the first condition
prohibits sending more than available packets from the buffer
while the second condition constraints the probability of
overflows and packet dropping to ε. In general, the optimal
actions in a state s of a CMDP are randomized and are given
as random variable A with the support on As.

The next component of the CMDP description is the set
of stochastic transition matrices P that are defined for all
actions a ∈ A. The transition probability between the states
s = [h, b, f ] and s = [h′, b′, f ′] are given with

p(s′|s, a) = δ(b′ − min(b + f − ψ(a), L))ph(h′|h)pf (f ′|f)
(2)

where a ∈ As and δ(x) = 1 if x = 0 while δ(x) =
0 otherwise. These transition probabilities form a set of
stochastic matrices parameterized by the action a.

The cost c(s, a) is the immediate cost of taking action a in
the state s. It is assumed that this cost is independent of the
next state of the system. The immediate cost can be given
different interpretations and forms and we give the following
example.

Example 3: Consider the channel as explained in Exam-
ple 1. Let the actions a ∈ A = {0, . . . , Ã} correspond to
different 2a-PSK modulation order used at the transmitter.
It follows simply that Ψ(a) = a. For a fixed transmission
power we can define the cost as average BER cost i.e.

c([b, h, f ], a) =
∫

γ∈Γh

BER(γ, a)ph(γ)dγ (3)

where expectation is over signal to noise ratio (SNR) γ
conditioned on the channel state being in state h i.e. γ ∈
Γh. The probability distribution function ph(γ) of the SNR
conditioned on the channel state being h is considered
known. Note that instantaneous bit-error rate BER(γ, a) is
commonly a convex for smaller values of γ (cf. [9]) and that
can carry over to convexity and non-increasing property of
c(s[b, h, f ], a) in h.

Example 4: Consider the channel as explained in Exam-
ple 2 and assume that the transmitter is performing power
adaptation of transmitted code words. Let the actions a ∈
A = {0, . . . , Ã} correspond to rate a/N codes employed
at the transmitter, where N is the number of symbols in the
code word. It follows simply that Ψ(a) = a. Each rate action
chosen at the transmitter determines specific transmission
power for a fixed BER. We can define the transmission cost
as the power

c([b, h, f ], a) =
σ2

Γ(BER)h

(
2Ψ(a)/N − 1

)
, (4)

that is necessary to achieve rate Ψ(a)/N for specified bit
error rate BER, and noise variance σ2. The previous power
cost comes from the expression for the rate R (cf. [2])

R = log2

(
1 + Γ(BER)

P

σ2

)
, (5)

that can be achieved for signal to noise ratio P
σ2 with bit

error rate BER. Here the SNR gap Γ(BER) of a practical
modulation corresponding to the classical Shannon capacity
formula can be found in e.g. [10].

The immediate cost d(s, a) is the optimization constraint
and will be related to the buffer cost. As an example we
can consider that this cost corresponds to the delay incurred
by storing b packets in the buffer. Therefore the immediate
buffer cost can be defined as

d([b, h, f ], a) =
b

F̄
(6)

where F̄ is the average number of incoming packets. Note
that according to the Little’s formula expectation of this
constrained cost over the evolution of the system will give
the average delay incurred in the buffer.

We will employ the average cost criteria [7] as a criteria
for finding the optimal control of formulated CMDP. Let
π = {A1,A2, . . .} be a sequence of randomized actions
that constitutes a policy. Then we want to find the policy π
that minimizes

C(π) = E

[
lim

N→∞
sup

N∑
i=1

1
N

c(Sn,An)

]
(7)

subject to buffer cost constraint

D(π) = E

[
lim

N→∞
sup E

1
N

N∑
i=1

d(Sn,An)

]
≤ D̃. (8)

We will call the constraint (8) active if the equality holds in
(8) for the optimal policy π. The expectation in (7) and (8)
is with respect to system state Sn, randomized actions An

given the initial state distribution. Denote the optimal cost

C∗ = min
π

C(π), (9)

and any policy π that minimizes C(π) be called the optimal
policy.

We now review Theorem 12.7 from [5] to demonstrate
that the optimal average cost and policy of the constrained
Markov Decision Process can be found using an uncon-
strained MDP’s and Lagrangian approach.

Theorem 1: The optimal cost function of the CMPD prob-
lem satisfies

C∗ = min
π

sup
λ≥0

J(π, λ)−λD̃ = sup
λ≥0

min
π

J(π, λ)−λD̃ (10)

where

J(π, λ) = E

[
lim

N→∞
1
N

N∑
i=1

c(Sn,An;λ)

]
(11)

c(s, a;λ) = c(s, a) + λd(s, a). (12)
Note that the minimization in the rightmost expression in
(10) can be done only over the set of deterministic policies.
This important Theorem establishes that the CMDP prob-
lem can be solved by solving the appropriate Lagrangian
unconstrained MDP problem and the relative value iteration
algorithm available for this case.
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III. MATHEMATICAL PRELIMINARIES

Let us fix the value of the Lagrange multiplier to λ which
has the meaning of fixing a certain value of delay constraint
D̃. The relative value iteration algorithm (cf.[7]) can be
defined as follows:

1. Select V 0(s;λ), reference state s∗ and specify ε.
2. For each s ∈ S, compute

V m+1(s;λ) = min
a

[
c(s, a;λ) +

∑
s′∈S

p(s′|s, a)V m(s′;λ)

]
(13)

3. Normalize V (s;λ) for each s ∈ S as

V m+1(s;λ) = V m+1(s;λ) − V m+1(s∗;λ) (14)

4. If
|V m+1(s;λ) − V m(s;λ)| < ε (15)

go to step 5. Otherwise increment m by 1 and return to step
2.

5. For each s choose the policy according to

πλ(s) ∈ arg min
a

[
c(s, a;λ) +

∑
s′∈S

p(s′|s, a)V (s′;λ)

]
(16)

and stop.
Let V (s) = limm→∞ V m(s). For a feasible action a ∈ As

in state s we can define the state-action value function

Q(s, a) = r(s, a) +
∑
s′∈S

p(s′|s)V (s′). (17)

Function Q(s, a) can be perceived as the equivalent immedi-
ate cost for the dynamic stochastic problem that can be used
to find the optimal action in a given state. Now, the optimal
policy can be found according to

π(s) = arg min
a

Q(s, a) (18)

while the optimal cost is

C∗ = E[V (S)]. (19)

where the expectation is over the initial state distribution.
The value iteration algorithm can also be used to determine
the optimal randomized policy for a general constraint D̃. It
has been shown in [11] that an optimal randomized policy
for a discounted CMDP problem with a single constraint is
mixed policy that is a probabilistic mixture of two stationary
deterministic policies taken with probabilities q and 1 − q
where q depends on the constraint D̃. The same result has
been later extended for average cost problems in [12].

A. Proof Guidelines

The proof dealing with establishing monotonic structure of
scheduling policies in this paper follow the next four steps:

1) Problem Formulation The scheduling problem is for-
mulated as an MDP with average cost criteria.

2) Existence Results For the stated problem it is shown
that relative value iteration converges to the optimal relative
value function.

3) Supermodularity It is shown that supermodular property
of the value-action function is preserved with the iterations
of the relative value iteration algorithm.

4) Monotonicity of Policies As the value-action function
is supermodular it implies that the policy is monotonically
increasing in a certain component of the state space.

We take a brief detour to give the explanations and
definitions that will be necessary to formalize the proofs.
Under the assumption that in each state s the support of F
is including the set {0, . . . ,max Ψ(a)} the step 2) follows
from the observation that our models are unichain Markov
Decision Processes which implies the convergence of the
relative value iteration for bounded costs [7] .

Regarding the step 3) we need the definition of the
submodular function.

Definition 1: A function f : A × X × P → R is
supermodular (has increasing differences) in (a, x) for a fixed
parameter p ∈ P , if for all a′ ≥ a and x′ ≥ x,

f(a′, x′; p) − f(a, x′; p) ≥ f(a′, x; p) − f(a, x; p). (20)
A function is f : A × X × P → R is submodular (has
decreasing differences) in (x, a) if the conditions of previous
definition are satisfied and the inequality in (20) is flipped.

A central question for the interest of establishing the
monotonic structure of the scheduling policies of step 4 is
to identify when

π(x) = arg min
a∈A

f(a, x; p) (21)

will be non-decreasing in x for any parameter p ∈ P . This
result was due to Topkis [13] and shows that submodularity
of the function f in the pair (x, a) implies that π(x) is non-
decreasing function.

IV. STRUCTURED POLICY RESULTS

In this section we prove under quite general conditions
that the optimal policy is monotonically increasing in the
buffer state. In the course of this section we will assume
the following: (1) the number of packets sent from the
buffer after taking the action a is equal to the order of
the action a i.e.Ψ(a) = a, (2) the scheduling decisions are
performed periodically with period T , (3) CMDP is assumed
to be unichain, 1 (4) relative value iteration converges. In
the following theorem we first consider the case that the
delay constraint D̃ is chosen such that a deterministic policy
exists that is optimal for the given problem and satisfies the
constraint, i.e. the constraint is active. Later this condition
is relaxed and a similar property is shown for general
constraints and randomized policies.

Theorem 2: For a certain λ > 0, let the immediate cost
function c([h, b, f ], a;λ) given with (12) be submodular and
jointly convex function of (b, a) and increasing function of
b. Then the optimal policy π([h, b, f ]) is non-decreasing
function of b for b < L − (F − 1).

Proof:

1The unichain assumption is not necessary for our proofs if discounted
costs [7] are used in lieu of average costs.
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In order to prove that π([h, b, f ]) is increasing function in
b, we have to demonstrate that Q([h, b, f ], a;λ) is submodu-
lar function in the pair (b, a). We first notice that according to
the statement of the theorem c([h, b, f ], a;λ) is submodular
function of (b, a). Therefore we are only left to show that
the second term of (17)

Q1([h, b, f ], a;λ) (22)

=
∑

h′∈H

∑
f ′∈F

ph(h′|h)pf (f ′|f)V ([h′, b − a + f ′, f ′];λ)

is submodular function of (b, a) for any h and f . The
min(·, L) operator in the previous equation is dropped since
we are concerned only with the behavior of Q([h, b, f ], a;λ)
when b < L − (F − 1) (cf.(2)).

Here we used the formulation of our model to simplify
the equation (17). We first state the following Lemma whose
proof is postponed for Appendix.

Lemma 1: V ([h, b, f ];λ) is convex function of b for any
h, f and λ given a jointly convex immediate cost function
c([h, b, f ], a;λ) in (b, a).
Now, if function V ([h, b, f ];λ) is convex in b, it can be
shown that V ([h, b−a+f, f ];λ) is also submodular in (b, a)
for any h and f . This follows by noting that for a convex
function V ([h, b, f ];λ) of b it holds that

V ([h, x, f ];λ) + V ([h, y, f ];λ) ≥
V ([h, αx + (1 − α)y, f ];λ) + V ([h, (1 − α)x + αy, f ];λ)

which is a direct consequence of the definition of convex
function V ([h, b, f ];λ). Substituting x = b − a′ + f, y =
b′−a+ f and α = (a−a′)/(a−a′ + b− b′) in the previous
equation and rearranging the terms we can get the following

V ([h, b′ − a′ + f, f ];λ) + V ([h, b′ − a + f, f ];λ) ≥
V ([h, b − a′ + f, f ];λ) + V ([h, b − a + f, f ];λ)

For a′ ≥ a and b′ ≥ b this relation establishes the
submodularity of V ([h′, b − a + Ā];λ) in the pair (b, a) for
some channel and traffic states h and f . Furthermore, positive
weighted sum of submodular functions is also submodular,
which establishes the submodularity of Q([h, b, f ], a;λ) in
(b, a) and concludes the proof. �

Remark 1: Note that in our transmission scheduling
framework c([h, b, f ], a;λ) is submodular and jointly convex
in (b, a). This is the consequence of c([h, b, f ], a;λ) being a
sum of two convex functions that are dependent only on b
and a respectively.

The results of the previous Theorem can significantly
reduce the state of possible optimal policies in the given
framework. Let us assume that there are A actions, L buffer
states, K channel states and F = 1 incoming traffic states
(i.e. we assume that the incoming traffic is i.i.d.). Then the
number of possible policies that possess the monotonically
increasing structure N(A,L,K) is equal to

N(A,L,K) =

(
A +

A−1∑
l=1

(
L − 1

l

)(
A

l + 1

))K

where the sum goes through all possible numbers of thresh-
olds where the policy is increasing. This expression can be
further simplified as

N(A, L, K) =
(

L + A − 1!
(A − 1)!L!

)K

(23)

The reduction in the size of the structured policy space
is quite significant as compared to the set of all possible
policies. Consider for example L = 100, A = 5,K = 2 for
which the number of non-structured policies ALK is on the
order of 10140 while the number of structured policies is on
the order of 1013. This reduction in the number of possible
policies we intend to explore further when the channel
and/or incoming traffic model is unknown and neurodynamic
programming with adaptive learning is employed to obtain
the optimal policy.

Theorem 1 demonstrates that the optimal deterministic
policy for a CMDP can be found using the relative value iter-
ation (RVI) in case that the constraint is active. However, we
can still pose the question of finding the suitable Lagrangian
multiplier λ that satisfies a certain constraint with equality.
Note that the average constraint for the optimal policy π∗

λ

for Lagrangian multiplier λ can be given with

D(π∗
λ;λ) = E lim

N→∞
sup

[
1
N

N∑
i=1

d(Sn,An)

]
. (24)

In order to get the average constraint D(π∗
λ;λ) for a specified

λ we have to apply the relative value iteration. As was shown
in [2] when the Lagrangian multiplier λ trade-offs between
the cost and the constraint, D(π∗

λ;λ) is step-wise continuous
decreasing function of λ. An example of this dependance is
shown in Figure 1 given the transmission costs of Example 4
and constrained buffer costs of (6).

A simple algorithm designed to find the smallest λ (that
will be called λ∗) such that the constraint (8) is satisfied can
be formulated as following

λn+1 = λn − εn(D(π∗
λ;λ) − D̃) (25)

where the step εn = 1
n and λ1 is sufficiently large number.

The convergence to λ∗ is ensured as the function∫ λ

0

(
D(π∗

λ;λ) − D̃
)

dλ (26)

is piece-wise linear concave function that attains its global
maximum at λ∗ and its derivative is D(π∗

λ;λ). Therefore the
algorithm (25) is just a gradient descent algorithm.

We now explore the structure of scheduling policies for a
general constraint D̃ with randomized policies. Let vP (s, a)
be a probability that an action a is taken in a state s
under a certain randomized policy P. Under the conditions
of the previous Theorem and using the result [11] it is easy
to show that the optimal randomized policy is a mixture
of two deterministic monotonically increasing policies with
v∗([b1, h, f ], a) ≥ v∗([b2, h, f ], a) for any b1 ≥ b2. Further-
more, optimal randomized policy can have at most two atoms
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of mass in the distribution of v∗([b, h, f ], a) for any fixed b, h
and f .

At the end of this section we demonstrate how to employ
the algorithm (25) and estimated parameter λ∗ to find the
optimal randomized policy for any feasible constraint D̃
with RVI. Let a−

π (s) = mina{a : vπ(s, a) > 0} and
a+

π (s) = maxa{a : vπ(s, a) > 0}. Then it is easy to show
that a−

π ([b1, h, f ]) ≥ a−
π ([b2, h, f ]) and a+

π ([b1, h, f ]) ≥
a+

π ([b2, h, f ]) for any b1 ≥ b2. Note that, according to [14],
the number states with randomized policies in a unichain
MDP model with only one constraint is no more than 1.
In view of [11], we perturb the parameter λ∗ by some δλ
to get λ− = λ∗ − δλ and λ+ = λ∗ + δλ. Next we find
the optimal deterministic policies π∗

λ− and π∗
λ+ and their

respective average constrained costs D− = D(π∗
λ−) and

D+ = D(π∗
λ+). The optimal randomized policy is to be

a mixture of two deterministic policies and let parameter q
determine the probability of taking the policy π∗

λ− and 1− q
be the probability of taking the policy π∗

λ+ . Now, parameter
q can be estimated such that qD− + (1 − q)D+ = D̃. Note
that this optimal randomized policy can be implemented as
round-robin policy as described in [14].

V. CONCLUSIONS

This paper establishes general structural results of optimal
deterministic and randomized policies for the constrained
MDP formulation of the transmission adaptation problems.
Given the particular fading channel state, it is shown that
the optimal policy allocates to transmit more packets with
the increase of the transmit buffer occupancy.

A particularly interesting and useful extension of the work
presented in this paper is to devise efficient adaptive control
algorithms that can adaptively improve the control policies
in unknown environments. Since the state space of the MDP
for our transmission adaptation model can be huge, it is of
interest to employ the structure of the optimal policies in
order to speed up the convergence of algorithms such as the
Q-learning or TD learning [15].

APPENDIX

Proof of Lemma 1
The proof follows by mathematical induction and using

the relative value iteration. Choose V 0([h, b, f ];λ) that is a
convex function of b. Now, we will show that convexity of
V m([h, b, f ];λ) implies the convexity of V m+1([h, b, f ];λ)
in b. According to the value iteration algorithm

V m+1([h, b, f ];λ) = min
a

[c([h, b, f ], a;λ)+ (27)

∑
h′∈H

∑
f ′∈F

ph(h′|h)pf (f ′|f)V m([h′, b − a + f ′, f ′];λ)

⎤
⎦ .

Based on convexity of V m([h, b, f ];λ), it can be easily
shown that V ([h′, b − a + f ′, f ′];λ) is jointly convex in
(b, a). Furthermore, since c([h, b, f ], a;λ) is jointly convex
in (b, a) the sum of convex functions before minimization
in the previous equation is also jointly convex. Using the

property that g(x) = mina f(x, a) is a convex function of
x for a jointly convex function f of (x, a), it follows that
V m+1([h, b, f ];λ) is also convex function of m + 1. �
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