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Transverse Feedback Linearization of Multi-Input Systems

Christopher Nielsen and Manfredi Maggiore

Abstract—1In this note the problem of feedback lineariz-
ing dynamics transverse to controlled invariant manifolds is
considered for multi-input control affine systems. Transverse
controllability indices are introduced which adapt the familiar
notion of controllability indices to assist solving this particular
problem. Sufficient conditions for transverse feedback lineariza-
tion are presented.

I. INTRODUCTION

Many interesting problems in control can be interpreted
as the problem of stabilizing the system state to a set
in the state space. This is for instance the case for the
maneuver regulation (path following) problem. Set stabi-
lization problems have been solved in a variety of ways,
see for instance [1], [2], [3]. When the set in question has
the structure of a smooth manifold, one approach to solve
a set stabilization problem is to transform the dynamics
transverse to the manifold into linear controllable form. This
is referred to as transverse feedback linearization. Transverse
feedback linearization was introduced by Banaszuk and
Hauser in [4], where the authors investigate single-input
systems and invariant manifolds given by periodic orbits.
When feasible, transverse feedback linearization is attractive
due to its simplicity and because it allows one to use a wealth
of synthesis techniques for linear controllable systems.

In [5], [6], we presented conditions for a system to be
transverse feedback linearizable with respect to an arbitrary
controlled invariant manifold. Our conditions generalize the
results in [4]. In this paper we consider multiple input sys-
tems and present sufficient conditions for global transverse
feedback linearization.

II. NOTATION AND MATHEMATICAL PRELIMINARIES

Throughout this paper by a manifold is meant a smooth
manifold and by a submanifold is meant an embedded
submanifold. For details on the material presented in this
section the reader may refer to [7], [8]. We denote by ¥ (x)
the flow of a smooth vector field v through the point z. Given
a distribution D, let D+ be its annihilator while [D(z)]* is
the orthogonal complement of the vector space D(x).

A. Tangent bundle, contractible manifolds

If f: M — N is a diffeomorphism of manifolds, then
the tangent bundles 7'M and T'N are said to be equivalent,
denoted TM ~ T'N. An m-dimensional manifold M is said
to be parallelizable if TM ~ M x R™. One has that M
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is parallelizable if and only if there exist m vector fields
Vi, ...,V : M — TM such that

(Vp e M) T,M = span{v1(p),. .., vm(p)}.

A manifold M is contractible if there exists a point pg €
M and a smooth function H : M x [0,1] — M such that
forallpe M

H(p,1) =p, H(p,0) = po.

All contractible manifolds are parallelizable. All manifolds
that are homeomorphic to R™ are contractible. The converse
is false. Since by definition an n-dimensional manifold is
locally diffeomorphic to R"™, it is locally contractible. The
next property of contractible manifolds is used in the sequel.

Theorem I1.1 ([9]) Let M be a contractible submanifold of
R"™, vi,...,v. : M — TR™ a set of smooth vector fields in
R™ and A = span{vy,...,v.} a distribution in R™. If A
has constant dimension k on M, then there exist k smooth
vector fields w1, ...,wg : M — R™ such that

(Vp € M) A(p) = span{wy, ..., w}.

B. Tubular neighborhoods, retractions
Let M be an m-dimensional submanifold of R™. Give M

the inner product { , ) : M X M — R induced from R".
The normal space of M at p is defined as

T,M*+ = {veR": (v,w) =0 Yw € T,M}.

The normal bundle of M, denoted TM~, is the disjoint
union of all normal spaces of M. It is a manifold in its
own right, and has dimension 2n — m. The projection 7 :
TM~+ — M defined by 7 : (p,v) — p is smooth. One has
that TM+ ~ M xR™~™ if and only if there exists a function
s: U — R, where U is a subset of R" containing M,
such that

(Vp € M) dim(Im((ds),)) =n —m and M = s~ *(0).

The function s is called a submersion.
Ife >0andp € M,let Dy(e) = {v € T,M~* : |jv]| < e}
If e: M — R+ g is a smooth function, let
D(e) = | {p} x Dyle(p)).
peEM

Then D(e) € TM* and M x 0 = {(p,v) € D(e) : v =
0} € D(e). D(e) is referred to as the disk sub-bundle.
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Theorem I1.2 (Tubular neighborhood theorem) If M is a
closed submanifold of R™ then there exists a smooth function
€ : M — Rsq and a diffeomorphism t : D(e) — R™ onto an
open neighborhood of M in R™ such that t|prx0 : (p,0) —
D.

The map ¢ is called a tubular map and its image t(D(¢))
is called a tubular neighborhood of M in R", see Figure 1.
It is an open set in R™. When M is compact there exists
a constant € > 0 such that D(e) is a tubular neighborhood.
A tubular neighborhood of a contractible submanifold is a
contractible manifold.

A retraction of a manifold N onto a submanifold M of N
is a smooth function r : N — M such that r|,; = identity
on M. The tubular neighborhood theorem implies that any
closed submanifold M of R™ admits a retraction of a tubular
neighborhood of M, t(D(e)), onto M. Such a retraction is
defined by this commutative diagram

D(e) ——— > #(D(e)) CR"

where 7 is the natural projection of TM* onto M.

Given a submanifold M of R™, a tubular neighborhood N
of M with associated retraction r : A" — M, and an open
subset V' C M, we say that an open subset U C N is a
tubular neighborhood of V adapted from N if U = r=1(V).

III. PROBLEM FORMULATION AND MAIN RESULT

Consider the control system

m

&= fz) + Zuigi(w) = f(2) +9(x)u, (D

where the f,g1,...,¢m are smooth vector fields in R™. We
assume throughout this paper that {g1,..., g, } are linearly
independent. Suppose we are given a pair (I'*, v*), where I'*
is a n*-dimensional closed and connected submanifold of R"
which is controlled invariant (assume that n —n* > m), and
u* : I'" — R™ is a friend of T'*, i.e., a smooth feedback
which makes I'* invariant:

<f + Z UfQi)
i=1

Denote f* := (f + >, ufg:)
following problem.

=TT

T*

r«. We want to solve the

Problem 1: Find, if possible, a coordinate transformation
E=(rs):x— (z¢)
N SEWN)=McTI* xR

where N is a tubular neighborhood of T'*, and a feedback
transformation

vi—=u=a(z)+ by (x)vy + ba(x)va,

where u,v = col(vi,v2) € R™, a : N — R™ is smooth,
and b = [by ba] : N — R™*™ is smooth and nonsingular
on N, such that
(i) The restriction of = to T'* is
I — Z(T)
z— (2,0).
(i1) In new coordinates, (1) reads as:
2= 22,8 + 9" (2, v + g° (2, &)
§=A{+ Bu
where v1 € RP°, (pg < m), B is full rank and the pair
(A, B) is controllable.
For i = 0,1, ..., define the distributions

G; :span{adjtg;c 0<j<i,1 <k<m}.

—
—

2)

Problem 1 involves decomposing the dynamics of (1) near
the controlled invariant manifold I'* into a tangential com-
ponent (the z subsystem) and a transversal component (the
¢ subsystem) which is linear and controllable. This process
also involves transforming the set of control inputs into two
subsets: v; represents a group of controls that can be used
to steer the system’s state to I'*, vy represents controls that
only affect the dynamics on the manifold. Our main result
is a sufficient condition to solve Problem 1.

Theorem IIL.1 Suppose that I'* is contractible. Then Prob-

lem 1 is solvable if

(@ Vi € {0,...,n —n* —2}), G;, is involutive in a
neighborhood of T'*.

(b) (Vi € {0,...,n —n* —1}), G, is non-singular in a
neighborhood of T'*.

(©) (Vi € {0,...,n —n* —1}), dim(T,I"™* + G,(p)) is
constant on T'*.

d (VpeTI™) dim(T,I™* + Gpop—1(p)) = n.

It turns out that conditions (b)-(d) are also necessary (see
Lemma V.1), while condition (a) is not. The theorem above
is proved in Section VI. The proof relies on the notion of
transverse controllability indices and the subsequent charac-
terization of the directions transverse to 71,I'* presented in
the next section.

IV. TRANSVERSE CONTROLLABILITY INDICES

In this section we adapt Brunovsky’s definition of con-
trollability indices [10] to the framework investigated in
this paper. Let A/ be a tubular neighborhood of I'* with
associated retraction r : N — I'*. Let V be a contractible
open subset of I'* and let U be a tubular neighborhood of
V adapted from N. Note that U is a contractible manifold
(see Section II-B). If I'* is contractible then we replace
the pair (V,U) by (T'*, A). Since V is a contractible
manifold, it is also parallelizable and there exist vector fields
vi,...,vh. = V. — TV such that (Vp € V) T,V =

span{v}(p),...,v,«(p)}. For each p € V let

po(p) == dim(T,V + Go(p)) — n”
pi(p) == dim(T,V + G;(p)) — dim(T,V + G;—1(p)),
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Fig. 1.

i =1,2,..., so that dim(7,V + G;(p)) = n* + po(p) +
...+ pi(p). When the p;’s are constant over V the list
{p1,-+, Pn—n=—1} is coordinate and feedback invariant and
we have the next result.

Lemma IV.1 Assume that, for all i € {0,...,n —n* — 1},
(Vp € V) dim(T,,V + G;(p)) = constant
(Vp € U) dim(G;(p)) = constant.

Then pg > p1 > -+ 2 pp—n=—1 and there exists a smooth
feedback transformation on U, v — u = h + Kwv, such that
forallp eV and (Vi € {0,...,n —n* — 1}) the following
holds

T,V +Gi(p) =T,V& @Span{ad;}gk 1<k <p;}
=0

Proof: By standing assumption, I'* (and hence V') is
locally controlled invariant. Use the friend u* to define a
preliminary feedback transformation u = u* + v’. Hereafter,
without loss of generality, let f|r~ = f* and u = v'. Let
IM(p) = Im([ g1 -+ gm ]) (p) be the image of the input
vector fields prior to any feedback transformations. We will
use this matrix function in the final steps of the construction.
On V, define the distribution Go(p) = [Go(p) N T, V] N
Go(p). First we show that G is a smooth, regular distribu-
tion. On V, Go(p) NI,V is constant dimensional since

dim(T,V N Go(p)) = dim(T, V') + dim(Go(p))
— dim(7T,V + Go(p)).
Since Gy and T,V are regular distributions and their inter-
section is constant dimensional, it follows that G (p) N1,V
is smooth along with [Go(p) N TpV]J‘. Thus Go(p) is the
intersection of two smooth, regular distributions. In addition,

we now show that Gy has constant dimension po and
therefore that it is a smooth distribution. For all p € V/,

dim(Go(p)) = n — dim(Go(p) N T,V) + dim(Go(p))
— dim([Go(p) NT,V]" + Go(p))
= dim(Go(p)) — dim(Go(p) N T,V)
= pPo-

> 1

Tllustration of the tubular neighborhood theorem.

This plus the fact that Go C Gg and Go(p) N T,V =
(GE(p) + T,V+) N (GE(p) + T,VE)* = 0, implies that

(Vp e V) Go(p) = Golp) NT,V & Go(p).

By Theorem IL1 there exist py vector fields wi,...,w,,
such that on V, G = span{w, ..., w,, }. Write
wj:ZC]igkaj:L"-pO (3)
k=1

where each c,’C V. — R is a C>®(V) function. By
construction (Vj € {1,...,p0}) w; € T,V. Let

[ 61 Joo | = 0 gm | Co

where Cj is an m X pg full rank matrix of real-valued
functions obtained from (3). Using a similar procedure, find
an additional m — pg vector fields §y,+1,--.,Gm such that

for all p € V' span {gi, - ... m } (p) = Go(p)-
We now have the desired decomposition on V'

(Vp € V) T,V + Go(p) = T,V @ span{gu, . .., G, }(p)-
In the new basis for G
(VP € V) §p0+1(p), cee 7§m(p) € T;DV'

Since, on V, f(p) € T,V, we have! adjfgk(p) e T,V +
Gj—1i(p), po+1 < k < m, j = 0,1,..., and so
P1,. - Pn—n*—1 < po. Geometrically, on V' the vector fields
ad?cgk(p), po+ 1 < k < m, cannot be used to generate
directions in T,V 4G ;(p) which are not contained in T},V +
Gj_1(p). To simplify notation, relabel these new vector
fields g1,...,0m as gi,-..,9m and proceed to perform the
induction step. This part of the proof is regrettably omitted
due to space restrictions, however the induction step proceeds
in a similar manner as above.

Let II(p) = Im ([ g1 --- gm ]) (p) be the image of the
input vector fields generated during the above process so
that so that for all p € V, II(p) = TI(p). In conclusion,
the feedback transformation, v — u = h+ Kv = u* +
(H—'—H)f1 I1" v, defined on V, has the required properties.

To unify the notation, it is understood throughout that G (p) = 0 for
k <O0.
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Finally let K = Korand h = hor to obtain a feedback
transformation defined on U. ]
The next result follows from the proof of Lemma IV.1.

Corollary IV.2 Assume that T'* is contractible and

(VpeT*)(Vie{0,....,n—n"—1})
dim(T, I + Gi(p)) = constant
(Vpe M)(Vi € {0,...,n—n*—1})
dim(G;(p)) = constant
(Vp e IT") dim(T,I™ + Gr—n»—1(p)) = n.
Then there exists a smooth feedback transformation v +—

u = a + Kv defined on N such that for all p € T'*, R" is
isomorphic to

T,r* @span{adi}gk(p) 0<ji<n—-n"-1,1<k<p,}

“4)

In the sequel we will need to identify directions in the
intersection T,V N G;(p). To this end it is useful to define
the integers

po(p) := dim(T,V N Go(p))
wi(p) == dim(T,V N G,(p)) — dim(T,V N G,;-1(p))

ni(p) == Zﬂj-
=0

When the p;’s and p;’s are constant over V' we have the
following result whose proof is omitted for brevity.

Lemma IV.3 Assume that the conditions of Lemma IV.I
hold. Then, for each i € {0,...,n —n* — 1}, there exist
n; vector fields vy, : U — TR"™ such that, after the feedback
transformation in Lemma IV.1, for all p €¢ U

Gi(p) =
span {01,...,0q,} D @span{ad&-gk 1<k <p;}
j=0

where (Np € V') span{v1,...,05,}(p) C T, V.

Under the assumptions of Corollary IV.2, we are now
ready to define transverse controllability indices k1, . .., k,,:

k; := number of integers in the list {pg, ..., Pn—n*—1}

which are > i.

It is easily checked that k; > --- > k, and ) . k; =
n — n*. Moreover there is a bijection between the list
{po, .- pn—n=—1} and the list {k1,...,k,, }. Using Corol-
lary IV.2 and IV.3, and following Wonham’s construction in
[11], it is not difficult to see that a reordering of the vector

fields in (4) results in the next array of n independent vector
fields on N

1 U1,y Digy g1y -

. kpo—1
Vi, —1r QA" g1,

,gpo;...;...,
koo —1
7adf gpo;

- ~ kp kp
2 Vi, 1t lse ey Vg, ad;" g1, ..., ady" gp,—1;
A~ poflfl kpoflfl .
Ve, 1 ad; g1 ady Gpo—13

119 - . dks dk3 . .

po — Uﬁk371+1,"'a Uﬁk37 a f gi,a f 925 -3

adlfcrlgh ad’;rlgz;

R ks o ki—1
o vﬁk2,1+17~"a Uﬁk27 adfzgh cee adfl g1
£o +1 v’ﬁk171+177"'7vn*;‘

®)
Here 01,...,%04, _, : N — TR™ are vector fields which

restricted to I'*, pointwise form a partial basis for 7},I'*.
The vector fields Uiy 141y Up» I'* — TT™* are vector
fields defined solely on I'*, pointwise completing the basis
of T}, I"*. The remaining vector fields of the array point-wise
span all directions transverse to 7}, I'*. By the construction in
the proof of Lemma IV.1, (Vi € {1,...,m})(Vj € {k;, ki +
L. )(Vk € {i,....,m}) ad}gr € T,I'™ + Gj-1(p).

V. NECESSARY CONDITIONS

We present a set of necessary conditions to solve Prob-
lem 1.

Lemma V.1 Suppose that Problem 1 is solvable. Then, for

any x € I'*, there exists a contractible neighborhood V' of

x in I'* such that, letting U be the tubular neighborhood of

V' adapted from N,

(a) Forallp eV, dim(T,V + G;(p)) = constant, 0 < i <
n—n*—2(ie, po,...,Pn—n*—2 = constant)

(b) For all p € V, dm(T,I"™ + Gnon=—1(p)) = n (ie.,
Sy Tt ei=n—n)

(¢c) The controllability indices of (A, B) in (2) coincide with
the transverse controllability indices of (1).

Proof: Choose V' small enough that it is covered by
a coordinate chart (V) ¢) of T'*. Since conditions (a)-(c) are
coordinate and feedback independent, it is sufficient to show
that they hold in (z,&) coordinates. Let U := Z(U) C M
and V := Z(V) = V x 0 (the latter equality follows from
property (i) in Problem 1). Since U is a tubular neighborhood
adapted from N we have VcUcV xR,

In (¢,€) coordinates we have that for any p € V

Ty (@(V)) + Gi(o(p), 0) =
Im([ I Kook K }) (6)
Op—n*xnx B AB ... A'B|)"
The matrix B is full rank from which it immediately follows
that T¢(p)(¢(f/)) + Go(¢(p),0) has constant rank which
combined with (6) proves (a). By controllability of the pair

(A, B), one also has that T}, (P(V)+Grn+—1(0(p),0) =
R"™. From (6) it is also clear that

pi = rank([B --- A'B]) —rank([B --- A" !'B])
and property (c) holds. -
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VI. PROOF OF THE MAIN RESULT

The following result is used in the proof of Theorem III.1.

Theorem VI.1 Problem 1 is solvable if and only if there
exist pg smooth functions o, ..., op, 1 U — R, where U is
a neighborhood of I'* in R", such that

M) I*c{zeU:ax)=0,i=1,...
(2) The system

1p0}

PO
= f(z)+ ) uigi(v)
2 o

y' = a(z)

has uniform vector relative degree {ki, ...
| R

koo } over

The proof is conceptually identical to the proof of an
analogous result in [12].

Proof: (=) Suppose that Problem 1 is solvable. By
Lemma V.1, part (c), the pair (A, B) has controllability
indices ki, ..., k,,. Thus, without loss of generality, we can
assume that the pair (A4, B) is in Brunovsky normal form

A = diag{A',..., A}, B = diag{B',..., B},
with A? € R¥i*k: and B* € R¥*! given by

010 ...0 0
001 ...0 0
A= . . . .|, B'= :
0 0 O 1 0
000 0 1
We define a;’s in (z, &) coordinates. Let o« = (avq, ..., ) ¢

M — RPo (2,8) — C&, where

C = diag{C',...,C?}, C*=[10 ... 0] (length ;).

This choice of a4, ..., a,, satisfies conditions (1) and (2).
(<=) The existence of smooth functions ay,...,q,, : U —
R yielding a uniform vector relative degree {ki,...,kn}
(with 3, k; = n—n*) over I'* implies, by? [13, Proposition
11.5.1], that there exists a coordinate transformation = =
(r,s) : N = Z(N) € 2* x R*™, where N C U is a
tubular neighborhood of Z*, yielding the normal form (2),
where Z* := {z : s(x) = 0} is the zero dynamics manifold
of the system (7). For any Z € I'*, one has a(Z) = 0 and,
since T belongs to a controlled invariant manifold (I'*), it
follows that x € Z* as well. We have thus shown that I'* C
Z*. Since I'* and Z* are two connected, closed submanifolds
of the same dimension and I'* C Z*, it follows that I'* =
Z*. ]
We are now ready to prove the main result of this paper.

Proof of Theorem III.1: Conditions (a) - (c) allow us to apply
Lemma IV.1 and Lemma IV.3. Apply the smooth feedback

2While in [13, Proposition 11.5.1] the extra condition that certain vector
fields be complete is assumed, here this condition is not needed because
the normal form (2) is required to be valid in a neighborhood of I"*, rather
than the entire R™.

transformation v — w = h + Kv defined in N defined
therein. We proceed to construct the vector valued function
« satisfying the conditions of Theorem VI.1. Consider the n
independent vector fields of (5).

Choose any point py € I'* as the origin for generating
S-coordinates by flowing along the vector fields in (5). Note
that all of these vector fields are well defined in A except
for va,, ,+41,...,v,+ which are defined everywhere on I'*
and we use these vector fields to generate the mapping F° :
(FO)=Y (W) —-W CT*

0.¢0_ (0 0
F°: 8% = (s9,... 7sn*fﬁkl_l)
Vig, —1+1 Uy
=0, o--0®5" (po).
nr a1 1

Use the remaining vector fields in (5) to define a sequence
of mappings Fikj : (Fikj)fl(Uikj) — Uikj C N, j €
{1,...,po}, i € {kjq1,...,kj — 1} associated with each
layer of bracketing in the array (5). Each map Fik" consists
of the composition of flows of vector fields which at each
point on I'* are in G;(p), not in G;_1(p) (let kp,+1 = 0 and
n_y1 =0)

ki . oki _ ki k;
F 8P = (s 15 m
Dy _q+1 iry ad® g, adkg;
=0y 0. 0d o<I>‘kf o~~o<I>’k.vf (p),
GYE) S(i,4+1) S(i,9) S@i1)

(1 <37 <po) (kjt1 <i<k;—1).

The notation Fikj can be understood as follows: The
superscript k;, (1 < j < po), indicates the row of (5) used in
the mapping. The index j in k; reflects the number of input
vector fields, i.e. g1(x), ..., g;(z) appearing at each order of
bracketing in the row. The subscript ¢, (kj11 <i < k; —1),
gives the order of Lie bracketing. Specifically Ffj consists
of the vector fields in G; that are not in G;_1, i.e. j input
vector fields and a subset of the tangential vector fields, u;
of them to be exact.

Forj € {1,...,po}, let FFi = F::H o-- 'OF::fr Further
compose these mappings to generate S-coordinates via the
composite F : F~1(N?) — NV C N defined as

F:=FFeoo...o F* o FO(py). (8)

The S-coordinates are given by S = col(S°,...,S%)
where Sk = col(S:”f_l,...,S,]:”_' ). As candidate output
J 41
functions (a1, ..., ap,), choose the time (S-coordinate) as-
sociated with the highest order Lie bracket of each input
vector field. Namely, for ¢ € {1,...,po} let a; be the time
spent flowing along ad'f:’*lgi. With this choice for a, we
must show that the conditions of Theorem VI.1 are satisfied.

The image of I'* in S-coordinates is given by

* kj kj
F(I*) ={S sy = =50, =0,

1<j<po, kjpr1 <i<kj—1}.
The chosen outputs are included in the above set of times
and therefore they are identically zero on I'*. This shows

that IT* C {«(z) = 0}. Since «; represents the time flow
along vector field ad’}f‘_lgi, we immediately have that for all
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peI™, L k-1 «a;#0.Inorder toshow that L4, c; =0
a f gi fJI

foralli e {1,...
to S-coordinates.

Fix a set of times S:i"_l, Ski-1 8% to uniquely
determine the point # = Fi_j o FF-10...0 FO(pg) €
NP, Use this point as the origin for the partial mapping
Fkeo o 0 Ffi_,(x). The vector fields of this mapping are
linearly independent in NV so its image is a submanifold.
Furthermore, the vector fields span an involutive distribution
G, —2, so the image of this map is the integral submanifold
Gr,—2(z) of Gy, 2.

The dimension of the fixed times used to obtain the point
x is exactly equal to n — dim(Gy,—2). This shows that in
S-coordinates

F(Gr,—2(x)) ={5: Sk:_l =const., S*-1 = const.,
., 8% = const.}
and therefore T F'(Gk,—2(x)) = col(0, Idim(cy,_,))- From
this it immediately follows that <dai,ad§gj is zero for
ie{l,...,po}, ¢ <ki—1,j5€{l,...,m}
We are left to show that the pg X m decoupling matrix

is full rank for any p € I'*. This part of the proof is
omitted. We conclude that the vector function a(x) =

0t L < ki—1,5 €{l,...,m} we appeal

col(a1(x),...,qp(x)) yields a vector relative degree of
{k1,...,k,,} thus satisfying condition (2) of Theorem VI.1.
|

Remark VI.1 Observe that the above proof elucidates the
conservativeness of the conditions of Theorem IIl.1. Theo-
rem III.1 holds if the integer n — n* in conditions (a) - (d)
is replaced with k; .

Example VI.1: Consider the system

0 1 0
Ty — T3 0 0
T = Ty —x3 + 1 0 Jur+ | 0 |up 9
Is — T2X3 o) 0
0 0 1

and the pair
(T u*) = ({z:21 =29 =24 = 25 = 0},0).

Here T'* is a subspace and hence contractible. Simple cal-
culations reveal pg = 2, p1 = p2 = 1 everywhere on
I'* yielding transverse controllability indices k; = 3 and
ko = 1. Since the constraints defining I'* satisfy property
(1) of Theorem VI.1 it makes sense to see if any pair
of constraints also satisfy property (2). There is only one
choice for 3’ which yields a well defined relative degree
near I'*, namely y’ = col(x1,x5) with vector relative degree
{1,1} # {k1,k2} and so property (2) fails to hold and it is
not clear whether input-output linearization can be used to
stabilize I'*. On the other hand, the sufficient conditions of
Theorem III.1 provide an affirmative answer.

The retraction used to generate the feedback transforma-
tion of Lemma IV.1 has an especially simple form: r

col(z1, xa, T3, 24, x5) — col(0,0,z3,0,0). The result of the
feedback transformation is
=[]
1 0|7
The distributions G and (1 are involutive near I'* sat-
isfying condition (a) of Theorem III.1. Conditions (b) and
(c) are easily checked by writing down the expressions for
the vector fields with 7,I'* = 8%3' Finally we have that
(Vo e I') dim(T,I'* + G2(z)) = 5 and condition (d)
is satisfied. Applying the preliminary feedback above and
following the procedure of Theorem III.1 we obtain the
mapping F'(s). Taking the inverse, F'~!(x) we obtain the
function a(z) = (zoe~#3+#3(0) 1), System (9) with output

y' = a(x) satisfies Theorem VI.1 and we can now employ

an input-output linearization approach to stabilizing I'*. A

VII. CONCLUSIONS

This paper presents preliminary results headed toward
a characterization of transverse feedback linearization for
multi-input systems. The main contributions are a formal
problem formulation, the introduction of transverse control-
lability indices, a methodology for conveniently arranging in-
put vector fields (Lemma IV.1), non-checkable necessary and
sufficient conditions (Theorem VI.1) and sufficient checkable
conditions (Theorem III.1) for the solvability of Problem 1.
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