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Abstract— In this paper, we present a method for detecting
and computing the extrema from observational data by using
spline curves. First, we approximate a given set of discrete data
by designing optimal smoothing spline curves using normalized
uniform B-splines as the basis functions. Then, we show the
method for detecting and computing all the extrema of designed
splines and/or of its first derivative. Here, utilizing the fact that
splines are continuously differentiable piecewise polynomials,
we only need to detect and compute the extrema of the
polynomial and its first derivative in turn for each interval
between the knot points. This process is easily carried out
since the polynomial in each interval is characterized by a few
control points. Finally we verified the validities by numerical
experiments. In particular, the detection and computation of
the extrema of the first derivative are used for edge detection
in digital images.

I. INTRODUCTION

We consider the problem of detecting and computing the
extrema from given observational data. Let f (t) be a smooth
function defined in an interval [t1, tm] and a set of discrete
data (ui,di), ui ∈ [t1, tm], di ∈ R, i = 1,2, · · · ,N be given,
where di are assumed to be obtained by sampling f (t) with
or without noises. Here, the function f (t) is unknown in
general. Then, the problem we consider is to develop a
method for estimating all the extrema of f (t) and its first
derivative in a systematic fashion. Thus, it enables us to
estimate the global maximum and minimum. Obviously, the
problem of detecting extrema is one of the main issues in
various kinds of optimization problems and mathematical
programming, whereas the extrema of the first derivative
f (1)(t) (inflection points of f (t)) may be used, for instance,
for edge detection problem in a digital image data.

A natural approach to this problem would be first to in-
terpolate or approximate the given points by some functions
and then to find their extrema. It is recognized, however,
that the interpolation often results in an oscillatory curve,
and hence inappropriate for our purpose. On the other hand,
the approximation by smoothing splines is stable numerically
and yields feasible approximation results.

The splines have been used in various fields of engineering
such as computer aided design, computer vision, robotics,
and image processing, etc. and have been studied extensively
(see e.g. [1], [2]). In particular, a fairly recent development
of ‘dynamic splines’ employs optimal control theory and
provided a new framework for the theory of splines [3]. Also,
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such an approach has then been taken for analyzing B-spline
functions [4]. On the other hand, using normalized uniform
B-splines as the basis functions, the authors developed the
method for designing optimal interpolating and smoothing
splines [5]. Also we applied the method for generating
cursive characters and character strings as seen in Japanese
calligraphy [6].

This paper is a continuation of our studies on the optimal
design of splines based on B-splines. For our present pur-
pose, we assume that the data are obtained by sampling some
function f (t) with or without noises. Then we show that
the optimal smoothing spline designed for the sampled data
converges to a limiting spline curve as the number of sample
points N tends to infinity. This limiting curve is represented
as a functional of f (t). Such a convergence property was
studied in [7] in a dynamical systems setting, namely for
spline curves generated as the output of linear dynamical
systems.

Then, for estimating and computing all the extrema of f (t)
and its derivative f (1)(t), we can fully utilize the fact that the
designed splines are piecewise polynomials and continuously
differentiable. Namely we only need to detect and compute
the extrema of the polynomial or its derivatives for each
interval between the knot points in turn. The detection and
computation of the extrema in each interval are carried
out using a few control points representing the polynomial.
As the result, the global maximum and minimum can be
obtained. If the given set of data were not from a smooth
function, this method still extracts extremal features hiding
behind the data. Such a case arises, for instance, when a
digital image is taken from a scene with sharp edges.

This paper is organized as follows: In Section II, we
describe the optimal smoothing spline problem. In Section
III, the optimal solution is presented, and the asymptotic
and statistical properties are analyzed. The algorithms are
developed for detecting and computing the extrema of the
optimal spline curves in Section IV. The results of numerical
experiments are presented in Section V, and the concluding
remarks are given in Section VI.

II. PRELIMINARIES

We design curves x(t) by employing normalized, uniform
B-spline function Bk(t) of degree k as the basis functions,

x(t) =
m−1

∑
i=−k+1

τiBk(α(t − ti)), (1)

where, m is an integer, τi ∈ R is a weighting coefficients
called control points, and α(> 0) is a constant for scaling
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the interval between equally-spaced knot points ti with

ti+1 − ti =
1
α

. (2)

Then x(t) formed in (1) is a spline of degree k with the
knot points ti. In particular, by an appropriate choice of τi’s,
arbitrary spline of degree k can be designed in the interval
[t1, tm].

Here Bk(t) is defined by

Bk(t) =

{
Nk− j,k(t − j) j ≤ t < j +1, j = 0,1, · · · ,k
0 t < 0 or t ≥ k +1,

(3)
and the basis elements Nj,k(t) ( j = 0,1, · · · ,k), 0 ≤ t ≤ 1
are obtained recursively by the following algorithm (see e.g.
[8]):

Algorithm 1: Let N0,0(t)≡ 1 and, for i = 1,2, · · · ,k, com-
pute⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

N0,i(t) = 1−t
i N0,i−1(t)

Nj,i(t) = i− j+t
i Nj−1,i−1(t)+ 1+ j−t

i Nj,i−1(t),

j = 1, · · · , i−1

Ni,i(t) = t
i Ni−1,i−1(t).

(4)

Thus, Bk(t) is a piece-wise polynomial of degree k with inte-
ger knot points and is k−1 times continuously differentiable.
It is noted that Bk(t) for k = 0,1,2, · · · is normalized in the
following sense ∑k

j=0 Nj,k(t) = 1, 0 ≤ t ≤ 1.
If we focus on an interval [t j, t j+1) (1 ≤ j < m), x(t) in

(1) is written as

x(t) =
j

∑
i=−k+ j

τiBk(α(t − ti)), (5)

since, by (3), Bk(α(t−ti)) vanishes in [t j, t j+1) for i <−k+ j
and i > j. Moreover, by (3), we may write

x(t) =
k

∑
i=0

τ j−k+iNi,k(α(t − t j)), t ∈ [t j, t j+1). (6)

For the sake of later reference, we list the basis functions
Nj,k(t) for k = 3.

N0,3(t) =
1
3!

(1− t)3

N1,3(t) =
1
3!

(4−6t2 +3t3)

N0,3(t) =
1
3!

(1+3t +3t2 −3t3)

N0,3(t) =
1
3!

t3. (7)

Now, suppose that we are given a set of data

D = {(ui;di) : t1 ≤ u1 < · · · < uN ≤ tm,

di ∈ R, i = 1, · · · ,N}, (8)

and let τ ∈ RM (M = m+k−1) be the weight vector defined
by

τ =
[

τ−k+1 τ−k+2 · · · τm−1
]T

. (9)

Then, as a basic problem for designing optimal smoothing
splines, we consider the following problem, where I denotes
an interval either I = (−∞,+∞) or I = (t1, tm).

Problem 1: Construct the spline x(t) in (1) such that

min
τ∈RM

J(τ)

where

J(τ) = λ
∫

I

(
x(2)(t)

)2
dt +

N

∑
i=1

wi (x(ui)−di)
2 , (10)

λ > 0, and wi ∈ (0,1] ∀i.

III. OPTIMAL SMOOTHING SPLINE CURVES

In this section, we first present the solution to Problem
1 derived in [5]. Then, we analyze the asymptotical and
statistical properties of the solution when the number of
samples N tends to infinity and the data contain the noises.
Moreover, since cubic splines are most frequently used for
practical purposes, we restrict ourselves to the case of k = 3.

For the case of k = 3, (1) is written as

x(t) =
m−1

∑
i=−2

τiB3(α(t − ti)). (11)

and, with M = m+2, τ ∈ RM in (9) becomes

τ =
[

τ−2 τ−1 · · · τm−1
]T

. (12)

A. Optimal Solution

This problem can be solved as follows. First, in order to
express (10) in terms of the vector τ , we introduce b(t)∈RM

and a matrix B ∈ RM×N defined respectively as

b(t) =
[

B3(α(t − t−2)) B3(α(t − t−1)) · · ·
· · · B3(α(t − tm−1))

]T
, (13)

B =
[

b(u1) b(u2) · · · b(uN)
]
. (14)

Then, noting that x(t) is expressed as x(t) = τT b(t), the cost
function in (10) is written as

J(τ) = λτT Qτ +(BT τ −d)TW (BT τ −d). (15)

Here, Q ∈ RM×M is a Gramian defined by

Q =
∫

I

d2b(t)
dt2

d2bT (t)
dt2 dt, (16)

and

W = diag{w1, w2. · · · , wN}, (17)

d =
[

d1 d2 · · · dN
]T

. (18)

We then see that optimal weight τ for Problem 1 is
obtained as a solution of

(λQ+BWBT )τ = BWd. (19)

Note that this equation has at least one solution, since
in general the relation rank[S +UUT ,Uv] = rank[S +UUT ]
holds for any matrices S = ST ≥ 0, U and vector v of
compatible dimensions. Obviously, the solution is unique if
and only if λQ+BWBT > 0.
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Also, the Gramian Q ∈ RM×M in (16) is computed explic-
itly as follows. By changing the integration variable, we find
that

Q = α3R. (20)

Here R ∈ RM×M is defined by

R =
∫

Î
b̂(2)(t)

(
b̂(2)(t)

)T
dt, (21)

where Î = (−∞,+∞) if I = (−∞,+∞) and Î = (1,m) if I =
(t1, tm), and

b̂(t) = [B3(t − (−2)) B3(t − (−1)) · · · B3(t − (m−1))]T .
(22)

Denoting R for the case of Î = (−∞,+∞) by R∞, we obtain

R∞ =
1
6

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

16 −9 0 1
−9 16 −9 0 1
0 −9 16 −9 0 1
1 0 −9 16 −9 0 1

. . .
. . .

. . .
. . .

. . .
. . .

. . .
1 0 −9 16

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (23)

and RF for the case of Î = (1,m), is obtained by

RF = R∞ − (R− +R+), (24)

where

R− =
∫ 1

−∞
b̂(2)(t)

(
b̂(2)(t)

)T
dt

=
1
6

⎡
⎢⎢⎣

14 −6 0
−6 8 −3 03,M−3

0 −3 2
0M−3,3 0M−3,M−3

⎤
⎥⎥⎦ , (25)

R+ =
∫ +∞

m
b̂(2)(t)

(
b̂(2)(t)

)T
dt

=
1
6

⎡
⎢⎢⎣

0M−3,M−3 0M−3,3

2 −3 0
03,M−3 −3 8 −6

0 −6 14

⎤
⎥⎥⎦ . (26)

Remark 1: It can be shown that the matrix Q in (16) is
nonsingular if I = (−∞,+∞), and singular if I = (t1, tm). Thus
(19) has a unique solution when I = (−∞,+∞). When I =
(t1, tm), although it depends on the data points ui, i = 1, · · · ,N,
there may be infinitely many solutions. In such a case we
employ the minimum norm solution, namely the solution τ
with minimum Euclidean norm, which is guaranteed to be
unique.

B. Asymptotical and Statistical Analyses

Let f (t) be a continuous function in the interval [t1, tm].
In order to analyze the asymptotic property of the optimal
spline curves as the number of data points N increases, we
consider the following cost function instead of (10),

JN(τ) = λ
∫

I

(
x(2)(t)

)2
dt +

1
N

N

∑
i=1

(x(ui)− f (ui))
2 . (27)

When the data di is obtained by sampling the function f (t)
with additive noises

di = f (ui)+ εi, i = 1,2, · · · ,N, (28)

we consider a cost function

Jε
N(τ) = λ

∫
I

(
x(2)(t)

)2
dt +

1
N

N

∑
i=1

(x(ui)− f (ui)− εi)
2 .

(29)
We assume that the noises are zero-mean and white, namely
E{εi} = 0 and E{εiε j} = σ2δi j for all i, j. Moreover, for
analyzing the asymptotic properties, we introduce a cost
function

Jc(τ) = λ
∫

I

(
x(2)(t)

)2
dt +

∫ tm

t1
(x(t)− f (t))2 dt. (30)

The solutions that minimize the cost functions JN(τ),
Jε

N(τ) and Jc(τ) are obtained as follows. The first two cases
follow directly from the result in the previous section: The
solution τN minimizing JN(τ) is obtained as a solution of(

λQ+
1
N

BBT
)

τ =
1
N

B f , (31)

where Q and B are given in (16) and (14) respectively,
and f =

[
f (u1) f (u2) · · · f (uN)

]T
. Obviously, τε

N
minimizing Jε

N(τ) is a solution of(
λQ+

1
N

BBT
)

τ =
1
N

B( f + ε), (32)

where ε =
[

ε1 ε2 · · · εN
]T

. On the other hand, Jc(τ)
can be written as

Jc(τ) = τT (λQ+R)τ

−2τT
∫ tm

t0
b(t) f (t)dt +

∫ tm

t1
f 2(t)dt, (33)

where

R =
∫ tm

t1
b(t)bT (t)dt =

1
α

R0, (34)

R0 =
∫ m

1
b̂(t)b̂T (t)dt. (35)

Thus optimal τ denoted by τc is obtained as a solution of

(λQ+R)τ =
∫ tm

t1
b(t) f (t)dt. (36)

It can be shown that R0 = RT
0 > 0, hence the optimal τc exists

and is unique. Moreover, R0 can be obtained explicitly as in
the case of RF in (24).

Convergence properties are established under the follow-
ing assumption.

Assumption 1: The sample points ui, i = 1,2, · · · ,N, are
such that

lim
N→∞

1
N

N

∑
i=1

g(ui) =
∫ tm

t1
g(t)dt (37)

for every continuous function g(t) in [t1, tm], i.e. they define
a convergent quadrature method.

Then, for the case I = (−∞,+∞), we can show that the
following results hold.
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Theorem 1: Assume that the condition (37) holds. Then,

(i) The optimal solutions τN , τε
N and τc exist uniquely.

(ii) τN converges to τc as N → ∞.
(iii) E{τε

N}= τN and τε
N converges to τc as N → ∞ in mean

squares sense.
Remark 2: When I = (t1, tm), the matrix Q is singular.

Thus it is possible that the coefficient matrix λQ + 1
N BBT

in (31) and (32) becomes singular depending on the matrix
B, i.e. on the data points ui, i = 1, · · · ,N. In such a case, it
can be shown that the above theorem still holds with the
understanding that we take minimum norm solutions.

IV. EXTREMA OF THE SPLINE AND ITS FIRST

DERIVATIVE

In this section, we develop algorithms for computing all
the extrema of the spline curve x(t) and its first deriva-
tive x(1)(t). The algorithms used together with the optimal
smoothing spline design enables us to find extrema in dis-
crete observation data or edges in digital images.

A. Extrema of Smoothing Splines

We first show the method for detecting the extrema of
spline curves x(t). Specifically, we find the points t ∈ (t1, tm)
satisfying x(1)(t) = 0 and x(2)(t) > 0 or x(2)(t) < 0. Note
that we are considering local minima or maxima only in the
strict sense.

Since the curve x(t) is a piece-wise polynomial, we
examine and find the extrema of the polynomial in each
interval [t j, t j+1) for j = 1,2, · · · ,m− 1. For simplicity, we
consider the case where k = 3 in the sequel. Then, by (6),
x(t) for the interval [t j, t j+1) is written as

x(t) =
3

∑
i=0

τ j−3+iNi,3(α(t − t j)), t ∈ [t j, t j+1), (38)

and it depends on only the four weight coefficients
τ j−3,τ j−2,τ j−1,τ j given by the method in the previous sec-
tion. Moreover, by introducing a new variable δ = α(t − t j),
we may write x(t) in the interval [t j, t j+1) as x̂(δ ),

x̂(δ ) =
3

∑
i=0

τ j−3+iNi,3(δ ), δ ∈ [0,1). (39)

By (7), we obtain x(t) as

x̂(δ ) =
1
6

(
p jδ 3 +3q jδ 2 +3r jδ + s j

)
, δ ∈ [0,1), (40)

where p j,q j,r j, and s j are defined by

p j = τ j −3τ j−1 +3τ j−2 − τ j−3, (41)

q j = τ j−1 −2τ j−2 + τ j−3, (42)

r j = τ j−1 − τ j−3, (43)

s j = τ j−1 +4τ j−2 + τ j−3. (44)

Noting that the derivatives of x(t) and x̂(δ ) are related by
x(i)(t) = α ix̂(i)(δ ), i = 1,2,3 and α > 0, the extrema of x(t)
in [t j, t j+1) are simply those of x̂(δ ) in [0,1). If we find that
x̂(δ ) has an extremum at δ = δe ∈ [0,1), then x(t) has the

extremum at te = t j + 1
α δe ∈ [t j, t j+1) and the value is given

by x(te) = x̂(δe).
From (40), we obtain x̂(1)(δ ) as

x̂(1)(δ ) =
1
2

(
p jδ 2 +2q jδ + r j

)
, δ ∈ [0,1), (45)

Thus, in order to find the extrema, we only need to examine
if the following quadratic functions

h(δ ) = p jδ 2 +2q jδ + r j, (46)

has a root δ = δe in [0,1) and examine the sign of h(1)(δe).
For the case p j �= 0, we denote the two roots as

δ+ =
−q j +

√
q2

j − p jr j

p j
, δ− =

−q j −
√

q2
j − p jr j

p j
. (47)

This process can be examined in more details if we
introduce the following assumption.

Assumption 2: The number of extrema of x(t) in an
interval [t j, t j+1) is at most one for each j = 1,2, · · · ,m−1.

Note that, although it is possible for x(t) to possess up
to two extrema in [t j, t j+1), we may employ this assumption
since such a case is highly unlikely due to the smoothness
properties of the optimal curves.

Then, Assumption 2 corresponds to that x̂(δ ) has at most
one extremum in the interval [0,1), and the process of
examining the existence of extremum can be simplified.
Namely, the existence can be judged based on the signs of
x̂(1)(0) and x̂(1)(1) as follows. First note that x̂(δ ) in [0,1) is
a polynomial of degree at most three, and that the relations
x̂(1)(0) = r j/2 and x̂(1)(1) = r j+1/2 hold. Then, geometric
observations yield the following three cases:

(P1) If r j · r j+1 < 0, an extremum exists in [0,1).
(P2) If r j ·r j+1 = 0, an extremum exists in [0,1) under some

additional conditions.
(P3) If r j · r j+1 > 0, no extremum exists in [0,1).

For the cases (P1) and (P2), we can establish the following
results (Proofs omitted).

Proposition 1: Assume that r j · r j+1 < 0. Then, if r j > 0
and r j+1 < 0, the function x̂(δ ) has a local maximum at
δ = δe ∈ (0,1), where

δe =

{
δ− if p j �= 0
− r j

2q j
if p j = 0 . (48)

On the other hand, if r j < 0 and r j+1 > 0, x̂(δ ) has a local
minimum at δ = δe ∈ (0,1), where

δ =

{
δ+ if p j �= 0
− r j

2q j
if p j = 0 . (49)

Proposition 2: Assuming that r j · r j+1 = 0, the following
two cases arise.

(i) The case r j = 0: If q j < 0 (resp., q j > 0), then x̂(δ )
has a local maximum (resp., minimum) at δ = δe =
r j
p j

∈ (0,1), and if r j ·q j+1 ≤ 0, no extremum exists.
(ii) The case r j �= 0 and r j+1 = 0: If r j > 0 and q j+1 > 0

(resp., r j < 0 and q j+1 < 0), then x̂(δ ) has a local
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maximum (resp., minimum) at δ = δe = r j
p j

∈ (0,1),
and if r j ·q j+1 ≤ 0, no extremum exists.

Remark 3: It can be shown that δ = r j
p j

in Proposition 2
(ii) actually is δe = δ− if q j+1 > 0 and δe = δ+ if q j+1 < 0.

The above arguments for detecting and computing the
extrema of x(t) are summarized as follows: Given the
weights τ−2,τ−1, · · · ,τm−1, compute r j and r j+1 for j =
1,2, · · · ,m− 1, and use Propositions 1 and 2 for the case
r j · r j+1 < 0 and r j · r j+1 = 0, respectively. If we find an
extremum of x̂(δ ) at δ = δe, then x(t) has the extremum at
t = t j + 1

α δe.

B. Extrema of the First Derivative of Smoothing Splines

For x(t) in (38), we find the points t ∈ (t1, tm) satisfying
x(2)(t) = 0 and x(3)(t) > 0 or x(3)(t) < 0.

The problem is simply to find the extrema of the quadratic
function x̂(1)(δ ) in (45) for each interval [t j, t j+1) for j =
1,2, · · · ,m−1.

First notice that the number of extrema in the interval
[0,1) is at most one. Also we see that no extrema exists
when p j = 0, since in which case x̂(2)(δ ) = q j = const. and
x(3)(δ ) = 0. Since x̂(3)(δ ) = p j, we require p j �= 0 for the
existence of an extremum. In this case, x̂(2)(δ ) = 0 yields
δ = − q j

p j
. Thus we get the following results.

Proposition 3: An extremum of x(1)(t) exists in the in-
terval [t j, t j+1) if and only if p j �= 0 and 0 ≤ δe < 1 hold,
where δe = − q j

p j
. When it exists, the extremum is obtained

at t = t j + 1
α δe. Moreover, p j > 0 and p j < 0 imply a local

minimum and maximum respectively, and the value is given
by

x(1)(t j +
1
α

δe) = x̂(1)(δe) =
1
2

(
−q2

j

p j
+ r j

)
. (50)

V. NUMERICAL EXPERIMENTS

We examine the performances of detecting the extrema
from a given set of data (ui,di), i = 1,2, · · · ,N, in (8), first by
using an example function, and then by applying the method
to edge detection in a real digital image.

A. Numerical Example

Let us consider the function f (t)

f (t) = ea(t−1) cos(b(t −1))+1

with a = 1
m−1 log 1

4 , b = 2π×3
m−1 and m = 50. We then generate

the data (ui,di), i = 1,2, · · · ,N by sampling this function
with noise as in (28). The number of data is set as N = 30,
ui’s are randomly spaced in the interval [t1, tm] = (1,50), and
the magnitude of the additive noise in di is set as σ = 0.02.

By the method in Section III-B with the design parameters
α = 1 and I = (t1, tm) = (1,50), the optimal weights τε

N and
τc are computed. Here, we employed the so-called cross-
validation method [2] for estimating the smoothing parameter
λ , and the optimal value is obtained as λ � = 0.1585. Fig.1
shows the corresponding smoothing curves xε

N(t) (blue line)
and xc(t) (red line) together with the data points (asterisks)
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Fig. 1. Optimal smoothing spline curves and their extrema.

and the original curve f (t) (green line). Note that the curves
xc(t) and f (t) are almost indistinguishable.

Using the method described in Section IV-A, we detected
and computed the extrema of the designed curves as shown
in Fig.1. Here, the triangle and inverted triangle marks
respectively denote local maxima and minima, and the same
colors are used as for the respective curves. Although the
number of the data is relatively small (i.e. N = 30) and the
data contain noises, we observe that all the extrema of the
original curve f (t) are detected fairly precisely. Thus we
obtain the global maximum and minimum. Moreover, as the
number of data N increases, they are guaranteed to converge
to those of xc(t) which is almost the same as the original
curve f (t), implying that the extrema of f (t) can be found
almost perfectly.

Note that this convergence properties do not require the
exact information on the original curve f (t). Namely, this
method works if we know that the the data (ui,di), i =
1,2, · · · ,N are the samples from some (unknown) function,
and that the sample points ui satisfy Assumption 1.

B. Edge Detection

Suppose that we are given the digital image data
f (i, j), i = 1,2, · · · ,n, j = 1,2, · · · ,m, with f (i, j) denoting
the gray level of the i j-th pixel. Then we can use the
method in Section IV-B for detecting the extrema of the first
derivative of smoothing spline curves for the edge detection
problem. Since we are considering curves and not surfaces in
this paper, the two-dimensional data f (i, j) is processed row
by row. Namely, letting the data (ui,di) be the l-th row as
ui = i, di = f (l, i), i = 1,2, · · · ,m, we first design the optimal
spline curve x(t). Then we find the extremal points t ∈ (1,m)
of its first derivative and detect the edges.

The extremal points, however, do not necessarily cor-
respond to the real edges. Figure 2 shows the optimal
smoothing spline and its derivatives for the data sampled
from a step function. We observe that the ’phantom edges’
(two circled extrema) as pointed out in [9] are detected at
the double step of the step function. Thus we follow the
development in [9] to detect the ’authentic edge’ as the
extremal point t such that

dx(t)
dt

d3x(t)
dt3 < 0. (51)
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Fig. 2. Optimal smoothing spline and its derivatives for step function.

In addition, in order to suppress the smaller edge contrast,
we introduce a threshold value ρ (> 0). Namely, we detect
the edges as the extremal point t of x(1)(t) satisfying (51)
and |x(1)(t)| > ρ .

Figure 3 shows the results of edge detection, where (a) is
the original image of size 256× 256 [pixel] and (b) is the
result by the present method with λ = 0.03 and ρ = 5. For
the sake of comparison, the results by the sobel and canny
edge detection methods are shown in (c) and (d) respectively.
Also we tested the performances for noisy data, and the
results are shown in Figure 4. In this case, the noisy image
in (a) is generated from the image in Figure 3 (a) by adding
Gaussian white noise with zero mean and 0.01 variance. The
parameters used for Figure 4 (b) are λ = 0.03 and ρ = 10.
We may observe that, although the horizontal edges can not
be detected by this one-dimensional treatment, the present
method works quite well even in the presence of noises. It
should be noted that Figure 4 (c) and (d) are obtained by
applying each operator directly to the noisy image in (a),
i.e. without any pre-processings on (a).

VI. CONCLUDING REMARKS

We presented the method for detecting and computing the
extrema from observational data by using spline curves. The
given data are approximated by optimal smoothing splines
using normalized uniform B-splines as the basis functions.
The expression for the optimal spline is concise as well as
suitable numerical computations. For the data obtained by
sampling a function f (t) with or without noises, we showed
that the optimal splines x(t) converge to a limiting spline
xc(t) as the number of samples tends to infinity. All the
extrema of the optimal spline x(t) and its first derivative
can then be found, where the fact that the splines are
continuously differentiable piecewise polynomials is fully
utilized. If the function f (t) is available, then we can
compute the limiting spline xc(t) and find all its extrema
as the approximations to those of f (t). The validities are
confirmed by a numerical example and by detecting edges
in digital images. Actually, the latter case should be treated
in two dimensions, namely via surface design and its extrema
computation, and this problem is under study.

(a) original image (b) proposed method

(c) canny filter (d) sobel filter

Fig. 3. Results of edge detection for an original image.

(a) noisy image (b) proposed method

(c) canny filter (d) sobel filter

Fig. 4. Results of edge detection for a noisy image.
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