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Abstract— We show that unstable linear plants affected by
uniformly bounded and arbitrarily small disturbances cannot
be stabilized or observed with a nonzero probability over com-
munication channels with data dropout. Specifically, both esti-
mation and stabilization errors are almost surely unbounded.
This is true for all non-anticipating algorithms of estimation and
stabilization with infinite memories, provided that the channel
meets some natural requirements. They are satisfied e.g., if
packet losses happen with a given nonzero probability and
independently of each other and the system noise.

I. INTRODUCTION

In the classic control theory, the standard assumption is
that the observations are available constantly and immedi-
ately. However in a number of newly arisen engineering
applications, observations are transmitted to the decision-
maker via communication channels, which provide con-
siderable delays and lose data (see e.g. [1], [4], [5], [8],
[11]–[14], [16], [18], [19], [22], [23]). These applications
concern e.g., fields such as underwater acoustic or mobile
communications, exploration seismology, remote control of
a large number of mobile units etc. Other examples are
offered by complex networked sensor systems with a large
number of low power sensors distributed over a wide area, as
well as complex dynamical processes like advanced aircraft,
spacecraft, and manufacturing process, where time division
multiplexed computer networks are employed for exchange
of information between spatially distributed plant compo-
nents.

Data dropouts and delays degrade the system performance
and may cause instability. Recently there was a good deal of
research activity in the field of control over delayed commu-
nication channels with packet losses e.g., see [1], [4], [5], [8],
[9], [11]–[14], [16], [22], [23] and the literature therein. LQG
optimization and the minimum variance state estimation over
channels with packet losses were addressed in [1], [11]–[14].
In [11]–[14], the packet dropout is modelled as transmission
with infinite delay. In [1], dropout in both observation and
control loops was treated, and it was assumed that data losses
happen independently and are equivalent to receiving the
zero signal. The paper [4] discusses a design of a dropout
compensator. In [9], observability of linear systems is studied
in the situation where the probability of loss of no more than

This work was supported by the Australian Research Council
A. Matveev is with the Department of Mathematics and Mechanics,

Saint Petersburg University, Universitetskii 28, Petrodvoretz, St.Petersburg,
198504, Russia almat@am1540.spb.edu

A. Savkin is with the School of Electrical Engineering and Telecommu-
nications, The University of New South Wales and National ICT Australia
Ltd., Sydney, 2052, Australia a.savkin@unsw.edu.au

m packets in every lot of k > m ones is kept above a certain
level.

In this paper, we consider state estimation and stabilization
problems for discrete-time linear unstable plants subjected
to external disturbances. The sensor and controller/estimator
are physically distant and connected via a communication
channel. The objective is to show that by their own rights,
packet losses in this channel make it impossible to stabilize
the system or observe its state with a nonzero probability. To
underscore this, we neglect detrimental effects of the channel
that are related to transmission delays and communication
noise. For the same reason, we consider the case of the
full noiseless measurements, where the controller is directly
connected to the plant, and channels with arbitrary (not
necessarily finite) alphabets.

The main assumption is that given any previous combina-
tion of losses and successful transmissions, there is a nonzero
(and bounded from below) probability of the packet loss
at the next time instant. This holds e.g., if the losses are
independent of each other and occur with a constant positive
probability. Another assumption is that the system noises at
various times are mutually independent and independent of
the communication channel, identically distributed, and have
a probability density. (The major points of this paper concern
the case where the noises are uniformly and arbitrarily small:
the support of the above density is a subset of a small ball
centered at 0.) It is shown that then the stabilization and
estimation errors are almost surely unbounded for any non-
anticipating algorithms of stabilization and estimation with
infinite memories. Some other details relevant to the results
of this paper can be found in [10].

The outline of the paper is as follows. Sections II, III,
and IV present the problem statement, assumptions, and the
main result, respectively. Its proof is given in Section V.
Section VI offers brief conclusions.

II. PROBLEM STATEMENT

We consider discrete time linear systems of the form:

x(t + 1) = Ax(t) + B(t)u(t) + ξ(t), x(0) = x0. (1)

Here t = 0, 1, . . . , x(t) ∈ R
n is the state, u(t) ∈ R

nu is the
control, and ξ(t) ∈ R

n is a random disturbance. The initial
state x0 is a random vector. The system is unstable: there
is an eigenvalue λ of A with |λ| ≥ 1. The objective is to
stabilize the system or produce a reliable state estimate.

We suppose that the entire state is accessible for mea-
surements. The channel connecting the sensor and con-
troller/estimator is capable to carry messages from an al-
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phabet E = {e}. The set E may be arbitrary; if E = R
n,

the entire current state x(t) can be dispatched over the
channel. Any message e is either transmitted correctly and
instantaneously or is lost (erased). There is a perfect feedback
communication link via which a notification about the erasure
arrives at the sensor site by time t+1. This information may
be used in forming the message at time t + 1. For example,
the erased messages may be repeated. The decision about
the contents of the current message is made by a coder. It
may have an access to controls and a side information ω̂(t),
and is described by an equation of the form

e(t) = E[t, xt
0, e

t−1
0 , ut−1

0 , It−1
0 , ω̂t

0]. (2)

Here f t
0 := {f(θ)}t

θ=0 for any function f(·) of t = 0, 1, . . .,
and I(t) is the indicator of the erasure: I(t) = 1 if the erasure
occurs at time t and I(t) = 0 otherwise.

The estimator and controller generate the state estimate
and control, respectively, on the basis on the data available
at the current time t, including a side information ω̆(t):

x̂(t) = D[t, {e(θ)}θ≤t:I(θ)=0, u
t−1
0 , It

0, ω̆
t
0],

u(t) = C[t, {e(θ)}θ≤t:I(θ)=0, u
t−1
0 , It

0, ω̆
t
0]. (3)

Do there exist coder and estimator (controller) that keep
the estimation (stabilization) error bounded with a nonzero
probability?

When treating the estimation problem, we assume that a
controller C from (3) is given.

The side information ω = [ω̂, ω̆] may concern e.g., the
communication medium or network hosting the channel at
hand, which may be useful for prognosis of future erasures.
The variable ω may also give the output of a source of a
common randomness ω̂ = ω̆ used for coding-decoding pur-
poses. If ω takes a single value, there is no side information.

For technical reasons, we suppose that ω ∈ Ω, where Ω
and the channel alphabet E are separable metric spaces, and
consider only measurable functions in (2) and (3).

III. ASSUMPTIONS

We suppose that given a coder and controller, the process
in the system x(t), e(t), I(t), ω(t), t = 0, 1, . . . is uniquely
determined as a stochastic process defined on a common
probability space and satisfies the following assumptions.

Assumption 1: There is a possibility of an erasure
P

[
I(t) = 1

∣∣It−1
0 = I

]
> 0 irrespective of which

combination of erasures and successful transmissions I =
(i0, . . . , it−1), iν = 0, 1 has occurred before. Moreover,

p := inf
t

inf
I

P
[
I(t) = 1

∣∣It−1
0 = I

]
> 0. (4)

Here the second inf is over I such that P
[
It−1
0 = I

]
> 0 .

For example, this assumption holds if the erasures are
mutually independent and inft P

[
I(t) = 1

]
> 0.

Assumption 2: In (1), the disturbances ξ(t) are identically
distributed according to a probability density p(ξ) with
the zero mean and finite variance, mutually independent,
and independent of the initial state and the channel. More
precisely, they are independent of x0, I(t), ω(t), t = 0, 1, . . ..

Assumption 3: If all unstable eigenvalues of A lie on the
unit circle, the disturbance ξ(t) has a finite third moment.

By Assumption 2, the side information ω does not concern
the disturbances. It may concern the initial state and the
erasures. In particular, the initial state may be a part of both ω̂

and ω̆ and so be known to the coder and controller/estimator.
We note also that the above assumptions does not exclude
even the extreme idealized case where the entire sequence of
erasures is known in advance ω̂(t) = ω̆(t) = {I(θ)}∞θ=0 ∀t.

IV. MAIN RESULT

Theorem 1: Suppose that the matrix A has an unstable
eigenvalue |λ| ≥ 1 and Assumptions 1—3 are true. Then

lim
t→∞

|x(t)| = ∞, lim
t→∞

|x(t) − x̂(t)| = ∞ (5)

almost surely for any coder, estimator, and controller.
In other words, arbitrarily large estimation and stabiliza-

tion errors are unavoidably encountered as time progresses.
It should be stressed that the level of the plant disturbances
is immaterial for this conclusion to hold. In particular, (5)
is true even if the disturbances are almost surely, arbitrarily,
and uniformly small:

sup
t

|ξ(t)| ≤ ε a.s., where ε ≈ 0, ε > 0. (6)

So the behaviour of the closed loop system (1), (2), (3)
drastically differs from e.g., that of an asymptotically stable
stochastically disturbed linear system xst(t+1) = Axst(t)+
ξ(t). The trajectory of the latter system also satisfies the
first relation from (5) if for example, {ξ(t)} is a white
noise. However this is due to the fact that the sample
sequences of the white noise are a.s. unbounded. At the
same time, whenever the disturbance is a.s. bounded (6),
so is the trajectory {xst(t)} of any stable linear system.
Moreover, this trajectory is asymptotically bounded by a
constant proportional to the noise bound ε from (6) and so
limt→∞ |xst(t)| ≈ 0 a.s. whenever ε ≈ 0, on contrary to the
property (6) ⇒ (5) of the system (1), (2), (3) at hand.

In general, lim cannot be replaced by lim in (5). It
is known that the system can be stabilized and observed
via the erasure channel in the mean-square sense under
certain assumptions [21]. Mean square stability means that
though by Theorem 1 arbitrarily large errors are encountered
unavoidably, they do not occur frequently. Indeed with the
strong law of large numbers in mind, this stability can be
viewed as boundedness of the time averaged squared error.

If the channel alphabet is an euclidean space, only coders
satisfying a prescribed power constraint E|e(t)|2 ≤ W are
often considered [2]. The scope of applicability of Theorem 1
includes but is not limited to these coders.

V. PROOF OF THEOREM 1

We start with two preliminary technical lemmas. The
proofs of the lemmas can be found in the full version of
the paper (see also [10]).

Lemma 1: Whenever Assumption 1 holds, there exists a
sequence {τi}

∞
i=0 of random times such that a. s., 0 =
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τ0, τi > τi−1 + i∀i ≥ 1, and i + 1 successive erasures occur
at and just before time τi for any i ≥ 1:

I(τi − i) = I(τi − i + 1) = · · · = I(τi − 1) = I(τi) = 1.

These times can be chosen so that they depend only on the
sequence of the erasures.

Lemma 1 is a key observation underlying Theorem 1.
This lemma states that as time progresses, time intervals
of arbitrarily large durations are encountered within which
all transmitted packets are dropped. This means that the
feedback control loop is in fact broken. At the same time, the
plant (1) is unstable in the open loop by assumption. Hence
an uniformly small but nonzero external disturbance (6) is
able to give rise to an error proportional to the duration of
the interval. So far as this duration is not limited from above,
arbitrarily large errors are unavoidably encountered.

To make these arguments mathematically rigorous, we
need one more lemma. It states nothing but that the state of
the uncontrolled disturbed unstable plant grows without lim-
its. Moreover, the state becomes more and more distributed
over the space.

Lemma 2: For any b > 0, the following relation holds:

µt(b) := sup
ϕ∈Rn

P
{
|x−c(t) + ϕ| < b

} t→∞
−−−→ 0, (7)

where x−c(t) :=
∑t−1

θ=0 At−1−θξ(θ) is the state at time t,
provided that x(0) = 0 and no control is applied u(θ) ≡ 0.

Further P (M |Q = q,R) and P S(ds|Q = q,R) stand for
the (regular [6]) conditional probability and distribution of
the random event M and variable S, respectively, given that
another random variable Q = q and the random event R

occurs.

Proof of Theorem 1: We employ the random times
τ0, τ1, . . . from Lemma 1. Since they are determined by the
sequence of erasures I(t), the disturbances ξ(t), t = 0, 1, . . .

are independent of these times by Assumption 2.

Suppose that the first relation from (5) fails to be true,
i.e., B := limt→∞ |x(t)| < ∞ with a positive probability.
Then there exists a (non-random) constant b > 0 such that
B < b − 1 also with a positive probability. Since τi → ∞
as i → ∞ almost surely, we have limi→∞ |x(τi)| ≤ B a.s.
With this in mind, we get

lim
i→∞

P {|x(τi)| < b} ≥ lim
i→∞

P {|x(τj)| < b ∀j ≥ i}

= P

(
∞∨

i=1

{
|x(τj)| < b ∀j ≥ i

})
≥ P

{
lim

i→∞
|x(τi)| < b − 1

}
≥ P {B < b − 1} > 0. (8)

However the first lim equals 0. To show this, we note that
τi ≥ i + 1 a.s. for i ≥ 1. So

P {|x(τi)| < b}

=
∞∑

k=i+1

P
{
|x(τi)| < b

∣∣τi = k
}

P {τi = k}

=

∞∑
k=i+1

P
{
|x(k)| < b

∣∣τi = k
}

P {τi = k}; (9)

P
{
|x(k)| < b

∣∣τi = k
}

=∫
P

{
|x(k)| < b

∣∣xk−i
0 = X, Ik−i−1

0 = I, ωk
0 = ω, τi = k

}
× P

x
k−i

0
,I

k−i−1

0
,ωk

0

(
dX, dI, dω

∣∣τi = k
)
. (10)

Since τi = k ⇒ I(k − i) = · · · = I(k) = 1, no
messages arrive at the controller/estimator at times t =
k − i, . . . , k. By invoking equations (2), (3), we see that the
data xk−i

0 = X, Ik−i−1
0 = I, ωk

0 = ω and τi = k uniquely
determine the sequences of controls uk

0 = Uk[X, I, ω, k, i]
and estimates x̂k

0 = X̂k[X, I, ω, k, i] up to time k. These
data also determine x(k − i) = xk−i[X]. Now we note that

x(k) = Aix(k − i) +
∑k−1

θ=k−i
Ak−1−θB(θ)u(θ)︸ ︷︷ ︸

ϕ

+

k−1∑
θ=k−i

Ak−1−θξ(θ).

Here ϕ is a function ϕ = Φ[X, I, ω, k, i] of the above
data. The remainder x−c

k−i,k := x(k) − ϕ is independent of
xk−i

0 , Ik−i−1
0 , ωk

0 , and τi due to Assumption 2. Hence

P
{
|x(k)| < b

∣∣xk−i
0 = X, Ik−i−1

0 = I, ωk
0 = ω, τi = k

}
= P

{
|x−c

k−i,k + Φ[X, I, ω, k, i]| < b
}

.

Thanks to Assumption 2, x−c
k−i,k and the vector x−c(i) from

Lemma 2 are identically distributed. So by (7),

P
{
|x(k)| < b

∣∣xk−i
0 = X, Ik−i−1

0 = I, ωk
0 = ω, τi = k

}
≤ µi(b).

We proceed by invoking (10)

P
{
|x(τi)| < b

∣∣τi = k
}

≤ µi(b)

∫
P

x
k−i

0
,I

k−i−1

0
,ωk

0

(
dX, dI, dω

∣∣τi = k
)

= µi(b),

P {|x(τi)| < b}
(9)
≤

∞∑
k=i+1

µi(b)P {τi = k} = µi(b),

lim
i→∞

P {|x(τi)| < b} ≤ lim
i→∞

µi(b)
(7)
== 0,

in violation of (8). The contradiction obtained proves that the
first relation from (5) does hold almost surely. The second
one is established likewise.
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VI. CONCLUSIONS

We studied observability/stabilizability of linear unsta-
ble systems over channels, which may lose messages. We
followed the natural approach aimed at making the obser-
vation/stabilization error small along any (or almost any)
trajectory. The main result of this paper means that the plant
cannot be stabilized or observed with a nonzero probabil-
ity. More precisely, arbitrarily large stabilization/observation
errors unavoidably occur sooner or later, even if the plant
disturbances are almost surely, arbitrarily, and uniformly
small. A possible conclusion from these facts is that in
face both plant noises and packet losses, ”trajectory-wise”
observability/stabilizability appears to be too strong property,
and weaker ones seem to be more relevant. It should be
also remarked that we considered channels for which the
number of successive packet losses is not limited. If this
number is limited, the above conclusion on nonobservability
and unstabilizability does not hold.
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