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Abstract

For a general class of Hyper-Actuated Mechanical Systems
(HAMS) that is generalized to include robotic manipula-
tors and tendon-driven tensegrity structures, this paper de-
termines the tendon force inputs from a set of admissible,
non-saturating inputs, that will move the rigid-body system
from point A to point B along a prescribed path with mini-
mum time and control energy. The approach herein utilizes
the existence conditions and solution of a linear algebra
problem that describes how the set of admissible tendon
forces is mapped onto the set of path-dependent torques.
Since this mapping is not one-to-one, free parameters in the
control law always exist. This paper determines the best
time-invariant free parameters. This yields a novel con-
trol law for HAMS that tracks the center of the admissible
set and reduces the number of states in the optimal con-
trol problem to two. The prevalence of HAMS in nature is
discussed. Numerical examples illustrate the method and
demonstrate tensegrity’s superior maneuvering and satu-
ration avoidance capabilities.

1. Introduction

An important consideration in the robotic automation of
dull, difficult or dangerous tasks is optimal control. This
is especially true when a specific task or desired maneu-
ver has been identified either by sensing/processing capa-
bilities of the robot (on-line) or its operator (off-line). In
either case, it is natural to ask how fast can this be done,
and how much control energy is required. The answer to
this question depends on the inertial dynamics of the robot,
its actuator limitations and the desired course of reconfigu-
ration. This is essentially the time-energy optimal control
problem that has been discussed in many texts on optimal
control. For Joint-Actuated Mechanical Systems (JAMS),
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Figure 1. (Left) The musculoskeletal model of a
cat’s hindlimb consists of 8 actuators (muscles) and
3 joints. The hindlimb is an example from nature of
a hyper-actuated mechanical system (HAMS). (Right)
Typical joint-actuated mechanical system (JAMS). An
obvious advantage of HAMS over JAMS is force-
leverage, so why not mimic nature?

this problem has been studied extensively in [3, 7, 5]. All
these studies were limited to collocated actuation systems
where the number of actuators must be the same as the
number of degrees-of-freedom. This paper extends these
results by allowing more actuators than degrees of free-
dom. This extension is not trivial as the actuation redun-
dancy must be considered within the optimal control prob-
lem. If additional states are included to account for this
particular redundancy, the problem becomes complicated
by the so-called curse of dimensionality often attributed to
problems in optimal control [4]. In order to circumvent this
problem, this paper introduces a control law with the prop-
erty that the actuation redundancy is used to track the cen-
ter of the admissible set of control inputs. This proves to
be a nonrestrictive feature since the proposed control law
has a natural saturation-avoidance property. By imposing
this control law, this paper solves the time-energy optimal
control problem for the hyper-actuated mechanical systems
(HAMS) case using the classical Hamiltonian approach.

Control theorists and engineers often focus great atten-
tion on controllability to determine the minimal number of
actuators required to control a system. Nature does the op-
posite. A Grasshopper has 6 degrees of freedom, but uses
270 different control muscles to be more energy efficient
and more robust to uncertainty in load directions. This
point is illustrated also in the cat’s hindlimb in figure (1).
Hence, HAMS is naturally selected in biological systems.
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Arguably, the most general framework for studying both
HAMS and JAMS alike is the tensegrity structure para-
digm [6, 2], where there is an abundance of tendons and/or
joint motors that can be controlled. Tensegrity structures
become tensegrity robots once adequate tendon actuation
technology is implemented. An example of a planar tenseg-
rity robot is illustrated in figure (2) and candidate tendon
actuation technology is illustrated in figure (3). It is nat-
ural to ask, “Can tensegrity compete with state-of-the-art
robotics?” As a case in point, the classical Stewart-bridge
robot in figure (4) is not HAMS and is not capable of the
same workspace as its tensegrity counterpart in figure (3).
Another disadvantage of the Stewart-bridge is the edge-
actuators are bulky and cannot change their contour when
the robot is in contact with its environment. On the other
hand, tensegrity is malleable, and can change its crosec-
tion/volume/area to accomplish unusual tasks that are not
allowed in the conventional robot.

Figure 2. A maneuver sequence for a planar tenseg-
rity robotic manipulator with fixed-length rigid-bars
(cross-diagonal lines) and adjustable-length control
tendons (all other lines). Notice that the boundary
of the robot consists exclusively of flexible tendons.
Consequently, the robot’s overall shape and exterior
surface are malleable and capable of being controlled
independently.

These illustrations and the work herein suggest that
tensegrity concepts will revolutionize the manner in which
tendon-driven systems are designed, controlled and uti-
lized. We believe this will become especially true in en-
vironments where agile maneuvering and delicate object
handling require a “soft” touch.

In the sections that follow, we address the following
questions: What is HAMS in terms of relevant equations
and conditions? Given a set of admissible tendon forces
how should the control law be designed? How can the ex-
pended energy and acquisition time be minimized as the
robot moves along a prescribed path?
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Figure 3. Two stage tensegrity robot. A single serpen-
tine timing belt is shown driving the entire 4 degree-
of-freedom robot along two independently-defined tip-
paths. Simple geometric relationships are used to
command the relative angles for the rotary motors and
the vertical position of the linear motors such that the
inextensible serpentine timing belt never goes slack
at any point within the tendon network.

2. Hyper-Actuated Mechanical Systems

Given a rigid-body mechanical system with degrees of
freedom q ∈ R

n governed by the equations of motion

M(q)q̈+V (q, q̇)q̇+g(q) = τ (1)

the system is said to be a hyper-actuated mechanical system
(HAMS) if the applied torques τ ∈ R

n are implemented by
actuator forces t ∈ R

m according to

τ = G(q)t (2)

and the following condition holds

G ∈ R
n×m, m > n, rank(G) = n (3)

Since actuators are force-limited, the actuator force vector,
t ∈ R

m, must belong to an admissible set defined by

A := {t ∈ R
m : tMINi ≤ ti ≤ tMAXi} (4)
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Figure 4. A two-stage Stewart-Bridge robot. (non-
HAMS) Four edge-actuators and two diagonal-
actuators are connected between three rigid bars as
shown. The maximum stroke LMAX and minimum
stroke LMIN for an edge-actuator are also indicated
above. For a fixed bottom bar, the system has six
degrees-of-freedom. Its workspace is generally much
smaller than in figure (3) due to the inherent actuator-
stroke limitations of bi-directional actuation systems.

where ti is the tension of the ith actuator, tMINi is the mini-
mum allowable tension for the ith actuator, and tMAXi is the
maximum allowable tension for the ith actuator.

In order to avoid loss of kinematic control, the paper as-
sumes the robot’s position r = r(q) does not pass through
points where the Jacobian matrix J(q) = dr

dq ∈ R
n×n be-

comes singular. This condition is combined with (3) and
(4) to define the HAMS workspace W as

W :=

⎧⎪⎪⎨
⎪⎪⎩

y ∈ R
n

∣∣∣∣∣∣∣∣

∃q ∈ R
n s.t. y = r(q),

J(q) invertible,
G(q) full row rank,

Gt = 0 for some t ∈ A

⎫⎪⎪⎬
⎪⎪⎭

(5)

3. Center-tracking control law

By virtue of condition (3), there exists an infinite num-
ber of solutions to (2). This paper focuses on one particular
solution of (2) given by

t = G+τ +G⊥c (6)

where τ is defined in (1),

G+ = GTW, G⊥ = [I −GTWG], W = (GGT )−1 (7)

and c defines the center of the admissible set as

c := center(A ) = (tMIN + tMAX )/2 (8)

Equation (6) will be referred to in this paper as the center-
tracking control law (CTCL) because it is the unique solu-
tion to the following optimization problem.

min
Gt=τ

‖t − c‖2

Remark 1. The CTCL is effective at keeping the control
tendons from breaking or going slack (saturation avoid-
ance, [2]), because it chooses t as close as possible to the
center of the admissible set, c, while satisfying the dynamic
constraint Gt = τ .

Remark 2. Alternatively, the CTCL can be viewed as the
sum of static and dynamic forces, t = tstat + tdyn, where

tdyn = arg min
Gt=τ

‖t‖2 = G+τ

tstat = arg min
Gt=0

‖t − c‖2 = G⊥c

That is, tdyn contains the smallest (2-norm) actuator forces
that can sustain loading τ . And tstat is as close as possible
to c subject to the static equilibrium constraint Gt = 0.

In practice, tstat can be sustained with zero expended
control energy by using non-backdriveable gears between
the tendons and the motors. Hence, the expended control
energy is the dynamic, not static, force density defined as

Control energy: U = tT
dyntdyn

= τT (GGT )−1τ (9)

= ‖t − tstat‖2

It is worthwhile to note that the last expression above can
be rewritten as U = ‖t−tstat(q)‖2, where tstat(q) is a quasi-
static equilibrium force trajectory for slowly varying q.
With this is mind, U is a measure of the system’s devia-
tion from the static equilibrium manifold.

4. Time-energy optimal control along a path

In this section, a time-energy optimal control problem
is solved for the case that the robot’s position r = r(q) is
constrained to move on the following path constraint

r(q) = r̃(s) ∈ W , ∀s ∈ [so,s f ] ⊂ R (10)

where r̃ is a user-defined polynomial function of s [2].

The time/energy cost function in (11) consists of an ε-
weighted combination of the acquisition time T and the ex-
pended control energy U .

Problem statement. Determine the non-saturating actua-
tor forces t ∈A ⊂R

m governed by the center-tracking con-
trol law that will move the plant from point-to-point along
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a prescribed path with minimal time/energy cost. That is,

min
t∈ℜm

T∫
0

1+ ε2‖ t − tstat ‖2 dt̂ cost

s.t.
t ∈ A actuator admissibility
tstat = G⊥(q)c static equilibrium
t = tstat +G+(q)τ control law
M(q)q̈+V (q, q̇)q̇+g(q) = τ dynamics
r(q) = r̃(s) path constraint
q(0) = qo, q̇(0) = 0 initial conditions
q(T ) = qT , q̇(T ) = 0 terminal conditions

(11)

where T denotes the unspecified terminal time, t̂ denotes
time. (Recall, t denotes actuator forces.) To solve this prob-
lem, the cost and constraints will be defined in terms of the
path variables,

x = [ x1 x2 ]T ≡ [ s ṡ ]T , s̈ = u ∈ R

The path constraint r(q) = r̃(s) can be used to rewrite the
system dynamics (1) in terms of the path variables as fol-
lows. (See [3, 7, 2] for details of this transformation.)

τ = d(x1)u+ x2
2b(x1) (12)

For R = diag [(tMAX − tMIN)/2], it was shown in [2] that

t ∈ A ⇔ ‖R−1(t − c)‖∞ ≤ 1 (13)

Hence, (12) can be substituted into the CTCL control law
t = G+τ +G⊥c, followed by substitution into the admissi-
bility constraint (13), to get ‖w(x1)u+ y(x)‖∞ ≤ 1 where

w = R−1G+d y = R−1(G+bx2
2 −G+T c) (14)

Equivalently, −1 ≤ yi(x)+uwi(x1)≤ 1 for i = 1 to m. Fur-
ther rearrangement yields the following constraint on u.

umin(x) ≤ u ≤ umax(x) (15)

umin(x) = max
{

ΦLO
i (x) : i = 1,2, . . . ,m

}
umax(x) = min

{
ΦHI

i (x) : i = 1,2, . . . ,m
}

where the “influence functions”, namely ΦLO
i and ΦHI

i , are

ΦLO
i = −1/|wi| − yi/wi (16)

ΦHI
i = +1/|wi| − yi/wi

Hence, the state-dependent control constraint is

g(x,u) = [ g1 g2 ]T ≤ 0

g1 = u−umax(x), g2 = umin(x)−u

and the state-dependent existence condition for u ∈ R sat-
isfying (15) is given by

h(x) = umin(x)−umax(x) ≤ 0 (17)

The Lagrangian L = 1+ ε2‖t − tstat‖2 becomes

L(x,u) = 1+ ε2τTWτ (18)

where τ = τ(x,u) is given explicitly in (12) and W =W (x1)
is given in (7). In summary, assuming (17) holds, problem
(11) is equivalent to problem (19) below.

min
u∈ℜ

T∫
0

L(x,u) dt̂

s.t.
ẋ = f (x,u) = [ x2 u ]T path dynamics, (a)
x1(0) = so, x2(0) = 0 initial conditions, (b)
x1(T ) = s f , x2(T ) = 0 terminal conditions, (c)
g(x,u) ≤ 0 saturation constraint, (d)

(19)

The Hamiltonian H = L(x,u) + λ T f (x,u) + µT g(x,u) for
problem (19) becomes

H = 1+λ1x2 +λ2u+ µT g+ ε2τTWτ (20)

In order to solve problem (19), the following necessary
conditions [4] must hold.

Necessary conditions for the optimal control. There
must exist nontrivial solutions λ ∗(t̂) and x∗(t̂) (where t̂ de-
notes time) to the state and costate equations

λ̇ = −HT
x = −LT

x − f T
x λ −gT

x µ (21)

ẋ = f (x,u) (22)

such that

H = 0 at t̂ = T (23)

Hu = 0 for 0 ≤ t̂ ≤ T (24)

µi

{ ≥ 0, gi = 0
= 0, gi < 0

i = 1,2. (25)

and the following two-point boundary conditions

x1(0) = so, x2(0) = 0, x1(T ) = s f , x2(T ) = 0 (26)

are satisfied.

Solution. If λ ∗(t̂) and x∗(t̂) are computed such that (21),
(22) (23), (24), (25) and (26) hold, then we can conclude
that the necessary conditions of optimality for problem (19)
are satisfied. This is our task. The following claim gives
sufficient conditions for completing this task.

Theorem 1 Suppose ε > 0 and that the trajectories
λ ∗(t̂), x∗(t̂) ∈ R

2 for t̂ ∈ [0, T ] exist to solve the following
system of ode’s

λ̇1 = −ε2τT [
2W (udx1 + x2

2bx1)+Wx1τ
]−µT gx1 (27)

λ̇2 = −λ1 −4ε2x2bTWτ −µT gx2 (28)

ẋ1 = x2 (29)

ẋ2 = u (30)
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with initial conditions λ1(0) = λ01, λ2(0) = λ02, x1(0) = 0
and x2(0) = 0, where u, µ1, µ2, λ02 ∈ R are given below
by (33, 35), and λ01 ∈ R is chosen such that the path ve-
locity is zero at the end of the maneuver, i.e. x1(T ) = s f ,
x2(T ) = 0. Then, the necessary conditions of optimality for
problem (19) are satisfied provided the following additional
conditions are also satisfied.

(i.) h(x) ≤ 0 holds for all x ∈ {x∗(t̂) : t̂ ∈ [0,T ]}
(ii.) W (x1) is positive definite for all x1 ∈ [0,s f ] ⊂ R

Proof. The Hamiltonian is formed as in (20), and its gradi-
ent with respect to the state is substituted into (21) to yield
the two first-order costate differential equations λ̇1 =−Hx1

(27) and λ̇2 =−Hx2 (28). Substituting the Hamiltonian gra-
dient with respect to u into Hu = 0 (24) yields

λ2 + µ1 −µ2 +2ε2(dTWb)x2
2 +2ε2(dTWd)u = 0 (31)

By hypothesis (ii.), W is positive definite (W = [GGT ]−1

with G full row rank) which implies that the Hamiltonian is
strictly convex provided d �= 0∈R

n (i.e. Huu = dTWd > 0).
Suppose d = 0 ∈ R

n, then u = ∞ is admissible. This is a
contradiction, therefore d �= 0 ∈ R

n and the Hamiltonian is
strictly convex in u. Consequently, the optimal u∗ ∈ R is
uniquely defined by (31). That is, singular solutions for the
control u does not exist.

In order to prevent u from violating its constraints
g(x,u) ≤ 0, the control u ∈ R and multipliers µ ∈ R

2 are
determined by a “switching” function σ : R

3 → R given by

σ(x,λ2) =
−λ2 −2ε2dTWbx2

2

2ε2dTWd
(32)

That is, the reader should verify that (31) and (25) are sat-
isfied if

{u,µ1,µ2} =

⎧⎨
⎩

{umin, 0, µ∗
2}, σ ∈ (−∞,umin]

{ σ , 0, 0}, σ ∈ (umin,umax)
{umax, µ∗

1 , 0}, σ ∈ [umax,∞)
(33)

where

µ∗
1 = 2ε2(σ −umax)dTWd

µ∗
2 = 2ε2(umin −σ)dTWd

It is also left as an exercise to the reader to show that the
initial condition of the second costate λ2(0) ∈ R is deter-
mined by the value of the following “decision” constant

γ =
1√

ε2dT (0)W (0)d(0)
(34)

That is, we can show that the optimality condition H = 0 at
t̂ = T (23) is satisfied if λ2(0) = λ02 where

λ02 =
{

−2
√

ε2mo , γ ∈ [0,umax)
−1/umax(0)− ε2moumax(0), γ ∈ [umax,∞)

(35)
where mo = dT (0)W (0)d(0).

To see this is indeed the case, first observe that it suffices
to show H = 0 at t̂ = 0 instead of showing H = 0 at t̂ = T
because H is necessarily constant (i.e. Ḣ = 0 follows from
Hu = 0, λ̇ = −HT

x and the fact that H is not an explicit
function of time, Ht̂ = 0). Furthermore, because the robot
is initially at rest x2(0) = 0, u ≥ 0 is necessary at time t̂ =
0 in order to avoid moving “backwards” along the path.
Hence, only two cases are possible at time t̂ = 0: (a) u =
σ ∈ [0,umax) or (b) u = umax. Substituting x2(0) = 0 into H
given by (20) and solving H = 0 for λ2(0) yields u = σ = γ
provided case (a) holds. Otherwise, case (b) follows by
solving H = 0 with u = umax(0).

Finally, hypothesis (i.) must hold in order for there to
exist an admissible control u(t̂) ∈ A for all t̂ ∈ [0,T ]. �

Algorithm. Notice that there is only one missing initial
condition, λ01 ∈R, which must be chosen such that the path
velocity is zero at the end of the maneuver, i.e. x1(T ) = s f ,
x2(T ) = 0. The correct λ01 can be determined by the fol-
lowing iterative search that ends once the terminal condi-
tions are satisfied.

1. Compute λ02 ∈ R using (35).

2. Guess the first costate, λ01 ∈ R.

3. Integrate the state and costate equations forward in
time from their initial conditions (27 - 30). Con-
tinue numerical integration until the terminal condi-
tion x1(T ) = s f is reached.

4. If x2(T ) �= 0, go to step 2 and repeat, else if x2(T ) = 0,
then the algorithm has converged successfully to the
candidate solutions λ ∗(t̂) and x∗(t̂).

5. Using x∗ and u∗, check condition (i.) in theorem (1).
If this condition is not satisfied, then discard all output
and quit. Otherwise, all conditions are satisfied and
(s(t̂), ṡ(t̂)) = x∗(t̂) for t̂ ∈ [0, T ] is the optimal path tra-
jectory for the time-energy optimal control problem.

This is a very simple algorithm compared to the typical dy-
namic programming case where 2n initial conditions must
be determined for a mechanical system with n degrees of
freedom.
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4.1. Example and simulations.

In this section, the time-energy optimal control law is
computed for a two stage planar rigid body robot driven by
a tensegrity tendon network along a prescribed path. In fig-
ure (5) a sequence of the tensegrity robot moving along a
user-defined path is shown. The robot considered here con-
sists of six adjustable length tendons that are independently
controllable and are responsible for moving the 4-link (2
serial chains each having two links per chain) rigid-body
system along the path as shown. The first step in the time-
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Figure 5. Tensegrity robot moving along specified
path at various distances, s, along the path. Num-
bers on tendons indicate typical static equilibrium
forces (τ = 0) where the admissible set is A =
{t ∈ ℜm : 0 ≤ ti ≤ 100N}

energy optimal solution procedure is to guess the optimal
value of the initial costate λ01 with hopes that the final con-
figuration of the robot is the desired one and that the robot
arrives at this final configuration with zero velocity. This
is easier than it sounds. Use λ01 = 0 as a first guess. After
the state/costate ODE is integrated from this initial condi-
tion, the integration routine is commanded to stop once the
path velocity crosses zero from above. At this point only
one of two outcomes is possible, the robot moved too far
or too little along the path. To update λ01, we observe that
the total distance travelled along the designated path in-
creases monotonically with our guess of λ01. This property
is illustrated in figure (6) where the time-trajectories of the
the two states and two costates are illustrated for the robot
maneuver illustrated in figure (5). Hence, when the robot
comes to a halt at a position that overshoots (undershoots)
its desired final destination, one should reduce (increase)
the next guess for λ01.

In figure (7), the path velocity x2 function of time is pic-
tured for various values of ε , the weighting scalar that pe-
nalizes control energy relative to acquisition time. That is,
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Figure 6. Continuous dependence of state and
costate differential equations on initial condition
λ1(0) = λ01 for three cases: (A) λ01 = −0.41, (B)
λ01 =−0.27 and (C) λ01 =−0.13. In all cases, ε = 0.01
and the ODE integration routine is programmed to ter-
minate once the path velocity crosses zero, i.e. x2 = 0.
Notice that the total distance travelled along the spec-
ified path increases monotonically with λ01. This trend
was observed in all investigated test cases.

the larger the ε , the greater the amount of control energy ex-
pended resulting in faster acquisition times. Likewise, the
path velocity at each point along the path increases as ε is
reduced. Notice that as ε is reduced to zero, the minimum-
time velocity profile is reached.
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x
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x
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Min−Time Control 
ε  = 0.007

ε  = 0.01

ε  = 0.02

ε  = 0.10

ε  = 1.00

Figure 7. Time-energy optimal trajectories in the
phase plane, x1 − x2, for various values of ε.

Figure (8) illustrates the time-energy optimal path ac-
celeration trajectories, for various values of ε . Notice that
the path accelerations approach zero as ε is increased. Re-
ducing ε causes the path acceleration to increase until it
reaches its upper bounds. Once this occurs the acceleration
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cannot increase further, but it can remain at a maximal level
over a larger part of the curve. For ε > 0 the path acceler-
ation is continuous, but for ε = 0 the path acceleration is
discontinuous.
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Figure 8. Time-energy optimal path acceleration tra-
jectories, for various values of ε.

Figure (9) shows the control tendon axial force trajec-
tories along path x1 for each of the six control tendons
at various values of ε . The tendon forces are required to
satisfy 1 ≤ ti ≤ 99, for i = 1,2, . . . ,6. When the robot is
moved very slowly, its tendon force trajectories approach
the static-equilibrium tendon forces that correspond to the
case ε∞ = ∞. For this case, the tendon forces are smooth C∞

functions of the distance along the given path. For the case
that ε∗ = 0.01, the tendon force trajectories are smooth ex-
cept at two distinct corner points that correspond to points
where the path acceleration constraint switches from active
to inactive status. For the ε0 = 0 (minimum-time control)
case, the tendon force trajectories experience jump discon-
tinuities when the path acceleration switches from its max-
imum to minimum value.

Figure (10) shows the control energy and motion time
as a function of ε . Clearly, this plot demonstrates the trend
that as the ε is increased, the acquisition time increases to
infinity, but the expended control energy approaches zero.
It is also interesting to observe that when ε is reduced be-
low 0.007, the acquisition time no longer decreases even
though the expended control energy continues to increase
until ε is reduced below 0.001. This observation suggests
that the time-energy optimal trajectory at ε = 0.007 is vir-
tually just as fast as the time-optimal trajectory, but requires
less control energy.

Figure (11) shows that the Hamiltonian’s convexity with
respect to u can be checked point-wise along specified
paths. Strict convexity of the Hamiltonian with respect
to control u is a sufficient condition for a local minimum
of the time-energy cost function. This plot demonstrates
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Figure 9. Control tendon axial force trajectories along
path x1 for various values of ε. Specifically, ε∞ = ∞,
ε∗ = 0.01, ε0 = 0. Tendon forces are required to satisfy
1 ≤ ti ≤ 99, for i = 1,2, . . . ,6.
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Figure 10. Control energy and motion time vs. ε.
Control energy is defined here as the square root of∫ T

0 ‖t − tstat‖2dt̂ divided by the number of tendons.

that the Hamiltonian is convex at each point along the path,
which implies that any infinitesimally small variation of the
control trajectory u + δu will necessarily result in an in-
crease in the time-energy cost function.

Figure (12) shows the trajectory of the state-dependent
constraint h(x). This is an important plot to check, because
h(x)≤ 0 in (17) must hold for the duration of the maneuver.
If at any point along the path the constraint is violated, i.e.
h(x) > 0, then the path acceleration is no longer feasible
and at least one tendon will break or go slack. Since the
constraint h(x)≤ 0 was not added to the Hamiltonian func-
tion with multipliers, there is no reason for this constraint
to hold true. For this reason, a plot of h(x) versus x1 must
be inspected to see that h(x) ≤ 0 holds. If it does not hold,
then the time-energy optimal control algorithm presented
in this paper cannot offer a solution. In practice, the con-
straint is not violated except in cases where ε is chosen too
small and the prescribed path is too curvy.
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tion must be checked on a case by case basis.

5. Existence and uniqueness of solution to
state/costate ordinary differential equation

Before theorem 1 can be used, its hypothesis must be
satisfied. In particular, it must be shown that there exists a
non-trivial solution to the system of ode’s given by (27, 28,
29, 30) subject to control law (33). To facilitate the proof,
substitute (33) into (30) to yield the autonomous ode’s:

ż = F(z), z(0) = zo (36)

where z = [ z1 z2 z3 z4 ]T = [ λ1 λ2 x1 x2 ]T ∈ R
4 and

F = [ F1 F2 F3 F4 ]T ∈ R
4 is defined by

F1 = −2ε2τTW
[
udz3 + z2

4bz3

]− ε2τTWz3τ −µT gz3

F2 = −z1 −4ε2z4bTWτ −µT gz4

F3 = z4

F4 = u(z)

Theorem 2 If λ02 is as in (35), and r̃ : [so,s f ] → W ⊂ R
n

is chosen as in (10), then for each λ01 ∈ R there exists a
unique solution to the ordinary differential equations (36)
on set S :=

{
z ∈ R

4 : s0 ≤ z3 ≤ s f ,z4 ≥ 0
}

.

Proof. To show existence and uniqueness, it suffices to
show that F in (36) is piecewise Lipschitz on S . Since
r̃ ∈W for all z∈S , then the robot’s kinematics are smooth
functions of its path position z3 and velocity z4. Since the
Hamiltonian is strictly convex, then σ(z) is smooth, and
u(z) is Lipschitz. Proof details for these claims are given
in [1] where it is also shown that function F is a piecewise
continuous function from S into R

4 such that F1 and F2 are
piecewise continuously differentiable on S , and F3 and F4

are Lipschitz continuous on S . �

6. Conclusion

Biological systems inherently have more actuators than
degrees of freedom of the mechanical motion. This allows
for robustness and agility to be incorporated with minimal
energy control in a way that engineers are only now be-
ginning to understand and appreciate. In tensegrity control
problems, two major obstacles present themselves: slack
tendons and broken tendons. The controller in this paper
prevents both. The main contribution is a control synthe-
sis method that determines the tendon force inputs from a
set of admissible (non-saturating) inputs that will move the
mechanical system along a prescribed path with minimal
time and energy.
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