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Abstract— We propose a new algorithm for Support Vector
Machine classification based on a geometric interpretation
of the problem as finding the minimum distance between
the polytopes defined by the points of the two classes. This
geometric formulation applies to the hard margin, and the soft
margin classification problem with quadratic violations. Our
approach is based on Wolfe’s classical proximity algorithm
and our results show that the computational and storage
requirements per iteration are relatively modest.

I. INTRODUCTION

Support Vector Machines (SVMs) [1] provide a powerful
tool for solving data mining tasks such as classification and
regression. For example, the generalization capabilities of
SVMs have been firmly established on inference principles
such Structural Risk Minimization and Regularization The-
ory, with significant implications that allow the separation
of model complexity and generalization [2]. At the same
time, training of SVMs involves the solution of a convex
quadratic problem that, albeit usually of large scale, circum-
vents problems of getting trapped in local minima as, for
example, in training Feedforward Neural Networks. A lot of
research has been focused on efficiently solving the quadratic
optimization problem in SVMs. The size of this problem is
determined by the amount of available data for training and
it can be huge. Thus general purpose algorithms are usually
inappropriate for solving it and special methods have been
proposed that take advantage of the simple structure in the
constraints of the dual problem [3], [4], [5], [6], [7]. Of such
algorithms, Platt’s Sequential Minimal Optimization (SMO)
algorithm [5] is distinguished for its simplicity and surpris-
ingly overall fast performance. Some notable computational
improvements of this algorithm are reported in [8] and a
C++ implementation is available in [9].

In this paper, we propose a new algorithm for SVM two-
class classification based on a geometric interpretation of
the problem as finding the minimum distance between the
polytopes defined by the points of the two classes [10], [7].
Such a geometric algorithm has been proposed in [7] and it
is based on combining the two classical algorithms of Gilbert
[11], and of Mitchell-Dem’yanov-Malozemov (MDM) [12]
to solve this problem. It turns out that the geometric al-
gorithm of [7] and SMO, although developed in separate
contexts, share many common elements and thus exhibit
similar behaviors. Our proposed geometric approach is based
on another classical proximity algorithm, namely Wolfe’s
algorithm [13]. The latter is considered as the method

of choice for solving proximity (nearest point) problems,
but it was dismissed in [7] as unsuitable for the SVM
problem on grounds of excessive computational and storage
requirements. However, we demonstrate in this paper, that
the increased computational requirements per iteration of the
Wolfe approach over the nearest point algorithm of [7] and
SMO are well offset in many problems by the dramatically
reduced number of iterations. Thus the proposed algorithm
turns out to be faster than the previous algorithms on many
standard test problems.

II. PROBLEM FORMULATION AND BACKGROUND

RESULTS

In two-class classification (or pattern recognition), the
objective is to decide whether a given pattern x ∈ R

p belongs
to the positive class C+ or negative class C−. A classifier is
a function f(x) selected from a specified set F of possible
functions (learning machines), so that f(x) > 0 if x is
deemed to be in C+, and f(x) < 0 if x is deemed to be
in C−. In supervised training, a classifier from F is selected
so as to classify a set of given patterns xi ∈ R

p, i = 1, . . . , l,
and corresponding class labels yi ∈ {−1, 1}, in some optimal
way. A separable training set is one that f ∈ F exists
that classifies it without error; otherwise the training set is
non-separable. Linear Classifiers are hyperplanes f(x) =
wT x+ b where w ∈ R

p and b ∈ R are the parameters of the
classifier. For a linearly separable training set, a Linear SVM
is in fact a maximum margin classifier, where the margin
is the gap between two parallel hyperplanes that separate
the set. It can be shown [1], that the parameters of linear
SVM can be found by solving the following convex quadratic
problem:

min
w,b,ξ

1
2
‖w‖2 + C

l∑
i=1

ξi

s.t. yi(wT xi + b) ≥ 1 − ξi , i = 1, . . . , l

ξi ≥ 0, i = 1, . . . , l

(1)

In (1), ξi signifies the degree of violation for the ith pattern.
The cost function attempts to trade-off the objectives of
maximizing the margin and minimizing the l1 norm of such
violations. The user parameter C controls this trade-off and
is usually picked by cross-validation techniques that aim
at optimizing the generalization properties of the learning
machine. The learning machine resulting from (1) is referred
to as a soft margin classifier. A hard margin classifier
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does not allow for constraint violations and is obtained (for
a linearly separable problem) by setting ξi = 0 in (1)
(equivalently by taking C = ∞.)

An alternative soft margin formulation, that is important
for the geometric approach followed in [7] and this paper,
considers the l2 norm of the constraint violations in the cost.
Namely, the SVM classifier is obtained by solving:

min
w,b,ξ

1
2
‖w‖2 +

C̃

2

l∑
i=1

ξ2
i

s.t. yi(wT xi + b) ≥ 1 − ξi , i = 1, . . . , l

(2)

The capabilities of linear SVMs can be greatly extended
by using kernel induced feature spaces. Specifically, patterns
vectors are first mapped to feature vectors φi ≡ φ(xi), where
the function φ(·) is such that inner products φ(xi) ·φ(xj) ≡
K(xi, xj), i.e. they can be computed by means of a kernel
function K(·, ·). Then linear classification is effected in the
feature space. Most commonly used kernel functions other
than the linear one: K(x, y) = xT y, are the Gaussian or
Radial Basis Function (RBF) kernel: K(x, y) = exp(−‖x−
y‖2/(2σ2)), and the polynomial kernel: K(x, y) = (xT y +
1)d, with d > 0 an integer.

The quadratic program (1) (with xi replaced by φ(xi) for
Nonlinear SVMs) is typically tackled by solving its dual
problems that has a simpler constraint structure. Thus the
dual of (1) is given by:

max
α

l∑
i=1

αi − 1
2

l∑
i,j=1

αiαjyiyj K(xi, xj)

s.t.
l∑

i=1

αiyi = 0

C ≥ αi ≥ 0, i = 1, . . . , l

(3)

The dual problem for hard margin classification is obtained
by setting C = ∞ in (3), i.e. by discarding the upper bound
constraints on the dual variables αi, i = 1, . . . , l. Each
αi represents the Lagrange multiplier for the corresponding
constraint (pattern) in the primal problem. Patterns with
αi > 0 are the so-called support vectors and are the only
patterns needed to determine the learning machine. Indeed,
the optimal classifier is expressed as:

f(x) = sign(
l∑

i=1

yiαi K(x, xi) + b) (4)

where b is computed from any support vector constraint since
by the Karush-Kuhn-Tucker (KKT) optimality conditions
such constraints must be satisfied with equality.

Note that since for the solution of the quadratic program
(3) and the application of the resulting decision function (4)
only inner products between feature vectors are required,
the kernel implementation of inner products allows high
dimensional (even infinite dimensional) feature spaces with
a computational load independent of the dimension of the
feature space.

Let us now consider the soft margin classification problem
with quadratic violations (2). The latter can be equivalently
transformed to an instance of a hard margin classification
problem in an extended input space by considering patterns
x̃i and hyperplane parameters w̃ and b̃, defined as follows.

w̃ =

(
w√
C̃ξ

)
; x̃i =

(
xi

1√
eC
yiei

)
; b̃ = b, (5)

where ξ ≡ [ξ1, . . . , ξl]T and ei denotes the ith unit vector
in R

l. In the case of Nonlinear SVMs, feature vectors φ(xi)
rather than patterns xi are augmented in (5) and we obtain
extended feature vectors φ̃i ≡ [φ(xi)T 1√

C̃
yie

T
i ]T . Inner

products in this space can be computed from:

φ̃T
i φ̃j = φ(xi)T φ(xj) +

1
C̃

yiyje
T
i ej = K(xi, xj) +

1
C̃

δij ,

(6)
where δij = 1 for i = j and δij = 0 otherwise. Thus, from
the viewpoint of the dual problem (3), the soft margin SVM
problem with quadratic violations (1) is reduced to the hard
margin problem with only a minor modification in the kernel
function, namely by adding 1/C̃ to the diagonal elements of
the kernel matrix K(xi, xj) as indicated by (6).

A. Hard Margin Classification as a Proximity Problem

The hard margin classification problem in the linear
separable case has an interesting geometric interpretation
as a minimum distance (Proximity or Nearest Point) prob-
lem [10], [7]. More specifically, consider the (convex)
positive P+ ≡ co({x+

1 , . . . , x+
l+}) and negative P− ≡

co({x−
1 , . . . , x−

l−}) polytopes defined as the convex hulls
of the positive and negative training patterns respectively.
Then the maximum margin hyperplane SVM is found as
the bisector of the minimum distance segment with end
points u ∈ P+ and v ∈ P−. This observation is key to
applying proximity algorithms to the solution of the hard
margin SVM problem (1) with C = ∞ and also of the
soft margin SVM problem with quadratic violations (2) after
using transformation (5) discussed above. Specifically, it
can be shown that (3), is equivalent to following proximity
problem:

min
u∈P+, v∈P−

‖u − v‖. (7)

Once the solution (u∗, v∗) of (7) has been found, the
optimal solution (w∗, b∗) of the maximum margin classifier
is obtained from:

w∗ =
2(u∗ − v∗)
‖ u∗ − v∗ ‖2

; b∗ =
‖ v∗ ‖2 − ‖ u∗ ‖2

‖ u∗ − v∗ ‖2
,

and the optimal margin is M∗ = 2/ ‖ w∗ ‖=‖ u∗ − v∗ ‖ /2
[7].

B. Review of Classical Proximity Algorithms

The problem of finding the minimum distance between
two convex sets P+ and P− is one with a long history. It is
readily reduced to the problem of finding the minimum norm
point of the difference set D ≡ P+−P− defined as all points
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u − v with u ∈ P+ and v ∈ P−, which is also convex.
For the latter problem a number of classical algorithms
are available. In the following, we give a brief overview
of three such algorithms, namely Gilbert’s algorithm [11],
the Mitchell-Dem’yanov-Malozemov (MDM) algorithm [12],
and Wolfe’s algorithm [13]. The approach in [7] is based
on combining Gilbert’s and MDM algorithms, which makes
it a lot similar to the SMO algorithm conceived from a
purely algebraic perspective. The objective of this paper is
to investigate the potential of Wolfe’s algorithm for solving
the dual optimization problem (3) for hard margin or soft
margin SVM’s with quadratic violations.

Consider a bounded convex set D in a Hilbert space H,
which can be infinite-dimensional. Proximity algorithms are
concerned with finding the nearest point to the origin, or
equivalently the minimum norm point in D. Specifically, they
solve the following problem:

Given ε > 0 and 0 < ρ < 1, find a point z∗ ∈ D such
that either

‖ z∗ ‖< ε (8)

or
‖ z∗ ‖ − inf

z∈D
‖z‖ < ρ ‖ z∗ ‖ (9)

Condition (8) implies the origin is in D within a given
tolerance ε. In our application to SVMs, since D represents
the difference of the polytopes defined by the training points
(or corresponding feature points) in the positive and negative
classes, stopping with (8) means that the two classes are not
linearly separable. On the other hand condition (9) implies
that the minimum norm point z∗ is found with a relative
precision specified by ρ. All of the three classical proximity
algorithms produce sequences of points zk ∈ D, that satisfy
(8) or (9) within a finite number of iterations. These points
can be represented as a convex combination of a finite
number of points of D. In case of D = co(S) being the
convex hull of a finite number of points S = {s1, . . . , sL}
as it is the case in the proximity problem resulting from SVM
optimization, we get

zk =
L∑

i=1

βk
i si,

L∑
i=1

βk
i = 1, βk

i ≥ 0 (10)

with possibly many of the βk
i ’s being equal to zero.

At the kth iteration, all three approaches require the
contact point gk ∈ D (in fact gk ∈ S) of the hyperplane
having zk as its normal with D. The contact point gk has
the following important property:

〈gk, z〉
‖z‖ ≤ inf

z∈D
‖z‖ ≤ ‖z‖ (11)

for any z ∈ D and in particular z ≡ zk. The notation 〈·, ·〉
denotes as usual the inner product in H. Since points in H are
of the form u−v with u, v feature vectors, we can compute
〈ui − vi, uj − vj〉 = K(ui, uj) − K(ui, vj) − K(vi, uj) +
K(vi, vj). From (11), it follows that (9) is satisfied when

‖zk‖ − 〈gk, zk〉
‖zk‖ < ρ‖zk‖ (12)

and (12) can be taken as a convenient stopping condition.
a) Gilbert’s Algorithm: In this approach the next es-

timate zk+1 is found as the minimum norm point on the
line segment with end points zk and gk. Since the latter is
expressed as z(µ) = (1 − µ)zk + µgk, 0 ≤ µ ≤ 1, we
can easily find zk+1 by first considering µ∗ = 〈zk, zk−gk〉

‖zk−gk‖2

solving minµ z(µ) with µ unrestricted, and then by taking
zk+1 = zk +µ∗(gk −zk) if µ∗ < 1, or zk+1 = gk if µ∗ ≥ 1
(Note that µ∗ > 0 from (11).)

b) MDM Algorithm: The MDM algorithm utilizes be-
sides zk and gk a third point mk. Let Ik be the set of points
in S with βk

i 
= 0 in the representation (10) of zk. Then mk

is defined as the element of S that satisfies

〈zk, mk〉 = max
i∈Ik

〈zk, si〉. (13)

Thus mk is the point in S that projects the farthest among
the points participating in the representation of the current
solution candidate zk along the direction defined by zk. Since
in the representation of the minimum norm point all points
must project the same, mk can be thought as the worst point
in the representation of zk. In the MDM approach, the next
estimate zk+1 is found as the minimum norm point in D and
on the half line z(µ) ≡ zk + µ(gk −mk), µ > 0. Let ig , im
be the indices of gk, mk respectively in S, i.e. gk ≡ sig

and
mk ≡ sim

. Clearly, from (10),

z(µ) = βk
1 s1 + . . .+(βk

im
−µ)mk + . . .+(βk

ig
+µ)gk + . . .+βk

msm,

and µ ≤ βk
im

so that z(µ) ∈ D. Then zk+1 can be

found by first considering µ∗ = 〈zk, mk−gk〉
‖mk−gk‖2 > 0 such

that z(µ∗) is the minimum norm point along the half line
without restricting z(µ∗) being in D, and next by taking
zk+1 = zk + min{µ∗, βk

im
}(gk − mk).

c) Wolfe’s Algorithm: A key concept that is made
explicit in Wolfe’s algorithm but is present in all algorithms
solving proximity problems and thus SVM optimization
problems is that of a corral. First, given a set S, the
affine hull aff (S) of S is defined as the set of all affine
combinations of elements in S, i.e.

aff (S) ≡
{

z

/
z =

L∑
i=1

βisi , si ∈ S,
L∑

i=1

βi = 1

}
(14)

A finite set S = {s1, . . . , sL} of points in H is said to be
affinely independent if no point of S belongs to the affine
hull of the remaining points. Also the relative interior ri(S)
of S is the interior of S with respect to aff (S). Then, we
have the following definition:

Definition A corral is a set of affinely independent points
Q = {q1, . . . qm} ∈ H such that the nearest point in the
affine hull aff(Q) is contained in the relative interior of the
convex hull co(Q).

A singleton is a corral. In case that the origin is outside D,
the minimum norm point z∗ is in the relative interior of a face
of D (i.e. the intersection of D and a supporting hyperplane.)
This face is clearly a corral with z∗ being its nearest point.
It is uniquely determined and thus we will refer to it as the
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optimal corral. Note that the optimal corral is defined by the
points in S with nonzero coefficients in the representation
(10) for z∗. Also note that had the optimal corral Q∗ been
known, we could find z∗ simply by discarding all points in S
other than the vertices of Q∗ and finding the minimum norm
point in aff (Q∗). The latter problem amounts to solving a
linear system of equation of dimension equal to the number
of the vertices that define Q∗. Knowledge of the optimal
corral is equivalent with knowing the nonzero α’s in problem
(3).

In Wolfe’s approach, zk is the nearest point in a corral
Qk formed from points in S. Qk is an approximation of the
optimal corral constructed by Wolfe’s algorithm at the kth

iteration. Thus we can think of Qk as being the main object
of the algorithm with zk obtained as the nearest point in Qk.
The next corral Qk+1 is obtained as in Algorithm 1.

Algorithm 1 Corral Updating in Wolfe’s Algorithm

Given: a corral Qk = {q1, . . . qm} ⊂ S together with zk the
nearest point in co(Qk) and a contact point gk ∈ S such that
〈gk , zk〉 < 〈z , zk〉 for all z ∈ S = {s1, . . . , sL}.
Step 1: Consider the set Q̂k+1 = Qk

⋃{gk} obtained by
appending the contact point gk to Qk.
Step 2: Compute q̂k+1 as the nearest point in aff (Q̂k+1).
Step 3: If q̂k+1 ∈ ri(co(Q̂k+1)) then set Qk+1 ≡ Q̂k+1,
zk+1 ≡ q̂k+1 and return.
Step 4: Otherwise compute the nearest point ẑk+1 in
[zk, q̂k+1]∩ co(Q̂k+1), set Q̂k+1 equal to the face of Q̂k+1

that contains ẑk+1 and go back to step 2.

We now discuss in more detail the implementation of the
steps in Algorithm 1. Step 2 requires solving the following
optimization problem on a set Q = {q1, . . . , qm, qm+1},
where we identify qm+1 ≡ gk. Namely:

q̂ = arg min
β

{‖q‖2/q =
m+1∑
i=1

βiqi,

m+1∑
i=1

βi = 1}, (15)

where β = [β1, . . . , βm, βm+1]T . The necessary (here also
sufficient) conditions for optimality give the system of linear
equations {

eT β = 1
eρ + Mβ = 0

}
(16)

where M is the matrix with elements Mij = 〈qi, qj〉, the
inner products between the qi’s computed using the kernel
function and e identified here with e(m+1) ≡ [1, . . . , 1]T ∈
R

m+1. Also ρ is the Langrange multiplier corresponding to
the equality constraint in (15). System (16) can be shown to
be equivalent to:{

(eeT + M)β̄ = e
β = β̄/eT β̄.

}
(17)

Furthermore, affine independence of Q implies that vectors
[1, qT

i ]T are linearly independent and therefore the symmetric
matrix eeT + M is positive definite and the solution of (17)
is well defined. By employing the Cholesky factorization

RT R = eeT + M with R upper triangular, the system in
(17) is efficiently solved via two triangular systems [13].
Moreover, since Q always changes by adding one point
(Step 1) or deleting one point (Step 4), R can be updated at
a low computational cost (see also Section III-B.)

In Step 3, q̂k+1 (identified with q̂ in (15)) is in the relative
interior of co(Q̂k+1) (identified with Q in (15)) if and only
if the corresponding weights βi > 0 for all i = 1, . . . , m+1.
In Step 4, we have q̂k+1 /∈ ri(co(Q̂k+1)) and thus q̂k+1 =∑m+1

i=1 β̂k+1
i qi,

∑m+1
i=1 β̂k+1

i = 1 and β̂k+1
j ≤ 0 for some

j ∈ {1, . . . , m + 1}. We have zk ∈ co(Q) and the algorithm
maintains a description zk =

∑m+1
i=1 βk

i qi with
∑m+1

i=1 βk
i =

1 and βk
i ≥ 0, for all i = 1, . . . , m + 1 (observe that βk

m+1 =
0.) Then points on the line segment [zk, q̂k+1] that are in
co(Q̂k+1), are represented as q̄ =

∑m+1
i=1 β̄iqi with β̄i =

(1−µ)βk
i +µβ̂k+1

i ≥ 0, 0 ≤ µ ≤ 1, for all i = 1, . . . , m+1.
The last condition requires that

0 ≤ µ ≤ min
i∈{1,...,m+1}

{ βk
i

βk
i − β̂k+1

i

, β̂k+1
i ≤ 0}. (18)

Since the distance from the origin monotonically decreases
along the line segment from zk to q̂k+1, the solution is
clearly obtained for µ equal to the upper bound in (18). Note
that for this µ, some β̄i = 0 and the corresponding point gets
eliminated from Q̂k+1, which is then reduced to one of its
faces towards q̂k+1.

III. MAIN RESULTS

A. Application of Wolfe’s Algorithm to the Hard Margin
Classification Problem

As discussed in Section II, the SVM optimization problem
(3) is transformed to the problem of finding the minimum
distance between the positive and negative polytopes P+

and P− respectively. The latter problem is equivalent with
finding the minimum norm point in the difference polytope

D ≡ P+ − P− ≡ {z = u − v/u ∈ P+, v ∈ P−}. (19)

We apply Wolfe’s Algorithm to find u∗ ∈ P+ and v∗ ∈ P−,
such ‖u∗ − v∗‖ = min{u − v/u ∈ P+, v ∈ P−}. We
remark that in our implementation, we do not explicitly form
D that can have as many points as l+ · l− with l+ and l− the
numbers of positive and negative training points respectively,
but we represent each point in D by its corresponding
points in P+ and P−. We also work with points in the
feature space that might be of infinite dimension. As we
only need inner products between feature points φ(xi) that
are computed through kernel functions, we do not need the
feature points themselves, and indeed, φ may be unknown.
Thus in our algorithm, we represent the feature points φ(xi)
by their index i and use xi in the original space in the kernel
computations.

At each iteration Wolfe’s algorithm maintains the corral
Qk and the minimum norm point zk in co(Qk). We keep a
representation of Qk as:

Qk ≡ {(ik1 , jk
1 ), . . . , (ikmk

, jk
mk

)} (20)

2436



where ikl , jk
l are the indices of the points in P+, P−

respectively that define the vertices of Qk. Note that it is
possible for some index ikl (or jk

l ) to be repeated if the
corresponding vertex in P+ (or P−) participates in more
than one vertices of D, but every pair of indices in (20) is
distinct. The unique indices ikl (jk

l ) induce sets Qk
+ ∈ P+

and Qk
− ∈ P− that we call positive and negative corral

respectively. Also zk is represented by its barycentric co-
ordinates βk = [βk

1 , βk
2 , . . . , βk

mk
]T , βk

l ≥ 0,
∑mk

i=1 βk
i = 1,

with respect to the corral vertices. We then easily obtain from
βk, the barycentric coordinates γk and δk of uk ∈ P+ and
vk ∈ P− with respect to the positive and negative corrals
respectively where zk = uk − vk . (However, note that uk

and vk are not minimum norm points in Qk
+ and Qk

−, rather
they define the estimate for the optimal hyperplane at the
kth iteration.)

In summary, our implementation employs two integer
arrays indexing the vertices from P+ and P− participating
in forming the corral Qk in (20) and the arrays βk and γk,
δk with the coordinates of zk and uk, vk points defining the
SVM hyperplane.

We next give details about the operations involved in
Wolfe’s Algorithm as applied to the SVM optimization
problem.

1) Contact point Calculation: The contact point gk =
arg minz∈D〈zk, z〉. Since D is a polytope, i.e. D =
co({s1, . . . , sL}), gk is one of the si’s, the vertices of D.
Let zk = uk − vk and z = p − r with uk, p ∈ P+ and
vk, r ∈ P−. Then,

min
z∈D

{〈zk, z〉} = min
p∈P+, r∈P−

{〈zk, p − r〉}

= min
p∈P+

{〈zk, p〉} − max
r∈P−

{〈zk, r〉}

= min
p∈P+

{〈uk, p〉 − 〈vk, p〉} − max
r∈P−

{〈uk, r〉 − 〈vk, r〉}

= min
p∈P+

{K(uk, p) − K(vk, p)} − max
r∈P−

{K(uk, r) − K(vk, r)}. (21)

The optimizations in (21) can be further expanded by noting

that uk =
∑m+

k
i=1 γk

i q+
i and vk =

∑m+
k

i=1 δk
i q−i where q+

i

and q−i are the vertices of the positive Qk
+ and negative

Qk
− corrals respectively (dependence of q+

i and q−i on the
iteration index k is omitted for ease of notation.) Thus from
(21), it can be seen that the contact point gk can be identified
by two searches over the vertices of the positive and negative
polytopes, i.e. the training samples in class C+ and class C−

respectively.
2) Updating the Cholesky factor: In Step 2 of Algo-

rithm 1, (see Section II-B) the Cholesky factor RT R =
eeT + M is used to solve efficiently system (17). R needs
to be updated when a new point (such as gk) is added to the
corral, or when a corral point is eliminated as in Step 3 of
Algorithm 1 to obtain the next corral.

In the following, we let Q = [q1, . . . , qm] denote the
matrix with columns the vertices qi defining the corral at the
kth iteration. Again we omit dependence on k for notational
convenience. We remark that the qi’s being feature vectors
can be infinite dimensional, but we only use inner products
among such vectors that are computed through the kernel

function. In particular, we have M ≡ QT Q. Let us first
consider the case that a new point q ∈ D is added to the
corral. Then Qnew = [Q q] and if Rnew denotes the updated
Cholesky factor, we have

RT
newRnew = e(m + 1)eT (m + 1) + QT

newQnew (22)

where e(m) = [1, . . . , 1]T ∈ R
m. Consider the following

form for Rnew:

Rnew =
[

R η
0 ρo

]
(23)

where η and ρo have to be found. Substituting (23) in (22),
we obtain»

RT R RT η
ηT R ρ2

o + ηT η

–
=

»
e(m)eT (m) + QT Q e(m) + QT q

eT (m) + qT Q 1 + qT q

–

and it follows

η = R−T [〈q1, q〉, . . . 〈qm, q〉]T (24)

ρo = (〈q, q〉 − ηT η)−1/2, (25)

where we replaced QT q and qT q with the indicated inner
products that can be computed via kernel evaluations. We
remark that besides these kernel evaluations, the other major
computation involved in updating the corral is the solution
of the triangular system in (24).

Next we discuss the case of eliminating a point
qj from the corral. In this case we define Qnew =
[q1, . . . , qj−1, qj+1, . . . , qm] with obvious modifications if
j = 1 or j = m. By introducing the permutation matric
Ej = [e1, . . . , ej−1, ej+1, . . . , em, ej ], where ei denotes the
ith column of the m × m identity matrix, we have QEj =
[Qnew, qj ]. Then from RT R = e(m+1)eT (m+1)+QT Q ⇒
ET

j RT REj = e(m + 1)eT (m + 1) + ET
j QT QEj we obtain

R̃T R̃ = e(m)eT (m) + QT
newQnew, (26)

where R̃ in (26) denotes the upper-left (m−1)×(m−1) block
of R. By construction, R̃ is in upper Hessenberg form and the
updated Cholesky factor Rnew can be efficiently computed
by using row operations, such as Givens rotations, to make
R̃ upper triangular without affecting the right-hand-side of
(26).

B. Computational Considerations

Kernel evaluations are among the most costly in this
and any SVM algorithm. Thus we can improve the effi-
ciency of the proposed algorithm considerably by caching
the kernel products that are most likely to be reused. Our
implementation of Wolfe’s algorithm for solving the SVM
optimization problem requires o(ml + m2) operations per
iteration versus o(l) for the SMO algorithm. Our algorithm
is clearly computationally more expensive per iteration but
it typically requires a much smaller number of iterations
to converge than that required by the SMO algorithm.
Therefore, our approach can indeed outperform the SMO
algorithm, especially in problems with the final corral size
being relatively small with respect to the sample size. This
analysis is supported by the numerical experiments discussed
in Section IV.
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Data Set Pattern
Size

Sample
Size

Kernel
Type

Checkers 2 1000 Gaussian (σ2 = 0.1)
Rand. Lin. Sep. 300 10000 Linear
Adult 3 123 3185 Gaussian (σ2 = 10)

TABLE I

DATA SET PROPERTIES.

IV. NUMERICAL EXPERIMENTS

We next empirically evaluate and compare the proposed
algorithm against the popular SMO algorithm on a number
of standard test problems. Our Wolfe approach for solving
the SVM classification problem was implemented in MAT-
LAB. MATLAB programs usually run slower than compiled
FORTRAN or C code, and to keep the comparison fair, we
also implemented SMO in MATLAB, along the lines of [9]
that incorporates the improvements in [8]. By implementing
our own SMO routine, we were able to tap the variables
necessary for our comparison, and perhaps more importantly,
to adapt SMO to solve the SVM problem with quadratic
violations that our proposed algorithm solves. Finally, our
SMO implementation uses identical caching as the proposed
Wolfe algorithm and no shrinking.

The experiments performed are summarized in Table I.
In this table, we identify the data set used, the size of the
patterns, the size of the training sample, the type of kernel
used (Linear or Gaussian) and for the Gaussian kernel the
variance σ2 used. We remark that we used values that are
commonly used in previous experiments employing the same
data sets [5], [6], [7]. The Checkers data set considered in
[4] (see also [7]) involves random two-dimensional points
arranged in a 4 × 4 checkerboard pattern. This problem is
separable in feature space when using a Gaussian kernel.
The Random Linearly Separable data set was considered in
[5], and is constructed by considering random binary 300-
dimensional vectors with a 10% fraction of them in Class
C+. The Adult 3 data set comes from the UCI repository:
ftp://ftp.ics.uci.edu/pub/machine-learning-databases. The
benchmark results were obtained by running our MATLAB
code on a laptop computer with an Intel Mobile Pentium 4,
1.7Ghz CPU and 1Gb RAM, running Windows XP. We
report in Table II total computation time in secs, number
of iterations, total number of kernel evaluations, number of
support vectors, and achieved margin for the Wolfe-SVM
algorithm proposed here and the SMO algorithm modified
as explained above to solve the soft margin SVM problem
with quadratic violations. Table II also gives the value of the
regularization constant C̃ used in each experiment. These
experiments (and all other experiments performed but not
reported here due to space limitations) point to the following
conclusions. The total kernel computations are comparable
in both algorithms, and decrease as C̃ increases. Our Wolfe
algorithm uses in general much fewer iterations than SMO.
However, the difference in the number of iterations required
becomes more dramatic for higher values of C̃. However,

Time
(secs) Iter.

Kernel
Eval. SV # Margin

Data Set: Checkers (C̃ = 10)
Wolfe-SVM 0.44 162 79053 163 0.0424
SMO-q 0.82 1758 80913 163 0.0424

Data Set: Random Linearly Separable 4 (C̃ = ∞)
Wolfe-SVM 166.3 1143 13200003 300 0.1085
SMO-q 940.9 159618 11340003 307 0.1085

Data Set: Adult 3 (C̃ = 10)
Wolfe-SVM 348.0 1694 5736188 1782 0.0106
SMO-q 132.1 13707 5755298 1782 0.0106

Data Set: Adult 3 (C̃ = 1000)
Wolfe-SVM 362.9 1957 5532348 1275 0.0024
SMO-q 631.7 168060 4892163 1276 0.0024

TABLE II

PERFORMANCE COMPARISON OF WOLFE-SVM AND SMO ON

STANDARD TEST DATA SETS.

SMO has the advantage over our algorithm for smaller values
of C̃. The previous results suggest a strategy that uses the
proposed algorithm for large values, and SMO for small
values of the regularization parameter C̃.
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