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Abstract— Motivated by applications to feedback control over
communication networks where the actuation and feedback
signals are transmitted over communication channels, we study
the stability of Adaptive Delta Modulators (ADM) when the
coded signal is a constant. The importance of such a setting
arises because a common control task is to track a dc input. In
an earlier paper we had shown that a standard accumulator
based adaptive delta modulator has the following characteristic:
that virtually all combinations of the algorithm parameters
result in 4-cycles, that the avoidance of 4-cycles requires
a nongeneric initialization, and that steady state oscillations
that generically arise in the course of these cycles can have
amplitudes that can be arbitrarily close to the initial error.
Consequently, in this paper we study the use of a forgetting
factor in the ADM loop, and provide a detailed stability analysis
and design guidelines.

I. INTRODUCTION
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Fig. 1. A Delta Modulator at the transmitter
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Fig. 2. A Delta Modulator at the receiver

Adaptive Delta Modulators (ADM) are used in signal
processing and communications for signal quantization with
variable step-size. They increase the dynamic range of the
signals that can be tracked while using binary coding. Among
their variations, [1] -[3], our focus is the simplest, described

zzz

in [1] and depicted in fig. 1, 2. The structures in fig. 1
and fig. 2 are at the transmitter and receiver, respectively.
The signal Xk is coded into the binary sequence ek, taking
values from {−1, 1}. It is ek that is transmitted. The quantity
∆k represents the variable step size which is increased or
decreased according to the sign pattern in ek. Consequently,
if the signal at the receiver input is identical to the transmitted
value of ek, and ∆0 is known at the receiver, then for all
k ≥ 0, ∆k is known to the receiver. This also guarantees that
the signal X̂k at the receiver is identical to xk, the output
of H(z) at the transmitter, if x0 = X̂0. Thus should xk

approach Xk, so also would X̂k. An algorithm for updating
∆k is described in [1]. In [1] H(z) is an accumulator: i.e.
with α = 1,

H(z) =
1

1 − αz−1
. (I.1)

The agreed upon values of ∆0, and x0 between the trans-
mitter and receiver, are part of the communication protocol.
In [5] we have analyzed this ADM when the signal Xk = x
is constant and α = 1. We have shown that: (A) Either X̂k

converges to x or enters into 4-cycles with error magnitudes
comparable to |x|. (B) Such 4-cycles are avoided only with
nongeneric initializations. Hence we study the ADM with
constant Xk, when a forgetting factor is included in H(z),
i.e. when 0 < α < 1. We show that the system parameters
can be chosen to make the eventual coding error arbitrarily
small. The forgetting factor also allows the requirement
X̂0 = x0 to be relaxed by forcing the initial error to decay.

We study the constant Xk case because of networked
control systems, where a remote digital controller controls a
plant. Both the actuation signal and the feedback signal are
conveyed over bandwidth constrained communication chan-
nels, and must consequently be quantized prior to transmis-
sion. It has been noted in [4] that variable step quantization of
the feedback and actuation signals suffice to achieve closed
loop stability. Thus, it behooves one to study ADM behavior
in this setting, with transmitters and receivers at both the
plant and controller locations respectively, housing fig 1, and
fig. 2.

A typical control problem involves forcing the plant output
to track a constant signal. This in turn requires that the
closed loop input is a constant signal, and to achieve the
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desired performance, at steady state both the output of the
digital controller and the sampled plant output should be
constant, i.e. both the signals that the ADM’s should track
should be constants at steady state. Thus at the minimum,
desirable performance will necessitate that the signal X̂k

track a constant Xk in figs 1 and 2 with reasonable fidelity.
In section II we present the detailed ADM algorithm of

[1], and explain the heuristics that motivate it, and go on
to describe the forgetting factor based algorithm. Section III
describes some preliminary properties, Section IV provides a
stability analysis, and Section V provides design guidelines.
Space constraints compel us to compress or omit several
proofs.

II. THE DETAILED ALGORITHM

The detailed algorithm of [1] is given in (II.2) - (II.5)
below with ∆0 > 0 and K > 1.

xi+1 = αxi + ∆iei (II.2)

ei = sgn(Xi − xi) (II.3)

∆i+1 = ∆iK
ei+1ei (II.4)

with

sgn(a) =
{

1 if a ≥ 0
−1 if a < 0 (II.5)

We first discuss this algorithm in the form proposed in
[1], i.e. when α = 1. Several features of this algorithm
are noteworthy. First observe that as ei is available at the
receiver, so is ∆i, assuming perfect transmission and an
agreed upon value for ∆0. This is so as ∆i increases by
a factor of K if two successive values of Xk − xk have the
same sign (i.e. ei+1ei = 1), and decreases by the factor K
if two successive values of Xk −xk have opposite signs (i.e.
ei+1ei = −1). Thus, the reception of the ei sequence permits
reproduction of ∆i at the receiver. Consequently if

X̂0 = x0

then the accumulation

X̂i+1 = X̂i + ∆iei (II.6)

ensures that
X̂i = Xi.

Second, observe that (II.6) justifies the association of ∆i with
variable step-size as at each sample X̂i increases or falls by
∆i, depending on whether xk and hence X̂k is below or
above Xk. Third, the motivation for updating ∆i as in (II.3,
II.4) can be understood as follows.

Consider in particular a constant ∆, and figure 3, which
simultaneously depicts Xk and X̂k. In particular Xk is the
signal that ramps up to a constant value while X̂k is the
signal that transitions in steps. In the ramping stage it is
desirable to have a large ∆ so that the rise in X̂k tracks Xk

at a fast pace. The obverse occurs when Xk has acquired a
steady state, as in the second part of figure 3, where a large ∆
results in a large granularity in the steady state error between
X̂k and Xk. Contrast this to figure 4 where a smaller ∆ is
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Fig. 3. Large ∆

used. The result is slower tracking when Xk is rising rapidly,
but smaller steady state error once Xk has stopped changing.
Together these two examples show that when the signal to be
tracked changes quickly, a large ∆ is desirable. On the other
hand when Xk is not changing quickly and X̂k is close to it,
a smaller ∆ is desirable. The update laws (II.3, II.4) judge
the quality of tracking by whether or not successive values
of Xk − X̂k have the same sign. Their doing so indicates
that X̂k must approach Xk at a more rapid rate requiring a
larger ∆. If on the other hand the sign of Xk−X̂k alternates
then X̂k is likely to be close to Xk and a decrease in ∆ is
called for.
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Fig. 4. Small ∆

The results of [5] show that the accumulator based al-
gorithm provides poor performance with constant inputs for
generic parameter combinations, and initial conditions. Thus,
we study instead the modified algorithm when

0 < α < 1. (II.7)

Good design requires that α be close to 1 and

αK > 1. (II.8)

Note (II.7,II.8) imply that K > 1. As noted earlier our goal
is to study this algorithm for constant Xi, i.e. for all i,

Xi = x. (II.9)

To foreshadow the major results of this paper, we first
note that a major difficulty with the α = 1 case is the
necessity of identical initialization of xk and X̂k. As opposed
to this, (II.7) ensures that the effect of the difference x0−X̂0,
diminishes over time.
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The second important difference relates to the convergence
properties even when exact intialization occurs. In particular
when α = 1, for generic combinations of ∆0, K, x0 and
x, for some N and all k > N one has four cycles of the
form xk+4 = xk, and ∆k+4 = ∆k, and the largest |xk − x|,
during these 4-cycles, can be arbitarily close to the initial
error |x0 − x|.

When (II.7) holds on the other hand, the following positive
parameter plays a pivotal role:

ε =
1 − α3

1 − α2 + α
K

(II.10)

Indeed we show that under the right conditions

lim
i→∞

sup ∆i < Kε|x|. (II.11)

This in turn will be shown to imply that

lim
i→∞

sup |xi −x| ≤ max{(1−α+Kε)|x|, (α+Kε− 1)|x|}
(II.12)

Observe that α + Kε − 1, can be readily verified as being
positive. As will be explained in Section V one can make
ε arbitrarily small by choosing α arbitrarily close to 1.
Consequently, one can achieve an error that is an arbitrarily
small fraction of x, the value being encoded. We will explain
later why (II.11) and (II.12) cannot generically be achieved
when α = 1. Finally α ≈ 1, and αK ≈ 1 are good design
guidelines.

III. SOME PROPERTIES

In this section we present a series of properties of (II.2-
II.9), that will allow us to conduct our stability analysis. For
simplicity we will assume

x > 0, (III.13)

as the results translate in an obvious way to the case where
x < 0. For example under (III.13), the following set of
indices that mark the points at which xi transitions from
below to above x, will play an important role.

I+ = {i|xi < x and xi+1 ≥ x}. (III.14)

Henceforth ∆i for i ∈ I+, i.e. at a point of transition of xi

from below to above x, will be referred to as a transitioning
∆. For x < 0, the transition points are given by the set I− =
{i|xi ≥ x and xi < x}. on the other hand, the corresponding
indices are those marking transitions in xi from above x to
below. In general the results of this section can be applied to
the case of x < 0, by replacing inequalities of the form of
xk ≥ x by xk < x. The first rather straight forward Lemma
shows that ei must at some point change sign and that the
sign changes persist.

Lemma 3.1: Consider the system described in (II.2-II.5)
and (II.7-III.13), and I+ as in (III.14). Then I+ is an infinite
set.

In fact I+ is infinite even when α = 1. The next Lemma
is also straight forward.

Lemma 3.2: Under (II.2-II.5), (II.7-II.9) and (III.13), if
i ∈ I+, then

∆i > (1 − α)x. (III.15)

Further if for some j, xj < x and

∆j > (1 − α)xj , (III.16)

then xj+1 > xj .
In the α = 1 case the lower bounds in (III.15) and (III.16)

are both zero, and thus trivially hold. We now provide a
crucial property of this system. Specifically, after the first
sign change in ei, no more than two successive values of xi

may exceed x.
Lemma 3.3: If i ∈ I+ and xi+2 ≥ x then under (II.2-

II.5), (II.7-II.9) and (III.13), xi+3 < x and

xi+4 = α4xi + ∆i(1 − α2)(1/K − α) < x. (III.17)

Further in this case

∆i+4 = ∆i. (III.18)
Proof: From (III.14), xi < x and xi+1 ≥ x. Thus, from

(II.2-II.5) and xi+2 ≥ x, ei∆i = ∆i, ei+1∆i+1 = −∆i/K
and ei+2∆i+2 = −∆i . As α < 1 and (III.13),

xi+3 = α3xi + α2∆iei + α∆i+1ei+1 + ∆i+1ei+2

= α3xi + ∆i(α2 − α

K
− 1) < α3xi < x.

Also, in this case ei+3∆i+3 = ∆i/K. Thus

xi+4 = α4xi + α3∆i − α2 ∆i

K
− α∆i +

∆i

K
= α4xi + ∆i(1 − α2)(1/K − α) < α4xi < x.

Finally (III.18) follows trivially.

Thus if i ∈ I+ then either

ei+1 = ei+2 = −1 and ei+3 = 1, (III.19)

or
ei+1 = −1 and ei+2 = 1, (III.20)

This is also true true when α = 1. However, when α = 1
from (III.17) xi+4 = xi, and ∆i+4 = ∆i, signaling the
onset of 4-cycles. Thus, in the α = 1 case any occurrence
of (III.19) will lead to 4-cycles that cannot be arrested. The
next Lemma characterizes conditions under which (III.19)
holds and is straight forward.

Lemma 3.4: Consider i ∈ I+ and (II.2-II.5), (II.7-II.9)
and (III.13). Then xi+2 ≥ x iff

α2xi ≥ (
1
K

− α)∆i + x. (III.21)
Because α < 1, even if xi < x and thus ei∆i > 0, xi+1 need
not exceed xi. The following Lemma shows, however that if
at any point xi does become less than x, then after at most
two samples, its value will increase and will continue do so,
as long as it remains below x. It follows by showing that
if two successive values of xi are below x, then subsequent
∆j obeys (III.16).

Lemma 3.5: Under (II.2-II.5), (II.7-II.9) and (III.13), sup-
pose i ∈ I+. Then the following apply.
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(A) Suppose (III.19) holds and for some k ≥ 4 and all
n ∈ {3, · · · , k}, ei+n = 1. Then for all n ∈ {4, · · · , k},

xi+n+1 > xi+n. (III.22)

(B) Suppose (III.20) holds and for some k ≥ 4 and all
n ∈ {2, · · · , k}, ei+n = 1. Then also (III.22) holds for
all n ∈ {4, · · · , k}.

IV. STABILITY

In this section we provide conditions under which (II.11)
and (II.12) hold. The first few Lemmas focus on the values of
transitioning ∆’s. Specifically, the first states that if a given
transitioning ∆ exceeds εx, then the next transitioning ∆ can
be no greater.

Lemma 4.1: Suppose (II.2-II.5), (II.7-II.9) and (III.13)
hold. Consider i, j two consecutive members of I+, with
j > i. Suppose ∆i > εx, then ∆j ≤ ∆i and j ≤ i + 4.

Proof: From Lemma 3.3 one of two cases apply.
Case I: xi+2 < x. We will argue now that if ∆j > ∆i,
then ∆i < εx. Now in this the case, ∆i+1ei+1 = −∆i/K,
∆i+2ei+2 = ∆i/K2, and for all k ∈ {i+2, · · · , j}, ∆kek =
∆iK

k−i−4. Thus, ∆j > ∆i requires j > i+4. So xi+4 < x
and xi+5 < x. Also,

xi+5 = α4xi+1 − α3 ∆i

K
+ α2 ∆i

K2
+ α

∆i

K
+ ∆i.

Thus xi+5 < x and xi+1 ≥ x imply

∆i <
x(1 − α4)

1 + α
K + α2

K2 − α3

K

. (IV.23)

Thus, to prove that ∆j ≤ εx, it is enough to show that the
upper bound in (IV.23) is smaller than εx, or equivalently
by (II.10) that (1 + α + α2)(1 + α

K (1−α2 + α
K )) is greater

than (1 + α + α2 + α3)(1 − α2 + α
K ). This can be shown

through routine calculations using K > 1, and (II.7) and
(II.8). Hence ∆i > εx implies ∆j ≤ ∆i. Further the second
conclusion follows as ∆j ≤ ∆i iff j ≤ (i + 4).
Case II: xi+2 ≥ x. In this case ∆i+2ei+2 = −∆i, and as
from Lemma 3.3, xi+3 and xi+4 are less than x, ∆i+3ei+3 =
∆i/K and ∆i+4ei+4 = ∆i. As xi+2 ≥ x, and ∆i > εx, we
can show that xi+5 > x. Hence j = i + 4 and from Lemma
3.3 ∆j = ∆i.

When α = 1, the four-cycles referred to earlier occur,
when j = i + 4 and xi+2 ≥ x. The Lemma below shows
that if in fact a transitioning ∆ exceeds Kεx, and xi stays
above x only once, then the next transitioning ∆ will be
smaller.

Lemma 4.2: Suppose (II.2-II.5), (II.7-II.9) and (III.13)
hold. Consider i, j, two consecutive members of I+, with
j > i. Suppose ∆i > Kεx and xi+2 < x. Then ∆j < ∆i.

Proof: Because, xi+2 < x, from the definition of I+,
∆i+1ei+1 = −∆i/K, ∆i+2ei+2 = ∆i/K2, and for all k ∈
{i + 2, · · · , j}, ∆kek = ∆iK

k−i−4. Thus, if j = i + 2, then
∆j < ∆i. Then the Lemma is proved because j > i + 2,
and xi+1 ≥ x,one can show that xi+4 ≥ x.

The third step is to show in Lemma 4.3 that if a transition-
ing ∆ is less than or equal to εx, then the next transitioning
∆ cannot exceed Kεx.

Lemma 4.3: Suppose (II.2-II.5), (II.7-II.9) and (III.13)
hold. Consider i, j, two consecutive members of I+, with
j > i. Suppose ∆i ≤ εx. Then ∆j ≤ Kεx.

Proof: We need to consider the two cases xi+2 < x
and xi+2 ≥ x.
Case I: xi+2 < x. In this case ∆i+1ei+1 = −∆i/K,
∆i+2ei+2 = ∆i/K2, and for all k ∈ {i + 2, · · · , j},
∆kek = ∆iK

k−i−4. Suppose j = i + n. If n ≤ 5, then
∆j ≤ K∆i ≤ Kεx proving the result. If n ≥ 6, and
∆j > Kεx, because of xj = xi+n < x

xi+n = α2xi+n−2 + α
∆j

K2
+

∆j

K
< x.

Thus,

xi+n−2 <
x

α2
(1 − (

α

K
+ 1)ε) (IV.24)

On the other hand because of Lemma 3.2, ∆i > (1−α)x.
Thus,

xi+4 > α3x + x
1 − α

K
(1 − α2 +

α

K
) (IV.25)

Further, as n ≥ 6, from Lemma 3.5, xi+n−2 ≥ xi+4. Then a
contradiction ys established by showing that the upper bound
in (IV.24) is less than the lower bound in (IV.25) using, K >
1, (II.10), (II.7) and (II.8).
Case II: xi+2 ≥ x. In this case ∆i+2ei+2 = −∆i, and from
Lemma 3.3, xi+3 and xi+4 are less than x, and ∆i+4 = ∆i.

With n defined as in the proof of Case I, suppose, that
∆i+n > Kεx. Then in this case n ≥ 6, as ∆i+5 = K∆i ≤
Kεx. From (II.10),

xi+n−1 =
xi+n − ∆i+n

K

α
< x

(
1 − ε

α

)
. (IV.26)

Further, because of Lemma 3.5 and the fact that xi+2 ≥ x,
xi+5 > xi+4 and ∆i > (1 − α)x,

xi+5 > x[α3 + (1 − α)(1 − α2 +
α

K
)] (IV.27)

As from Lemma 3.4, ∆i+n−1 > ∆i+5, for all n ≥ 6,
a contradiction is established because the upper bound in
(IV.26) is smaller than the lower bound in (IV.27), from
K > 1, (II.7) and (II.8).

We now establish conditions that ensure (II.11). Our
strategy will be to show that there exists an N such that
for all i ≥ N and i ∈ I+, there holds:

∆i ≤ Kεx. (IV.28)

We argue that this ensures (II.11). Assume such an N exists
and consider any consecutive elements i, j of I+, obeying
j > i ≥ N . Define i < k < j as the unique point where
xk < x and xk−1 ≥ x. Then we know that for all i ≤ l ≤
k − 1, ∆i ≥ ∆l. Likewise for all k ≤ l ≤ j, ∆l ≤ ∆j . This
proves that if (IV.28) holds for all i ∈ I+, and i ≥ N , then
it also holds for all i ≥ N .
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Because of Lemmas 4.1 and 4.3, if any transitioning ∆
becomes less than or equal to Kεx, all future transitioning
∆’s must be bounded by Kεx. Thus to prove (II.11), it
suffices to have the following condition: That for every
i ∈ I+, at which ∆i > Kε, there exists a j > i and j ∈ I+,
such that ∆j < ∆i. Then as all changes in ∆ are factors
that are powers of K, (IV.28) must hold for all suitably large
i ∈ I+. Now suppose, a given i ∈ I+, with ∆i > Kε, has
the property that for all j > i and j ∈ I+, ∆j ≥ ∆i. By
Lemma 4.1, at all such j, in fact ∆j = ∆i. By Lemma 4.2
this implies that for all j ≥ i and j ∈ I+, xj+2 ≥ x. Since,
in this case Lemma 3.3 asserts that xj+3 < x, xj+4 < x,
and ∆j+4 = ∆j , this also means that j + 4 ∈ I+, as failure
to transition at this point will result in a large transitioning
∆, thereby violating Lemma 4.1. This argument thus shows
the following: if for all N there exists i ≥ N , such that
(IV.28) fails, then there must exist an i ∈ I+, such that for
all nonnegative integer n,

i + 4n ∈ I+, xi+4n+2 ≥ x and ∆i+4n = ∆i > Kεx.
(IV.29)

The result is in fact a 2-cycle in ∆ (in this case for all
∆i+4n+2 = ∆i and ∆i+4n+1 = ∆i/K ) with potentially
large amplitudes.

It is possible for such cycles to occur. Consider for
example the situation where for some i

∆i ≥ ∆∗ =
(1 + α2)|x|

α − 1
K

. (IV.30)

Now select, xi = x∗ defined below.

x∗ = −sgn(x)

(
α − 1

K

)
∆i

1 + α2
. (IV.31)

Suppose x > 0. In this case since xi = x∗ < 0 < x,

xi+1 = αxi + ∆i =
1 + α

K

1 + α2
∆i ≥ α + K

αK − 1
x > x, (IV.32)

where the last inequality is obtained by using the fact that
K > 1 and α < 1. Thus, i ∈ I+, and ∆i+1ei+1 = −∆i/K.
Consequently, from (IV.30)

xi+2 = α2xi + (α − 1
K

)∆i =
α − 1

K

1 + α2
∆i > x. (IV.33)

Thus, from Lemma 3.3,

xi+4 = α4xi − (α − 1
K

)(1 − α2)∆i

= α4xi + (1 + α2)(1 − α2)xi = xi.

Thus, in this case 2-cycles result in ∆ and 4-cycles in xi.
Further the resulting ∆i oscillate with bounds of ∆∗ and
∆∗/K. As α− 1/K must be small, ∆∗ is much larger than
x. Also, the xi sequence changes sign during this cycle.
We show that these features are necessary for such large
oscillations in ∆ to occur.

Theorem 4.1: Suppose x > 0, (respectively, x < 0) and
at least one of the following two conditions hold: (i) For
some i ∈ I+, (respectively, i ∈ I−), (IV.30) is violated. (ii)
For all i ∈ I+, (respectively, i ∈ I−), xi ≥ 0, (respectively,

xi ≤ 0). Then under (II.2-II.5) and (II.7-II.9) there exists a
finite N , such that for all i ≥ N , (IV.28) holds.

Proof: We will prove the result when x > 0. Suppose
for every N , there exists i ≥ N , such that (IV.28) is violated.
In view of the argument given after Lemma 4.3, this implies
that there exists i such that for all n ≥ 0, (IV.29) holds.
Thus, for all n ≥ 0, one has (see Lemma 3.3),

xi+4(n+1) = α4xi+4n −
(

α − 1
K

)
(1 − α2)∆i+4n.

With x∗ defined in (IV.31) there follows:

xi+4(n+1) − x∗ = α4(xi+4n − x∗).

Thus
lim

n→∞xi+4n = x∗, (IV.34)

and as x∗ < 0, (ii) must be violated. Further, observe that as
i ∈ I+, the second equation in (IV.29) ensures that for all
n ≥ 0

xi+4n+2 = α2xi+4n + (α − 1
K

)∆i ≥ x.

Because of (IV.34) this requires that

x ≤ α2x∗ + (α − 1
K

)∆i =
α − 1

K

1 + α2
∆i

where the last equality follows from (IV.31). Thus (IV.30)
holds for this i ∈ I+, and in fact all subsequent transitioning
∆ must be no smaller than this ∆i. As this ∆i also obeys the
last inequality in (IV.29), because of Lemma 4.1 no previous
transitioning ∆ can be less than this ∆i either, i.e. (i) must
be violated.

The example given before Theorem 4.1 also shows that
(i) and (ii) in Theorem 4.1 together constitute sufficient
conditions for these potentially large amplitude 4-cycles to
be possible, e.g. when x0 = x∗. In the α = 1 case, (ii)
in Theorem 4.1 is not necessary for such undesirable cycles
to occur. In particular, (ii) stems from the requirement of
(IV.34). Because of the equation before (IV.34), (IV.34) need
not hold if α = 1. Further, as noted after Lemma 3.3, when
α = 1, such cycles in ∆k, and indeed 4-cycles in xk are
guaranteed for α = 1, if even once xi+2 ≥ x for i ∈ I+.
This in general is not true when (II.7) holds. We will now
prove (II.12).

Theorem 4.2: Suppose under (II.2-II.5) and (II.7-II.9)
there exists a finite N , such that for all i ≥ N , (IV.28)
holds. Then (II.12) also holds.

Proof: We will prove the result when x > 0. Choose
succesive members l and j of I+, l < j and both greater
than N . Clearly, from Lemma 3.3 at most xl+1 and xl+2 can
be greater than or equal to x. Further as x > 0, and (II.7)
holds, xl+2 < xl+1. Thus the maximum value of xk for all
k ∈ {l, l + 1, · · · , j} is xl+1. Because of (IV.28),

xl+1 = αxl + ∆l < (α + Kε)x. (IV.35)

Consider now the unique i for which l < i < j, xi−1 ≥ x
and xi < x. Then from Lemma 3.3 either i = l + 2 or
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i = l + 3, and so from Lemma 3.5 the only candidates for
minimum xk with k ∈ {l, l + 1, · · · , j} are xi, xi+1 and
xi+2. Call ∆i−1 = ∆ ≤ Kεx. Clearly,

xi = αxi−1 − ∆ ≥ (α − Kε)x. (IV.36)

We now show that neither xi+1, nor xi+2 can be less than
(α−Kε)x. If xi+1 ≥ xi, then of course xi+1 ≥ (α−Kε)x.
Suppose, xi+1 < xi. As ∆i = ∆/K, the second part of
Lemma 3.2, leads to the conclusion that ∆/K < x(1 − α).
Then,

xi+1 = α2xi−1 + ∆(
1
K

− α) > x[(α2 + (1− αK)(1− α)].
(IV.37)

Using K > 1 and (II.7) one can show that xi+1 > (α−Kε)x
by comparing the coefficient of x in (IV.37) with (α−Kε).
Now consider xi+2. We have

xi+2 = α3xi−1 + ∆
[
1 − α2 +

α

K

]
> α3x.

Again because K > 1, α3 > (α − Kε).

This Theorem only requires that ∆i become smaller than
Kεx and nothing else.

V. DESIGN GUIDELINES

The parameter ε in (II.10) obeys Kε < K3(1 − α3)/α.
Thus, for a given K one can make Kε as small as one pleases
by making α ≈ 1. Thus (II.12) indicates that the error in
xi−x can be made arbitrarily small by choosing a sufficiently
small Kε. Of course, a practical limit on how close α can
be made to 1 is imposed by the competing role of α as an
instrument to diminish the effect of x0 − X̂0. Observe, by
choosing K to be modest in magnitude, one can achieve the
objective of keeping αK ≈ 1 while still satisfying (II.7),
K > 1 and ε ≈ 0.

We now turn to satisfying the requirement to ensure
(II.11). The first such design strategy assumes that lower and
upper bounds on |x| and its sign are available. Frequently,
it is desirable to keep this lower bound greater than zero to
permit x to rise above a noise floor. A strategy assuming
such a bound, justified in Lemma 5.1, requires that

∆0 <
1 + α2

K(αK − 1)
|x| =

∆∗

K2
. (V.38)

The Lemma assumes that |x0| < |x| and x0x ≥ 0. We will
comment later on how to modify (V.38) when |x0| > |x| and
x0x > 0.

Lemma 5.1: Consider (II.2-II.5), (II.7-II.9) with (V.38) in
force. Suppose |x0| < |x| and x0x ≥ 0. Then (II.11) and
hence (II.12) holds if (V.38) holds.

Proof: Assume x > 0. Suppose i is the first element
in I+. From Theorem 4.1 it suffices to show that ∆i < ∆∗.
If i ≤ 2 then ∆i ≤ K2∆0 < ∆∗. If i ≥ 3. As by definition
xk < x for all k ≤ i and i ≥ 3, and

x > xi ≥ ∆i

K2
(K2 + αK + α2).

Thus, ∆i < x. As ∆∗ > x, one has ∆i < ∆∗, proving the
result.

If |x0| ≥ |x| and x0x > 0 then replace |x| in (V.38) by
|x − x0|.

What if the bounds on |x| are not available? Because of
Theorem 4.1 undesirably large cycles cycles are indicated
by two events occuring together: (a) The xi undergo sign
changes over a period of 4 samples. (b) The ∆i enter 2-
cycles. Occurrence of both are detectable at the transmitter
and receiver. Then the following modification of the ADM
forces (II.11) to hold. Reduce ∆ by a factor of K, whenever
(a) and (b) both occur. In the worst case then ∆i will
be artificially reduced below min[∆∗,Kεx], and will never
again exceed that value, allowing (II.12) to hold. This
reduction in ∆i is also consistent with the motivation of
the step-size adaptation rule as (a,b) further indicate that ∆
overshoots x. Even when Xk is non-constant, and changes
sign, if as is the case with ADM, the sampling rate is well in
excess of the bandwidth of Xk, changes in the sign of Xk

are unlikely to occur over a period of mere 4 samples. In
such a case (a,b) certainly indicate that ∆i is large enough
to overshoot the changes in Xk. Thus, the motivation for
adaptation of ∆ calls for reducing ∆ when (a,b) occur. As
Lemmas 3.1 to 4.3, and Theorem 4.2 can be verified to hold
even when x = 0, this scheme also leads to (II.12) when
x = 0.

VI. CONCLUSION

Motivated by networked control applications we have
studied the behavior of an ADM algorithm with a forgetting
factor, when the coded signal is a constant. We have shown
that unlike its counterpart without a forgetting factor, arbi-
trarily small coding errors can be acheived through suitable
design selections. Areas of further work include studying
this ADM with non-constant signals with essential bandwidth
well below the sampling rate, by using a singular perturbation
method. It is also useful to look directly at stabilizability
issues in a remote control setting.

VII. ACKNOWLEDGEMENTS

This work was supported by, US NSF grants ECS-9970105
and ECS-0225530, an Australian Research Council Discov-
ery Projects Grant and by National ICT Australia, which is
funded by the Australian Government’s Department of Com-
munications, Information Tehcnology and the Arts and the
Australian Research Council through the Backing Australia’s
Ability initiative and the ICT Centre of Excellence Program.

REFERENCES

[1] J. G. Proakis and M. Salehi, Communications Systems Engineering,
2nd Ed. Prentice Hall, 2002.

[2] S. Hall and H. Bardlow, ”Comparison of 1-bit adaptive quantisers for
speech coding”, Electron Lett., vol. 25,no. 9,pp. 586-588, Apr. 1989.

[3] M.A. Aldajani and A.H. Sayed, ”Stability and Performance Analy-
sis of an Adaptive Sigma-Delta Modulator”, IEEE Transactions on
Circuits and Systems-II, vol. 48,no. 3,pp. 233-244, March 2001.

[4] D. Liberzon, “A note on stabilization of linear systems with limited
information”, Submitted to IEEE Transactions on Automatic Control.

[5] S. H. Dandach, S. Dasgupta and B.D. O. Anderson, “Stability of
adaptive delta modulators with constant inputs”, in Proceedings of
IASTED Conference of Networks and Communications Systems, April
2005, Krabi, Thailand.

5813


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




